intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài 1 Giá trị các hàm số lượng giác có mối quan hệ đặc biệt

Chia sẻ: Nguyễn Khánh Hoàng | Ngày: | Loại File: DOC | Số trang:7

472
lượt xem
70
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài tập hàm số lượng giác biến đổi lượng giác

Chủ đề:
Lưu

Nội dung Text: Bài 1 Giá trị các hàm số lượng giác có mối quan hệ đặc biệt

  1. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com Ch¬ng 1: Hµm sè lîng gi¸c BiÕn ®æi l- π   3π  A = sin ( x + π ) + cos  − x ÷ + cot g ( 2π − x ) + tg  − x ÷ îng gi¸c 2   2  Bµi 1 Gi¸ trÞ c¸c hµm sè lîng gi¸c cã  3π  π   3π  B = co s ( π − x ) + sin  x − ÷ − t g  + x ÷cotg  − x ÷ mèi quan hÖ ®Æc biÖt  2  2   2  A lý thuyÕt ( ) ( C = sin 270 − x − 2sin x − 450 + cos x + 900 + 0 0 ) 0 ( ) Cung ®èi 2sin 7200( − x ) + cos ( 540 − x ) 0 Cung bï Bµi 7: TÝnh gi¸ trÞ cña biÓu thøc Cung h¬n kÐm pi cos 3 x + cosx.sin 2 x − sin x Cung phô A= neu tgx = 2 sin 3 x − cos3 x Cung h¬n kÐm pi/2 D¹ng 2: Chøng minh ®¼ng thøc B. Bµi tËp Bµi 1: Chøng minh c¸c ®¼ng thøc sau D¹ng 1: tÝnh gi¸ trÞ cña c¸c hµm sè lîng gi¸c sin 2 x sin x + cosx vµ rót gän 1) − = sin x + cosx Bµi 1: tÝnh gi¸ trÞ sin x − cosx tg 2 x − 1 Cos1200 tg1300 sin(-7800) tg 2 x 1 + cot g 2 x 1 + tg 4 x 2) . = 2 Bµi 2: TÝnh gi¸ trÞ 1 + tg 2 x cot g 2 x tg x + cot g 2 x Sin1500 , cotg1350 , tg1500 Bµi 2: Chøng minh c¸c ®¼ng thøc sau Sin2100 , cos2250 , tg2400 , cotg2250  11π   21π   9π   29π   2π   π  7π   11π  1) sin  ÷ + sin  ÷ + sin  − ÷ + sin  − ÷ = − 2cos  ÷ sin  − ÷, tg  ÷, cot g  ÷  10   10   10   10   5  6  4   6  2) tg105 + tg 285 − tg ( −435 ) − tg ( −75 ) = 0 0 0 0 0 Bµi 3: Chøng minh r»ng ( ) sin 5150.cos − 4750 + cot g 2220.cot g 4080 1 3) ( cos −200 .sin 700 ) =1 1) = cos 2 250 sin1600.co s3400.tg 2500 0 ( 0 ) cot g 415 .cot g − 505 + tg197 .tg 73 0 0 2 Bµi 3: CMR nÕu tam gi¸c ABC tho¶ m·n hÖ 2) thøc sin(−3280 ).sin 9580 co s( −5080 ).co s( −1022 0 ) C B B C − = −1 sin .cos 3 = sin .cos 3 th× tam gi¸c ®ã c©n cot g 5720 t g ( −2120 ) 2 2 2 2 HD: BiÕn ®æi vÒ gãc nhá h¬n 90 ®é B C HD: Chia c¶ tö vµ mÉu cho cos .cos Bµi 4: Rót gän biÓu thøc sau 2 2 A= 1 + 2sin 25500.cos −1880 ( ) Bµi 