Ứng dụng đạo hàm giải phương trình, bất phương trình của hàm số
lượt xem 596
download
" Ứng dụng đạo hàm giải phương trình, bất phương trình của hàm số " giúp ích cho các bạn tự học, ôn thi, với phương pháp giải hay, thú vị, rèn luyện kỹ năng giải đề, nâng cao vốn kiến thức cho các bạn trong các kỳ thi sắp tới. Tác giả hy vọng tài liệu này sẽ giúp ích cho các bạn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Ứng dụng đạo hàm giải phương trình, bất phương trình của hàm số
- øng dông ®¹o hµm ®Ó gi¶i PT, BPT, HPT chøa tham sè trÇn m¹nh s©m – thpt l¹ng giang sè 2 I. KI N TH C C N NH x 2 + mx + 2 = 2 x + 1 Cho hàm s y = f ( x ) liên t c trên t p D 1 2 x + 1 ≥ 0 x ≥ − 1. Phương trình f ( x ) = m có nghi m x ∈ D ⇔ 2 2 ⇔ 2 ⇔ min f ( x ) ≤ m ≤ max f ( x ) x + mx + 2 = ( 2 x + 1) mx = 3x 2 + 4 x − 1(*) x∈D x∈D 2. B t phương trình f ( x ) ≤ m có nghi m x ∈ D Xét phương trình (*) ⇔ min f ( x ) ≤ m + x = 0 ⇒ 0.x = −1 , phương trình này vô x∈D nghi m. Nghĩa là không có giá tr nào c a m ñ 3. B t phương trình f ( x ) ≤ m có nghi m ñúng phương trình có nghi m x = 0 v i x ∈ D ⇔ max f ( x ) ≤ m 1 + x ≠ 0 ⇒ 3 x + 4 − = m . Ta xét hàm s x∈D x 4. B t phương trình f ( x ) ≥ m có nghi m x ∈ D 1 1 f ( x ) = 3 x + 4 − trên t p − ; +∞ \ {0} ⇔ max f ( x ) ≥ m x 2 x∈D 5. B t phương trình f ( x ) ≥ m có nghi m ñúng 1 1 Ta có f ' ( x ) = 3 + 2 > 0 v i ∀x ∈ − ; +∞ \ {0} , x 2 v i x ∈ D ⇔ min f ( x ) ≥ m x∈D 1 II. PHƯƠNG PHÁP GI I suy ra hàm s f ( x ) = 3 x + 4 − ñ ng bi n trên x ð gi i bài toán tìm giá tr c a tham s m sao 1 cho phương trình, b t phương trình, h phương trình − 2 ; +∞ \ {0} có nghi m ta làm như sau: 1. Bi n ñ i phương trình, b t phương trình v d ng: 1 lim f ( x ) = lim 3 x + 4 − = m∞ ; f ( x ) = g ( m ) ( ho c f ( x ) ≥ g ( m ) ; f ( x ) ≤ g ( m ) ) x→0 ± x →0 ± x 2. Tìm TXð D c a hàm s y = f ( x ) 1 lim f ( x ) = lim 3 x + 4 − = +∞ 3. L p b ng bi n thiên c a hàm s y = f ( x) trên x →+∞ x →+∞ x Ta có b ng bi n thiên c a hàm s f ( x ) D 4. Tìm min f ( x ) ; max f ( x ) x −1 / 2 0 +∞ x∈D x∈D f’(x) + + 5. V n d ng các ki n th c c n nh bên trên suy ra giá tr m c n tìm +∞ +∞ Lưu ý: Trong trư ng h p PT, BPT, HPT ch a các 9 bi u th c ph c t p ta có th ñ t n ph : f(x) 2 + ð t t = ϕ ( x ) ( ϕ ( x ) là hàm s thích h p có m t trong f ( x ) ) −∞ + T ñi u ki n ràng bu c c a x ∈ D ta tìm ñi u ki n t ∈ K S