Nội suy Spline bậc 3
-
Bài giảng Phương pháp tính: Chương 3 trình bày phương pháp nội suy và bình phương cực tiểu. Nội dung chương này bao gồm: Nội suy đa thức Lagrange, sai số nội suy Lagrange, nội suy Newton (mốc cách đều), nội suy ghép trơn (Spline) bậc ba, bình phương cực tiểu.
26p hoa_dai91 24-06-2014 589 143 Download
-
Sau đây là bài giảng Chương 4: Nội suy và xấp xỉ hàm, mời các bạn tham khảo bài giảng để hiểu rõ hơn về đa thức nội suy Lagrange; đa thức nội suy Newton; Spline bậc 3; bài toán xấp xỉ thực nghiệm. Bài giảng hữu ích với các bạn chuyên ngành Toán học và những ngành có liên quan.
56p cocacola_05 02-11-2015 416 66 Download
-
Bài giảng "Nội suy và xấp xỉ hàm" cung cấp cho người học các kiến thức: Đa thức nội suy, đa thức nội suy Lagrange, đa thức nội suy Newton, spline bậc 3, bài toán xấp xỉ hàm thực nghiệm. Mời các bạn cùng tham khảo nội dung chi tiết.
35p doinhugiobay_11 15-01-2016 228 38 Download
-
Bài giảng "Phương pháp tính - Chương 3: Nội suy" có cấu trúc gồm 3 phần cung cấp cho người học các kiến thức: Nội suy đa thức, nội suy Spline bậc 3, phương pháp bình phương tối thiểu. Mời các bạn cùng tham khảo nội dung chi tiết.
27p doinhugiobay_11 15-01-2016 356 68 Download
-
Chương 4 - Các phương pháp cho hàm rời rạc. Chương này trình bày về đa thức nội suy (Polynomial interpolation) và phương pháp bình phương tối thiểu. Nội dung cụ thể gồm có: Nội suy Lagrangian, nội suy Newton, nội suy bậc 3 (Cubic spline interpolation), làm khớp dữ liệu cho các hàm tuyến tính, làm khớp dữ liệu cho các hàm phi tuyến.
24p whocare_d 22-09-2016 95 14 Download
-
Bài giảng “Phương pháp tính – Chương 4: Nội suy và xấp xỉ hàm” cung cấp cho người học các kiến thức: Đa thức nội suy Lagrange, đa thức nội suy Newton, Spline bậc 3, bài toán xấp xỉ thực nghiệm. Mời các bạn cùng tham khảo nội dung chi tiết.
52p deja_vu10 02-04-2018 131 11 Download
-
Bài giảng “Phương pháp tính – Chương 4: Nội suy và xấp xỉ hàm” cung cấp cho người học các kiến thức: Đa thức nội suy Lagrange, đa thức nội suy Newton, Spline bậc 3, bài toán xấp xỉ thực nghiệm. Mời các bạn cùng tham khảo nội dung chi tiết.
52p nanhankhuoctai10 23-07-2020 76 7 Download
-
3.1 Tính gần đúng đạo hàm + Ta biểu diễn hàm f(x) bằng đa thức nội suy: f(x) = P(x), với P(x) là đa thức nội suy (đa thức nội suy tiện lợi là spline bậc 3); Tiếp theo ta tính gần đúng đạo hàm f ’(x) ở đa thức này: f’(x) = P’(x) + Ta cũng có thể áp dụng khai triển Taylor: f(x + h) = f(x) + h f’(x) + Từ đó ta tính được:
10p tuan247321 27-08-2011 1057 64 Download
-
Tính gân đúng đạo hàm + Ta biểu diễn hàm f(x) bằng đa thức nội suy: f(x) = P(x), với P(x) là đa thức nội suy (đa thức nội suy tien lợi là spline bậc 3); Tiêp theo ta tính gần đúng do hàm f ’(x) ở đa thức này
10p leslienguyen 21-11-2010 186 53 Download