4: CMR cos A + cos B 1 2 2 = cot g 2 A + cot g 2 B  tg 3680 2 cos 6380 + cos980 sin A + sin B 2  2 2  th× tam gi¸c ®ã c©n (cot g 440 + tg 2260 ).co s 4060 B= − cot g 72 .cot g18 ( ) 0 0 2 cos 3160 HD: sin 2 A − sin 2 B = 0 sin( −4,8π ).s in ( −5, 7π ) co s( −6, 7π ).co s ( −5,8π ) Bµi 5: §¬n gi¶n biÓu thøc sau C= + cot g ( −5, 2π ) t g ( −6, 2π )   11π  A = 1 + tg 2  − x ÷ 1 + cot g 2 ( x − 3π )  .   Bµi 5: Rót gän biÓu thøc sau   2  A= ( ) sin −2340 − cos 2160 .tg 360  3π cos    + x ÷sin ( 11π − x ) .cos  x − 13π  ÷sin ( x − 7π ) sin144 − cos126 0 0  2   2  B= ( ) cot g 440 + tg 2260 .co s 4060 ( ) − cotg 72 .cot g18 0 0 B = sin 6 ( π + x ) + cos 6 ( π − x ) − 2sin 4 ( 2π + x ) cos3160  3π  π  − sin 4  + x ÷+ cos 2  − x ÷ C = cos 20 + cos 40 + cos 60 + ... + cos160 + cos180 0 0 0 0 0  2  2  C = sin 10 + sin 20 + sin 30 + ... + sin 180 2 0 2 0 2 0 2 0 98 Bµi 6: Cho 3sin x + 2cos x = 4 4 Bµi 6: Rót gän biÓu thøc sau 81 TÝnh A = 2sin x + 3cos x 4 4 Tæ to¸n : Trêng THPT B×nh Giang 1 Th¸ng 4/2008
  2. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com  x = sin 4 x  Bµi 6 Cho HD: ®Æt  Gi¶i hÖ ph¬ng tr×nh theo π π  y = cos x 0 < a, b < , a + b = , tga.tgb = 3 − 2 2 4  2 4 A vµ h»ng sè ®Ó t×m A thay x , y vµo 1) TÝnh tga + tgb ph¬ng tr×nh sin 2 x + cos 2 x = 1 ⇔ x + y = 1 2) TÝnh tga, tgb tõ ®ã tÝnh a,b Bµi 2 C«ng thøc céng D¹ng 2: Chøng minh ®¼ng thøc vµ rót gän D¹ng 1: tÝnh gi¸ trÞ cña c¸c hµm sè lîng gi¸c ®¼ng thøc vµ rót gän Bµi 1 Chøng minh r»ng Bµi 1 TÝnh gi¸ trÞ c¸c hµm sè lîng gi¸c sin ( a + b ) sin ( a − b ) 1) tg 2 a − tg 2b = 7π cos 2 a.cos 2b 1) α = 150 x = 12 tg 2 2a − tg 2 a 2) = tga.tg 3a HD : VT lµm xuÊt 103π 1 − tg 2 2a.tg 2 a 2) x = 2850 x= 12 hiÖn tg ( 2a − a ) .tg ( 2a + a ) Bµi 2 TÝnh gi¸ trÞ cña biÓu thøc  π    π A = sin1600.cos1100 + sin 2500.cos3400 + tg110 0.tg 3400 3) sin  + a ÷− sin  − a ÷ = 2 sin a 4  4  HD:Sö dông cung liªn kÕt Dïg c«ng thøc céng theo chiÒu xu«i HD Chia 2 vÕ cho 2 chiÒu ngîc π  π  π Chó ý  + a ÷+  − a ÷ = ( ) ( ) ( B = sin −337 .cos −53 + sin 307 sin 113 0 0 0 ) ( 0 ) 4  4  2 sin ( a + b + c ) tg 2250 − cot g 810.cot g 690 4) tga + tgb + tgc − tga.tgb.tgc = C= cos a.cos b.cos c cot