nghi m c a phương trình (1) b ng s giao ñi m + Ta ñưa PT, BPT v d ng f ( t ) = h ( m ) ( ho c 1 c a ñ th hàm s f ( x ) = 3 x + 4 − và ñư ng th ng f (t ) ≥ h ( m) ; f (t ) ≤ h ( m) ) x 1 + L p b ng bi n thiên c a hàm s y = f (t ) trên y = m trên mi n − ; +∞ \ {0} 2 K D a vào b ng bi n thiên ta ñư c giá tr c a m th a + T b ng bi n thiên ta suy ra k t lu n c a bài toán 9 III. M T S VÍ D MINH H A mãn yêu c u bài toán là m ≥ 2 Ví d 1.(B-06). Tìm m ñ phương trình sau có 2 Ví d 2. Tìm m ñ phương trình nghi m th c phân bi t m ( ) x 2 − 2 x + 2 + 1 + x ( 2 − x ) ≤ 0 có nghi m x 2 + mx + 2 = 2 x + 1 Gi i: thu c 0;1 + 3 Gi i: ð t t = x2 − 2 x + 2 ⇒ − x ( 2 − x ) = t 2 − 2 . http://ebook.here.vn – Thư vi n Sách Online 1
- øng dông ®¹o hµm ®Ó gi¶i PT, BPT, HPT chøa tham sè trÇn m¹nh s©m – thpt l¹ng giang sè 2 Khi ñó b t phương trình tr thành: 1 1 1 1 1 1 = . + − . − m ( t + 1) ≤ t 2 − 2 (*) 2 4 ( 2 x )3 2 x 2 4 ( 6 − x )3 6− x x −1 Ta có t ' = ,t ' = 0 ⇔ x =1 x − 2x + 2 2 1 1 = . − 1 + 1 − 1 2 4 ( 2 x )3 2x 6− x (6 − x) 3 Ta có b ng bi n thiên : 4 x 0 1 1+ 3 1 1 1 1 1 1 t’ - 0 + = . 4 − 4 + + 2 2x 6 − x 4 ( 2x ) 2 ( ) 4 ( 6 − x)2 4 2x 6 − x 2 t 2 1 1 1 1 + 4 −4 4 +4 2x 6 − x 2x 6− x 1 1 1 1 1 1 1 1 1 t −2 2 = 4 − 4 + + + + T ñó ta có 1 ≤ t ≤ 2 , t (*) suy ra m ≤ (1) 2x 6−x 2 4 ( 2x)2 4 2x( 6−x) 4 ( 6−x)2 4 2x 4 6−x t +1 t2 − 2 ta có Xét hàm s f (t ) = trên t p [1; 2] t +1 1 1 + 1 + 1 + 1 + 1 > 0 ( t + 1) + 1 > 0 v 2 Ta có f ' ( t ) = i ∀t ∈ [1; 2] 2 4 ( 2x ) 2 4 2x (6 − x) 4 (6 − x) 2 4 2x 4 6 − x ( t + 1) 2 v i ∀x ∈ ( 0;6 ) Ta có b ng bi n thiên c a hàm s f (t ) f '( x) = 0 ⇔ 4 2x = 4 6 − x ⇔ 2x = 6 − x ⇔ x = 2 t 1 2 Ta có b ng bi n thiên f’(t) + 2 x 0 2 6 f(t) 3 - f’(x) + 0 1 f(x) 3 2 +6 2 B t phương trình ñã cho có nghi m 24 6 + 2 6 x ∈ 0;1 + 3 ⇔ b t phương trình (1) có nghi m 4 12 + 2 3 2 t ∈ [1; 2] ⇔ m ≤ max f ( t ) = f ( 2 ) = S nghi m c a phương trình ñã cho b ng s giao [1;2] 3 ñi m c a ñ th hàm s y = f ( x ) và ñư ng th ng Ví d 3.(A-08). Tìm m ñ phương trình sau có 2 y = m trên mi n [ 0;6 ] nghi m th c phân bi t D a vào b ng bi n thiên ta ñư c giá tr c a m th a 4 2x + 2x + 2 4 6 − x + 2 6 − x = m ( m ∈ ¡ ) mãn yêu c u bài toán là 2 4 6 + 2 6 ≤ m < 3 2 + 6 Gi i ði u ki n: 0 ≤ x ≤ 6 Ví d 4.