intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Thống kê cơ bản và phân tích số liệu - PGS.TS. Hoàng Văn Minh

Chia sẻ: Sung Sung | Ngày: | Loại File: PDF | Số trang:25

373
lượt xem
48
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Thống kê cơ bản và phân tích số liệu của PGS.TS. Hoàng Văn Minh cung cấp cho các bạn những kiến thức về khái niệm cơ bản về thống kê; lựa chọn trắc nghiệm thống kê; tính toán chỉ số nghiên cứu cơ bản. Mời các bạn tham khảo bài giảng để hiểu rõ hơn về những nội dung này.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Thống kê cơ bản và phân tích số liệu - PGS.TS. Hoàng Văn Minh

  1. THỐNG KÊ CƠ BẢN VÀ PHÂN TÍCH SỐ LIỆU PGS. TS. Hoàng Văn Minh Hà nội- 2013 NỘI DUNG 1. Khái niệm cơ bản về thống kê 2. Lựa chọn trắc nghiệm thống kê 3. Tính toán chỉ số nghiên cứu cơ bản 1
  2. Trình bày và phiên giải? Nam Nữ Chung n(%) n(%) n(%) Có bệnh 40 (66,7) 20 (33,3) 60 (100) Không bệnh 50 (66,7) 25 (33,3) 75 (100) Chung 90 (66,7) 45 (33,3) 135 (100) Bảng 10: Tỷ lệ mắc bệnh theo giới Nhận xét: Tỷ lệ mắc bệnh ở nam giới cao gấp 2 lần tỷ lệ mắc bệnh ở nữ giới. Sự khác biệt có ý nghĩa thống kê với p
  3. Thống kê “Phân môn toán học có nhiệm vụ thu thập, phân tích, phiên giải và trình bày số liệu” Thống kê 3
  4. Số liệu là đối tượng chính của thống kê Biến số# Hằng số Các dạng số liệu (biến số) Số liệu định lượng Rời rạc (discrete): không có giá trị thập phân Liên tục (continuous): Có giá trị thập phân Số liệu định tính Danh mục (nominal, categorical) Thứ hạng (ordinal) Nhị phân (binominal) 4
  5. Dạng số liệu ? Biến số Định lượng Định tính Rời rạc Liên tục Định Thứ Nhị phân danh hạng Tuổi Trình độ chuyên môn Điểm kiến thức Cao huyết áp (có, không) Mức độ trầm trọng của bệnh Nghề nghiệp Quần thể và mẫu Quần thể Toàn bộ các cá thể mà chúng ta đang quan tâm Là 1 phần của quần thể, bao gồm những cá Mẫu thể mà chúng ta sẽ nghiên cứu 5
  6. Thống kê mô tả- suy luận Thống kê mô tả (Descriptive statistics): Kỹ thuật dùng để mô tả các đặc tính của mẫu Thống kê suy luận (Inferential statistics): Quá trình suy luận từ đặc tính của mẫu ra đặc tính của quần thể Thống kê Quần thể Chọn mẫu Thống kê suy luận Mẫu Thống kê mô tả 6
  7. Thống kê mô tả biến định lượng Đo lường độ tập trung (Location) Trung bình (mean) Trung vị (median) Mode Đo lường độ phân tán (Spread ) Khoảng số liệu (range) Khoảng tứ phân vị (25%-75%) (Interquartile ) Độ lệch chuẩn (Standard deviation) Phương sai (Variance) Trung bình 34 27 45 55 22 34 7
  8. Trung vị Dãy số lẻ 1, 5, 2, 8, 7 Trung vị=5 Dãy số chẵn 1, 5, 2, 10, 8, 7 1, 2, 5, 7, 8, 10 trung vị= ((5 + 7)/2 = 12/2 = 6) Mode Giá trị xuất hiện nhiều nhất 12, 12.5, 11, 13, 12.5 -> Mode = 12.5 8
  9. Khoảng số liệu (biên độ) 120 140 120 150 130 160 180 165 170 150 Khoảng số liệu 120-180 Độ lệch chuẩn  ( x  x) 2 SD  i n 1 9