g 2610 + tg 2010 sin ( a + b + c ) = sin a.cos b.cos c + sin b.cos a.cos c + D = cos680.cos 780 + co s 220.cos120 − cos100 5) π sin c.cos b.cos a − sin a.sin b.sin c  9 Bµi 3 TÝnh A = tg  x − ÷ biet cos x = − sin ( a − b ) sin ( a + b )  4 41 6) = −cos 2 a.sin 2 b 1 − tg 2 a.cot g 2b  3π  Víi  π < x < ÷ co s ( a − b ) co s ( a + b )  2  7) 2 2 = 1 − tg 2 a.tg 2b π cos a.co s b tgx − tg 4 Bµi 2 Rót gän biÓu thøc sau HD: A = π 1 + tgx.tg  π π  π   π 4 A = sin  x − ÷.cos  − x ÷+ sin  − x ÷.cos  x − ÷  3 4  4   3 Bµi 4 TÝnh A = cos ( a + b ) .cos ( a − b ) BiÕt B = sin 4 x.cot g 2 x − cos 4 x 1  π  2π  cos a = C = tgx + tg  x + ÷+ tg  + x÷ 3  3  4   3π  Víi  π < x < ÷  π π  π   π  2  D = co s  x − ÷.cos  + x ÷− co s  + x ÷.cos  x − ÷  3 4  6   4 π tgx − tg  π  π π HD: A = 4 HD: NX  x − ÷−  x + ÷ = − π  3  6 2 1 + tgx.tg 4 Bµi 3 Chøng minh ®¼ng thøc sau kh«ng Bµi 5 Cho a,b lµ c¸c gãc nhän víi phô thuéc vµ x 8 5 sin a = , tgb =  π π  17 12 A = cos 2 x + co s 2  x + ÷+ cos 2  − x ÷  3 3  TÝnh sin ( a − b ) , cos ( a + b ) , tg ( a − b ) 2π  2π  2  B = sin 2 x + sin 2  x + ÷+ sin  − x÷  3   3  Tæ to¸n : Trêng THPT B×nh Giang 2 Th¸ng 4/2008
  3. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com  π π  C = sin x + co s  x − ÷cos  + x ÷ 2  3 3  π HD : nh©n 2 vÕ víi sin  π π   2π  7 D = tgx.tg  x + ÷ + tg  + x ÷.tg  + x ÷ + 3) C = 16sin10 .sin 30 .sin 500.sin 700.sin 90 0 0 0  3 3   3  HD : nh©n 2 vÕ víi cos100  2π  tg  + x ÷tgx π 2π 4π 8π  3  D = co s .co s .co s .co s . 65 65 65 65 Bµi 4: Cho tam gi¸c ABC CMR 4) 16π 32π 1) sin A = sin B.cosC + sin C.cosB co s .co s 65 65 A B C B C 2) sin = co s .cos − sin .sin D¹ng 2: Thùc hiÖn phÐp tÝnh qua mét sè gi¸ 2 2 2 2 2 trÞ ®· biÕt 3) tgA + tgB + tgC = tgA.tgB.tgC Bµi 1 A B B C C A 4) tg .tg + tg .tg + tg .tg = 1 a a 1 2 2 2 2 2 2 1) TÝnh A = cos 2a BiÕt sin + cos = − 2 2 2 Bµi 5: HD: b×nh ph¬ng 2 vÕ 1) Cho cos ( a + b ) = k .cos ( a − b ) , k #1  0 0 < a < 90 0 1 −1 1− k 2) Cho tga = ; tgb = víi  0 CMR tga.tgb = 2 3 90 < b < 180  0 1+ k 2) Cho cos ( a + 2b ) = k .cos ( a ) , k #− 1 TÝnh sin ( a − 2b ) ; cos ( 2a + b ) 1− k 7 π a CMR tg ( a + b ) .tgb = 3) Cho sin a + cos a = 2 ;0
  4. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com 2cos 2 a − 1 1 H= F = sin 6 x.co s 2 x + sin 2 x.co s 6 x + .cos 4 2 x 6) π  π  8 2tg  − a ÷.sin 2  + a ÷ 4  4  Bµi 4 C«ng thøc biÕn ®æi D¹ng 1: BiÕn ®æi tæng thµnh tÝch vµ ngîc l¹i F= 0 ( sin 60 + a ) Bµi 1 BiÕn ®æi thµnh tÝch 7)  a  a 4sin  250 + ÷sin  750 − ÷ 1) A = cos 2 a − cos 2 3a  4  4 2) B = sin 3x + sin 2 x D¹ng 4: Chíng minh r»ng 3 1 3 3) C = tgx − 1) 4.cos x − 2cos 2 x − cos 4 x = 4 3 2 2 4) D = 1 − cotgx sin 4 x 2) cos 3 x.sin x − sin 3 x.cosx = 4 ( ) ( 5) E = cos 60 + x + cos 60 − x + cos3x 0 0 ) 1 3 Bµi 2 BiÕn ®æi thµnh tÝch 3) sin 4 x + cos 4 x = .cos 4 x + 1) A = sin 700 − sin 200 + sin 500 4 4 1 + sin x π x  2) B = cos 460 − cos 220 − 2cos780 4) = cot g  − ÷ 3) C = 1 + cosx + cos 2 x + cos3x cos x  4 2 6 + 2cos 4 x 4) D = cos a + cos b + sin ( a + b ) 5) = cot g 2 x + tg 2 x 1 − cos 4 x 5) 1 + sin x − cos 2 x 1 6) 1 − 2 cos x + cos 2 x cos 2 x.cos 2 y − sin 2 x.sin 2 y + sin 2 x.sin 2 y 7) sin x.cos3 x + sin 4 x.cos 2 x 6) 2 8) cos 2 x + cos 2 2 x + cos 2 3x − 1 = cos ( x + y ) 9) sin 2 x − sin 2 2 x + sin 2 3 x HD: Sö dông c«ng thøc nh©n ®«i π x x 10) tgx + sinx + tgx − sin x 0< x< cos − sin 2 2 2 = 1 − tgx Bµi 3 BiÕn ®æi thµnh tæng 7) 1) sin ( a + 30 ) .sin ( a − 30 ) x x cos x 0 0 cos + sin 2 2 x− y π 2π  2) sin .sin 8) ( cos x + sin y ) + ( s n − cos y ) = 4cos  45 + 2 2 02 ÷ 5 5  2  3) 2 sinx.sin 2 x.sin 3 x  π  4) 8 cos x.sin 2 x.sin 3 x sin x ( 1 + cotgx ) + cos x ( 1 + tgx ) = 2.cos  x − ÷ 2 2  4  π  π 9) 5) sin  x + ÷.sin  x − ÷.cos 2 x  π 3π π  6  6 − ≤ x ≤ ; x # 0; x # ÷  4 4 2 6) 4cos ( a − b ) cos ( b − c ) cos ( c − a ) 2 2 sin 3 x co s 3 x D¹ng 2 TÝnh gi¸ trÞ vµ rót gän biÓu thøc 10) − = 8.cos 2 x sin 2 x co s 2 x Bµi 1 BiÕn ®æi thµnh tÝch Bµi tËp: 1) A = cos 2 a − cos 2 3a CMR biÓu thøc sau kh«ng phô thuéc vµo x 11π 5π ( A = sin 8 x + 2 cos 2 450 + 4 x ) 2) B = sin .cos 12 12 cos x − cos3x sin x + sin 3 x 3 3 3) C = sin 20 .sin 400.sin 800 0 B= + cosx sin x 4) D = sin 200.sin 500.sin 700 1 1 π 5π 7π C= + .sin x 0 < x < π 5) E = cos + cos + cos 1 + cosx 1 − cosx 9 9 9 2π 2π 2π  π  π  3π  6) F = cos + cos + cos D = sin 4 x + sin 4  x + ÷+ sin 4  x + ÷+ sin 4  x + ÷ 7 7 7  4  2  4  7) F = tg 9 − tg 27 − tg 63 + tg 810 0 0 0 ( ) ( E = 3 sin 4 x + co s 4 x − 2 sin 6 x + co s 6 x ) Tæ to¸n : Trêng THPT B×nh Giang 4 Th¸ng 4/2008
  5. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com 1 3 1 1 8) F = − 4sin 700 HD: BiÕn ®æi sin x = − cos 2 x + cos 4 x 4 0 sin10 8 2 8 Bµi 2 TÝnh gÝ trÞ cña bÓu thøc Thay tõng h¹ng tö sau ®ã rót gän x 5x 1 1 1) A = sin .sin BiÕt x = 600 2) cos x − cos 3 x − cos 5 x = 8sin x.cos x 2 3 4 4 2 2 2) B= cos 2a − cos 4a BiÕt a = 200 HD: cos 5 x = cos ( 2 x + 3x ) Sö dông c«ng thøc sin 4a − sin 2a nh©n 3 vµ c«ng thøc céng cos a.cos13a π sin ( a − b ) sin ( b − c ) sin ( c − a ) 3) C= BiÕt a = cos3a + cos5a 7 3) + + =0 cos a.cos b cos c.cos b cos a.cos c 4) D = tg 20 .tg 40 .tg 60 .tg 80 0 0 0 0 4) sin x ( 1 + 2 cos 2 x + 2 cos 4 x + 2 cos 6 x ) = sin 7 x Bµi 3 Rót gän biÓu thøc 3+π π −3 Bµi 5 A = cos x.cos .cos 1) Cho a + b = c CMR x x a b c π x  π x sin a + sin b + sin c = 4 cos .cos .cos B = sin 2  + ÷− sin 2  − ÷ 2 2 2  8 2  8 2 2) Cho a + b + c + d = π CMR sinx + sin 4 x + sin 7 x a+b b+c c+a C= sin a + sin b + sin c + sin d = 4sin .sin .sin cos x + cos 4 x + cos 7 x 2 2 2 D = 1 − sin 2 x + 1 + sin 2 x −450 < x < 450 ( ) Bµi 6: Cho tam gi¸c ABC CMR D¹ng 3 Chøng minh h»ng ®»ng thøc 1) sin 2 A + sin 2 B + sin 2C = 4sin A.sin B.sin C Bµi 1 Chøng minh r»ng A B C 2) co s A + cos B + cos C = 1 + 4sin .sin .sin 1) sin ( a + b ) .cos b − sin ( a + c ) .cos c = sin ( b − c ) .cos ( a + b + c ) 2 2 2 A B C cos ( a + b ) .sin ( a − b ) + cos ( b + c ) sin ( b − c ) 3) sin A + sin B + sin C = 4.cos .cos .cos 2) 2 2 2 + cos ( c + d ) sin ( c − d ) = cos ( a + d ) sin ( a − d ) 4) co s A + cos B + cos C = 1 − 2co s A.co s B.co s C 2 2 2 π  π  Bµi 5 Gi¶i to¸n biÕn ®æi lîng gi¸c 3) tg  + a ÷− tg  − a ÷ = 2.tg 2a 4  4  D¹ng 1: Chøng minh ®¼ng thøc lîng gi¸c 4) A = cos ( a + x ) + cos x − 2 cos x.cos a.cos ( a + x ) 2 2 Bµi 1 CMR 5) B = sin 6 x.sin 4 x − sin15x.sin13x + sin19 x.sin 9 x 1) tg 3a = ( tga 3 − tg 2 a ) Bµi 2 Chøng minh r»ng 1 − 3tg a 2 1 − sin 2 x 2 π  2) cotgx − tgx = 2 cot gx = tg  − x ÷ 1 + sin 2 x 4  1 3 3) sin 4 x + cos 4 x = cos 4 x + π 4 4 sin − sin 2 x 2 3 5 HD: VT = π : BiÕn ®æi thµnh tÝch 4) sin 6 x + cos 6 x = cos 4 x + sin + sin 2 x 8 8 2 1 7 35 5) sin 8 x + cos8 x = cos8 x + .cos 4 x + c¶ tö vµ mÉu vµ thay theo tg vµ cotg 64 16 64 Bµi 3 tÝnh gi¸ trÞ cña biÓu thøc Bµi 3 CMR 1) 1 − cosx x 1) = tg A = tg 9 + tg15 − tg 27 − cot g 27 + cot g15 + cot g 9 0 0 0 0 0 0 sin x 2 HD: nhãm thµn 3 nhãm A=8 2) ( ) ( 4 sinx.sin 60 − x .sin 600 + x = sin 3 x 0 ) tg 800 cotg100 2) B= − π  π  1 cot g 250 + cot g 750 t g 250 + t g 750 3) cosx.cos  − x ÷.cos  + x ÷ = cos3x 3  3  4 HD: thay tg 800 = cot g100 B=1 π  π  Bµi 4 CMR 4) tgx.tg  − x ÷tg  + x ÷ = tg 3x 3  3  4 π 3π 5π 7π 3 1) A = sin + sin 4 + sin 4 + sin 4 = 5) sin 5 x − 2sin x ( cos 4 x + cos 2 x ) = sin x 16 16 16 16 2 Tæ to¸n : Trêng THPT B×nh Giang 5 Th¸ng 4/2008
  6. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com 6) x 1  3) tg  + 1÷ = tgx  5x   3x   7x   x  2  cos x  cos  ÷.cos  ÷ + sin  ÷sin  ÷ = cos x.cos 2 x  2   2  2   2 4) sin x ( 1 + cot gx ) + cos x ( 1 + tgx ) = sin x + cos x 3 3 Bµi 3 π 3  2  π 1) CMR nÕu 5) sin 4 x + cos 4  x + ÷= − sin  2 x + ÷  4 4 2  4 1+ y + 1− y tgx = − 1 ≤ y ≤ 1, y # 0 th× 6) sin 3 x − 2sin 3x + cos 2 x.sin x = cos 5 x.sin 4 x 3 1+ y − 1− y Bµi 6 y=sinx 1) Cho cos 2 x + cos 2 y = m CMR 1− 1− y2 cos ( x + y ) cos ( x − y ) = m − 1 HD: nh©n chia liªn hîp tgx = y 2) Cho tgx, tgy lµ nghiÖm cña ph¬ng tr×nh Thay vµo biÓu thøc sin2x sau at 2 + bt + c = 0 CMR 2) CMR a.sin 2 ( x + y ) + b.sin ( x + y ) .cos ( x + y ) + c.cos 2 ( x + y ) = 0 sin a + sin 3a + sin 5a + .. + sin ( 2n − 1) a co s a + co s 3a + co s 5a + .. + co s ( 2n − 1) a = tgna 3) Cho sin x + sin y = 2sin ( x + y ) Voi x + y # kπ x y 1 HD: Nhãm c¸c h¹ng tö l¹i biÕn ®æi tæng thµnh CMR: tg .tg = tÝch 2 2 3 4) Cho x + y + z + t = 2π CMR ( sin a + sin ( 2n − 1) a ) + ( sin 3a + sin ( 2n − 3) a ) + ... cos 2 x + cos 2 y − cos 2 z − cos2 t = − 2sin ( x + y ) sin ( y + z ) cos ( z + x ) ( co s a + co s ( 2n − 1) a ) + ( co s 3a + co s ( 2n − 3) a ) + .. 3) CMR D¹ng 2: Rót gän tÝnh gi¸ trÞ cña mét biÓu thøc ( 2 cos 100 + 2a − 1 ) ( ) ( tg 35 + a tg 25 − a = 0 0 ) 2 cos ( 10 0 + 2a ) + 1 Bµi 1 TÝnh 19π HD: chuyÓn vÒ sin vµ cos thùc hiÖn phÐp 1) A = sin 12 nh©n 4 Bµi 4 Cho a # k 2π k thuéc Z CMR 2) TÝnh cos 2a tan 2a biÕt sin a = a lµ gãc 5 sin na .sin ( n + 1) a nhän 1) sina + sin 2a + sin 3a + .. + sin na = 2 2 sin 600 a 3) B = 3sin150.cos150 + sin sin 2 150 − cos 2 150 2 1 1 a 4) B = 0 + HD: nh©n 2 vÕ víi sin cos 290 3 sin 2500 2 1 1 4 na .co s ( n + 1) a sin HD: B = sin 20 0 − 0 = .. = 3co s 20 3 2) cosa + co s 2a + co s3a + .. + co s na = 2 2 a Bµi 2 Thùc hiÖn phÐp tÝnh sin 1) A = cos 2 730 + cos 2 47 0 + cos 730.cos 470 §S ¾ 2 6 π π na co s .sin ( n + 1) a 2) B = sin + co s6 24 24 3) 1 + cosa + co s 2a + co s3a + .. + co s na = 2 2 a 2 π 5π sin 3) C = tan + tan 2 2 12 12  na  ( n + 1) a 4) D = tan 20 − 33 tan 4 200 + 27 tan 2 200 − 3 6 0 sin x + .sin  ÷ 4) sin x + sin ( x + a ) + sin ( x + 2a ) + .. + sin ( x + na ) =  2  2 Bµi 3 Thùc hiÖn phÐp tÝnh a a 3a 3 sin 2 1) A = 16sin sin biÕt cos a = Bµi 5 Bµi tËp 2 2 4 tan x − sin x x 2 1) cos 4 x = 8cos 4 x − 8cos 2 x + 1 2) B = biÕt tan = 2) 3 − 4 cos 2 x + cos 4 x = 8sin 4 x tan x + sin x 2 15 Tæ to¸n : Trêng THPT B×nh Giang 6 Th¸ng 4/2008
  7. Bµi tËp n©ng cao Líp 10A1 vuthanhbg@gmail.com 3) C = sin ( 270 + 2a ) biÕt sin ( a − 180 ) = 0,3 0 0 1 + sin 2 x + cos 2 x 4) D = biÕt 1 + sin 2 x − cos 2 x 1 π sin x = ; < x 0 Bµi 5 Rót gän biÓu thøc sau 1) A = 2 + 2 + 2 cos a 00 < a < 2π 4 π 4 π 2) B = sin x + cos x + sin  x + ÷+ co s  x + ÷ 4 4  4  4  π  π C = sin x.cos  2 x + ÷.cos  2 x − ÷+  6  6 3)  π  π + sin 3 x.sin  x + ÷.sin  x − ÷  6  6 Bµi 7 Chøng minh r»ng biÓu thøc sau kh«ng phô thuéc vµo x 1) A = cos x − 2 cos a.cos x.cos ( x + a ) + cos ( x + a ) 2 2 2) B = cos x − 2sin a.cos x.sin ( x + a ) + sin ( x + a ) 2 2  π  2π E = sin x −sin x + ÷ sin x + + ÷−  5   5  3)  3π  4π sin x + ÷ sin x + + ÷  5   5  D¹ng 3: HÖ thøc gi÷a c¸c cung vµ c¸c gi¸ trÞ l- îng gi¸c tho¶ m·n ®iÒu kiÖn cho tríc sin x = 2sin ( x + y )  Bµi 1 (§HTM 99) CMR nÕu  π  x + y # + kπ  2 sin y Th× tan ( x + y ) = cos y − 2 cos ( a + b ) = m.cos ( a − b )  Bµi 2 Cho   m ≠ −1, cos ( a − b ) ≠ 0  1− m CMR tan a.tan b = 1+ m Tæ to¸n : Trêng THPT B×nh Giang 7 Th¸ng 4/2008
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2