(B-07) Ch ng minh r ng v i m i giá tr Xét hàm s f ( x) = 4 2x + 2x + 2 4 6 − x + 2 6 − x dương c a tham s m, phương trình sau có 2 trên t p [ 0;6] nghi m th c phân bi t: Ta có x2 + 2 x − 8 = m ( x − 2) 1 1 1 1 Gi i: ði u ki n: do m > 0 ⇒ x ≥ 2 . Ta có: f ( x) = ( 2x)4 + ( 2x)2 + 2 (6 − x)4 + 2 (6 − x)2 3 1 x2 + 2 x − 8 = m ( x − 2) 1 1 f '( x) = ( 2 x ) 4 .2 + ( 2 x ) 2 .2 + − − 4 2 ⇔ ( x − 2 )( x + 4 ) = m ( x − 2 ) 3 1 1 1 2. ( 6 − x ) 4 . ( −1) + 2. ( 6 − x ) 2 . ( −1) − − x = 2 4 2 ⇔ ( x − 2 )( x + 4 ) = m (*) 2 http://ebook.here.vn – Thư vi n Sách Online 2
- øng dông ®¹o hµm ®Ó gi¶i PT, BPT, HPT chøa tham sè trÇn m¹nh s©m – thpt l¹ng giang sè 2 Nh n th y phương trình ñã cho luôn có 1 nghi m Thay x = 0 vào phương trình (*) ñư c: 1 = - 1. V y x = 2 , ñ ch ng minh khi m > 0 phương trình ñã phương trình (*) vô nghi m. Suy ra f ' ( x ) ch mang cho có 2 nghi m th c phân bi t ta c n ch ra phương 1 d u (không ñ i d u), có trình (*) luôn có m t nghi m th c x > 2 khi m > 0 f ' ( 0 ) = 1 > 0 ⇐ f ' ( x ) > 0, ∀x ∈ ¡ f ( x ) = ( x − 2 )( x + 4 ) = x 3 + 6 x 2 − 32 2 Xét hàm s Ta có trên t p ( 2; +∞ ) lim f ( x ) = lim x →+∞ x →+∞ ( x2 + 2 x + 4 − x2 − 2 x + 4 ) Ta có f ' ( x ) = 3 x + 12 x > 0 v i ∀x > 2 2 4x = lim 6 32 x →+∞ x + 2 x + 4 + x2 − 2 x + 4 lim f ( x ) = lim x 3 1 + − 3 = +∞ 2 x →+∞ x →+∞ x x 4 = lim =2 Ta có b ng bi n thiên c a hàm s f ( x ) x →+∞ 2 4 2 4 1+ + 2 + 1− + 2 x x x x x 2 f’(x) + +∞ lim f ( x ) = lim x →−∞ x →−∞ ( x2 + 2 x + 4 − x2 − 2 x + 4 ) 4x +∞ = lim x →−∞ f(x) x + 2 x + 4 + x2 − 2 x + 4 2 4 = lim = −2 x →−∞ 2 4 2 4 0 − 1+ + 2 − 1− + 2 x x x x S nghi m c a phương trình (*) b ng s giao ñi m Ta có b ng bi n thiên c a hàm s f ( x ) c a ñ th hàm s y = f ( x ) và ñư ng th ng y = m x -∞ +∞ trên mi n ( 2; +∞ ) f’(x) + D a vào b ng bi n thiên ta suy ra khi m > 0 thì phương trình (*) luôn có 1 nghi m x > 2 2 f(x) V y v i m > 0 thì phương trình ñã cho luôn có 2 nghi m th c phân bi t Ví d 5. Tìm m ñ phương trình sau có nghi m: -2 x2 + 2 x + 4 − x2 − 2 x + 4 = m S nghi m c a phương trình ñã cho b ng s giao Gi i: ñi m c a ñ th hàm s y = f ( x ) và ñư ng th ng Vì x 2 ± 2 x + 4 = ( x ± 1) + 3 ≥ 3 > 0, ∀x ∈ ¡ nên 2 y = m trên ¡ TXð: D = ¡ D a vào b ng bi n thiên ta suy ra phương trình có Xét hàm s f ( x ) = x 2 + 2 x + 4 − x 2 − 2 x + 4 trên nghi m ⇔ −2 < m < 2 ¡ Ví d 6. Tìm m ñ h phương trình sau có nghi m Ta có: x +1 x −1 x 2 − 3x − 4 ≤ 0 f '( x) = − 3 x − 3 x x − m − 15m ≥ 0 2 x + 2x + 4 2 x − 2x + 4 2 x +1 x −1 Gi i: f '( x) = 0 ⇔ − =0 x + 2x + 4 2 x − 2x + 4 2 Ta có: x 2 − 3 x − 4 ≤ 0 ⇔ −1 ≤ x ≤ 4 . H phương trình ñã cho có nghi m ⇔ ( x + 1) x 2 − 2 x + 4 = ( x − 1) x 2 + 2 x + 4 (*) ⇔ x3 − 3 x x − m 2 − 15m ≥ 0 có nghi m x ∈ [ −1; 4] ⇒ ( x + 1) ( x 2 − 2 x + 4 ) = ( x − 1) ( x 2 + 2 x + 4 ) 2 2 ⇔ x3 − 3 x x ≥ m 2 + 15m có nghi m x ∈ [ −1; 4] ⇔ x 4 − 2 x 3 + 4 x 2 + 2 x3 − 4 x 2 + 8 x + x 2 − 2 x + 4 = x 3 + 3 x 2 khi − 1 ≤ x < 0 x 4 + 2 x3 + 4 x 2 − 2 x3 − 4 x2 − 8x + x 2 + 2 x + 4 ð t f ( x) = x − 3 x x = 3 3 x − 3 x khi 0 ≤ x ≤ 4 2 ⇔ x=0 Ta có http://ebook.here.vn – Thư vi n Sách Online 3
- øng dông ®¹o hµm ®Ó gi¶i PT, BPT, HPT chøa tham sè trÇn m¹nh s©m – thpt l¹ng giang sè 2 2 3 x + 6 x khi − 1 < x < 0 S nghi m c a phương trình ñã cho b ng s giao f '( x) = 2 ñi m c a ñ th hàm s y = f ( t ) và ñư ng th ng 3 x − 6 x khi 0 < x < 4 f ' ( x ) = 0 ⇔ x = 0; x = ±2 y = m trên − 2; 2 Ta có b ng bi n thiên : D a vào b ng bi n thiên ta suy ra phương trình có nghi m ⇔ −1 ≤ m ≤ 1 x -1 0 2 4 f’(x) - 0 - 0 + Ví d 8: Tìm m ñ b t phương trình sau có 16 nghi m: mx − x − 3 ≤ m + 1 (1) f(x) Gi i: 2 ð t t = x − 3 ≥ 0 ⇒ x = t 2 + 3 . Khi ñó b t phương trình tr thành: -4 m ( t 2 + 3) − t ≤ m + 1 ⇔ m ( t 2 + 2 ) ≤ t + 1 f ( x ) ≥ m 2 + 15m có nghi m x ∈ [ −1; 4] t +1 ⇔ ≥ m (*) ⇔ max f ( x ) ≥ m 2 + 15m ⇔ 16 ≥ m 2 + 15m t2 + 2 [ −1;4] t +1 Xét hàm s f (t ) = trên ( 0; +∞ ) ⇔ m + 15m − 16 ≤ 0 ⇔ −16 ≤ m ≤ 1 2 t2 + 2 V y h phương trình ñã cho có nghi m −t 2 − 2t + 2 ⇔ −16 ≤ m ≤ 1 Ta có: f ' ( t ) = (t + 2) 2 2 Ví d 7. Tìm m ñ phương trình sau có nghi m: f ' ( t ) = 0 ⇔ −t 2 − 2t + 2 = 0 ⇔ t = −1 ± 3 sin 3 x + cos3 x = m 1 Gi i 1+ sin3 x + cos3 x = m ⇔ ( sin x + cos x )(1 − sin x.cos x ) = m lim f ( t ) = lim t =0 x →+∞ x →+∞ 2 π t+ ð t t = sin x + cos x = 2.sin x + , − 2 ≤ t ≤ 2 t 4 Ta có b ng bi n thiên c a hàm s f (t ) Khi ñó: t = sin x + cos x ⇒ t = ( sin x + cos x ) 2 2 t 0 −1 + 3 +∞ t 2 −1 f’(t) + 0 - ⇒ sin x.cos x = 2 Phương trình tr thành: f(t) 3 +1 1 t 2 −1 1 3 3 4 t 1 − =m⇔− t + t=m 2 2 2 2 0 1 3 Xét hàm s f ( t ) = − t 3 + t trên t p − 2; 2 D a vào b ng bi n thiên ta suy ra b t phương trình 2 2 (1) có nghi m ⇔ b t phương trình (*) có nghi m 3 3 Ta có: f ' ( t ) = − t 2 + 3 +1 2 2 t > 0 ⇔ max f ( t ) ≥ m ⇔ m ≤ ( 0;+∞ ) 4 3 3 f ' ( t ) = 0 ⇔ − t 2 + = 0 ⇔ t = ±1 Ví d 9.