  10. Độ lệch chuẩn Điểm TB (x - TB) (x -TB)2 12 11.5 - 0.5 0.25 12.5 11.5 -1 1 11 11.5 0.5 0.25 13 11.5 - 1.5 2.25 12.5 11.5 - 1 1 8 11.5 3.5 12.25 Tổng 17 SD = √ 17/(6-1) =1.84 Ví dụ Điểm kiến thức 120 130 120 150 130 170 180 160 170 150 Tính toán trung bình, trung vị, mode, khoảng số liệu và độ lệch chuẩn? 10
  11. Thống kê mô tả biến định tính Tần số Tỷ lệ phần trăm 11
  12. Thống kê Quần thể Chọn mẫu Thống kê suy luận Mẫu Thống kê mô tả Thống kê suy luận Ước lượng khoảng Kiểm định giả thuyết Quần thể Chọn mẫu Thống kê suy luận Mẫu Thống kê mô tả 12
  13. Ước lượng khoảng-khoảng tin cậy (confidence interval) Thường chọn khoảng tin cậy 95% (95%CI) Khi thực hiện đo đạc 100 lần thì it nhất 95 lần kết quả nằm trong khoảng tin cậy 95% tin tưởng rằng giá trị thực của quần thể nằm trong khoảng tin cậy 95%CI= Trung bình± 1,96*sai số chuẩn 13
  14. Sai số chuẩn (standard errors) 95%CI= Trung bình± 1,96*sai số chuẩn Ví dụ: Khoảng tin cậy (CI) Nghiên cứu về kiến thức SDT trên 150 người cho kết quả sau: Điểm trung bình là 900 (sd=2.5) Tỷ lệ có kiến thức tốt là 40% Tính toán khoảng tin cậy 95% của Điểm kiến thức Tỷ lệ có kiến thức tốt Phiên giải kết quả??? 14
  15. Kiểm định giả thuyết sử dụng trắc nghiệm (test) thống kê để đưa ra kết luận về giả thuyết của nhà nghiên cứu là chấp nhận được hay không Quần thể Chọn mẫu Ngoại suy Trắc nghiệm thống kê Mẫu NC Kiểm định giả thuyết Giả thuyết Ho: Không có sự khác biệt Giả thuyết Ha: Có sự khác biệt 15
  16. Ví dụ Giả thuyết Ho: Giả thuyết Ha: Sai lầm Thực tế H0 đúng H0 sai  Quyết định Chấp nhận H0  Sai lầm II () Loại bỏ H0 Sai lầm I ()  16
  17. Mức ý nghĩa thống kê Loại bỏ sai lầm loại I  = 0.05 p = probability= Xác suất để giả thuyết Ho đúng P 95% = Ha xảy ra là chắc chắn = Chấp nhận Ha P>0.05 = ??? Độ mạnh Loại bỏ sai lầm loại II 1-  = 80% Thường dùng trong tính toán cỡ mẫu 17
  18. Mức ý nghĩa z (1-/2) thống kê () .01 (99) 2.576 .02 (98) 2.326 .05 (95) 1.960 .10 (90) 1.645 Độ mạnh z (1-) (1-) .80 0.842 .85 1.036 .90 1.282 .95 1.645 Thống kê Quần thể Chọn mẫu Thống kê Trắc nghiệm thống kê suy luận Mẫu Thống kê mô tả 18
  19. Lựa chọn trắc nghiệm thống kê Mục tiêu Xác định sự khác biệt Xác định mối liên quan So sánh điểm số thực hành Điểm kiến thức liên quan đến trước và sau can thiệp? tuổi, trình độ, tuyến công tác? Lựa chọn trắc nghiệm thống kê MỤC TIÊU BIẾN SỐ Xác định sự khác biệt 1 Biến định lượng 2 3 Xác định liên quan 4 Biến định tính 19
  20. 1. Xác định sự khác biệt biến định lượng 1 2 >2 nhóm nhóm nhóm Ph bố Chuẩn & Ph bố Chuẩn & Ph bố Chuẩn & Chuẩn K chuẩn Chuẩn K chuẩn Chuẩn K chuẩn Sign test ttest đlập Đ.lập: ANOVA Kruskal- t test Wilcoxon ttest g.cặp Mann- (ph.sai đ Wallis test test Whitney nhất) test Gh. cặp: Sign test Wilcoxon test Kiểm định phân bố số liệu 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2