(A-07) Tìm m ñ phương trình sau có 2 2 Ta có b ng bi n thiên: nghi m: 3 x −1 + m x + 1 = 2 4 x2 −1 Gi i: t - 2 -1 1 2 ði u ki n: x ≥ 1 f’(t) - 0 + 0 - 3 x −1 + m x + 1 = 2 4 x2 −1 f(t) 1 x −1 x −1 ⇔ −3 + 24 = m (1) 2 x +1 x +1 2 − 2 x −1 2 ð tt=4 , khi ñó phương trình (1) tr thành: -1 x +1 −3t 2 + 2t = m (*) http://ebook.here.vn – Thư vi n Sách Online 4
- øng dông ®¹o hµm ®Ó gi¶i PT, BPT, HPT chøa tham sè trÇn m¹nh s©m – thpt l¹ng giang sè 2 2 t2 − 9 Ta có x ≥1 ⇒ t ≥ 0 và t = 1− 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
SKKN: Phân tích những sai lầm của học sinh lớp 12 khi học chương Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Hướng khắc phục
14 p | 359 | 89
-
Giải bài tập giải tích 12 cơ bản - Chương 1 - Ứng dụng đạo hàm để khảo sát hàm số
44 p | 387 | 78
-
Ứng dụng đạo hàm để tìm GTLN và GTNN của hàm số nhiều biến
25 p | 1127 | 74
-
Chuyên đề Ứng dụng đạo hàm trong các bài toán hàm số - GV. Nguyễn Tất Thu
13 p | 314 | 67
-
SKKN: Ứng dụng đạo hàm trong giải bài Toán đại số và giải tích
0 p | 243 | 50
-
Chuyên đề 1: Ứng dụng đạo hàm khảo sát tính biến thiên và vẽ đồ thị hàm số
19 p | 638 | 50
-
Ôn tập trọng tâm kiến thức và phương pháp giải toán khảo sát hàm số và ứng dụng đạo hàm: Phần 1
118 p | 190 | 36
-
Ôn tập trọng tâm kiến thức và phương pháp giải toán khảo sát hàm số và ứng dụng đạo hàm: Phần 2
102 p | 147 | 30
-
Đề kiểm tra 1 tiết Toán 12 - Chương 1 Ứng dụng đạo hàm - Giải tích
3 p | 207 | 24
-
Một số phương pháp giải toán khảo sát hàm số và ứng dụng đạo hàm: Phần 2
204 p | 122 | 17
-
Một số phương pháp giải toán khảo sát hàm số và ứng dụng đạo hàm: Phần 1
255 p | 123 | 16
-
SKKN: Ứng dụng đạo hàm giải các bài toán thực tế của lớp 12
96 p | 198 | 13
-
Sáng kiến kinh nghiệm: Ứng dụng đạo hàm giải phương trình
53 p | 133 | 12
-
Sáng kiến kinh nghiệm THPT: Một số biện pháp góp phần phát triển năng lực tư duy và lập luận toán cho học sinh thông qua chuyên đề: Ứng dụng đạo hàm vào giải toán thực tế
120 p | 15 | 8
-
Giáo án Giải tích 12 – Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
24 p | 93 | 2
-
Giáo án Giải tích 12 - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
24 p | 60 | 2
-
Bài giảng Giải tích lớp 12: Chương 1 - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
11 p | 18 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn