Chuyên đề phương trình và bất phương trình: Bài tập sử dụng ẩn phụ - Phần 1
lượt xem 11
download
Nhằm giúp các bạn củng cố lại kiến thức đã học và làm quen với dạng bài tập sử dụng ẩn phụ trong giải toán phương trình và bất phương trình, mời các bạn cùng tham khảo nội dung chuyên đề phương trình và bất phương trình "Bài tập sử dụng ẩn phụ - Phần 1" dưới đây. Hy vọng đây là tài liệu tham khảo hữu ích cho các bạn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chuyên đề phương trình và bất phương trình: Bài tập sử dụng ẩn phụ - Phần 1
- CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH BÀI TẬP SỬ DỤNG ẨN PHỤ (PHẦN 1) ------------------------------------------------------------------------------------------------------------------------------------------- Bài 1. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x − 3 + x = 9 2, 3 − x + x 2 − 2 x + x − x 2 = 1 3, x 2 + 2 x + 5 < 4 2 x ( 2 + x ) + 3 4, x ( x − 4 ) 4 x − x 2 + ( 2 − x ) < 2 2 5, ( x 2 + 1) + ( x 3 + 1) + 3x x + 1 > 0 6, x 3 + x 2 − 1 + x3 + x 2 + 2 = 3 7, 2 x 2 + 5 x + 2 − 2 2 x 2 + 5 x − 6 = 1 8, 3 x 2 + 21x + 18 + 2 x 2 + 7 x + 7 = 2 9, 3 x 2 + 6 x + 4 < 2 − 2 x − x 2 10, 4 x 2 − 12 x − 5 4 x 2 − 12 x + 11 + 15 = 0 11, x ( 2 x + 3) > 3 − 4 x 2 − 6 x 12, 4 + ( x + 1)( 2 + x ) ≤ x 2 + 3x 13, x 2 − 34 x + 48 ≥ 6 ( x − 2 )( x − 32 ) 14, 9 x 2 + 3x + 12 = x ( x + 3) − 2 15, 3 x 2 − 2 x + 15 = 7 − 3 x 2 − 2 x + 8 16, 3 x 2 + 5 x + 8 − 3 x 2 + 5 x + 1 > 3 17, 3 x 2 + 2 x = 2 x 2 + x + 1 − x 18, 2 x + x 2 = 2 ( x 2 + 2 x + 4 ) + 3 19, x2 + x + 2 = x ( x + 2) − 2 20, 18 x 2 − 18 x + 5 = 3 3 9 x 2 − 9 x + 2 21, 3 3 x 3 − 3x + 2 = 2 x 2 − 6 x + 5 ( 22, 3 x 2 − 2 x + 9 = 3 2 − 3x 2 − 2 x + 1 ) 23, 2 x ( x − 1) − x > x 2 − x + 1 24, 3 x 2 + 15 x + 2 x 2 + 5 x + 1 = 2 25, ( x + 5 )( 2 − x ) = 3 x 2 + 3 x 26, 5 x 2 + 10 x + 1 > 7 − 2 x − x 2 27, 2 x 2 + x 2 − 5 x − 6 = 10 x + 15 28, ( x + 1)( x + 4 ) ≤ 5 x 2 + 2 x + 28 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 1
- Bài 2. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x 2 − 4 x = −2 + x 2 + 5 − 4 x 2, ( 3 − x ) + 3 x − 22 = x 2 − 3x + 7 2 3, x ( x + 5 ) > 2 3 x 2 + 5 x + 2 − 2 4, 12 − 4 ( 4 − x )( x + 2 ) ≤ x 2 − 2 x 5, x 2 + 7 x + 4 = ( 4 x + 8 ) x 6, x2 − 7 x + 6 + x2 − 7 x + 3 = 3 7, x 2 + x + 7 + x 2 + x + 2 = 3 x 2 + 3 x + 19 8, 2 x 2 + x + 7 − 2 ( 2 x 2 + x + 1) = 3 x 2 + ( x + 1) 2 9, 7 (1 + x )( 2 − x ) > 1 + 2 x − 2 x 2 3 10, x 2 + 3 − 2 x 2 − 3 x + 2 = x+6 2 11 28 11, x 2 − 3x − 5 9 x 2 + x − 2 = − x 4 9 12, 4 x x + 1 + x + x = 5 3 2 13, x x 2 + 4 + 5 ( x 2 + 2 ) = 20 2 14, x 1 + x = 2 x 3 + 2 x − 1 1 x 15, 1 + +2 =3 x x +1 x +1 x −1 16, + =2 x −1 x +1 3+ x x +8 17, + =5 x x 4x + 1 1 18, + =5 4x x 19, x2 − 4 x + 3 = 4 x − x2 20, 8 + x − 3 + 5 − x − 3 = 5 21, 1 − x − x + 2 − x − x = 1 1 22, 5 + x + 2 3 − x > 3− x − 2 3 23, 3 3 x 2 + x − 3 x 2 − x = 2 24, 4 x 2 + x + 1 = 6 ( 4 x 2 + x ) + 1 25, x 2 + 7 x + 9 < 2 x 2 + 14 x − 1 x2 + x + 1 x2 + 6 x + 1 26, ≤ +1 x x CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 2
- Bài 3. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 4 x + 3 + 2 x + 1 = 6 x + 8 x 2 + 10 x + 3 − 16 2, 2 x + 1 + 9 − 2 x + 3 9 + 16 x − 4 x 2 > 13 12 − x x − 2 82 3, (12 − x ) + ( x − 2) < x−2 12 − x 3 1 3x 4, > −1 1− x 2 1 − x2 7 5x 5, ≤ +2 2− x 2 2 − x2 ( ) + 32 2 1 6, x + 16 + x 2 = x + 16 + x 2 2 1− x 8 2 + x 7, 8 + =2 2+ x 1− x 8, 3 2 + x − 6 2 − x + 4 4 − x 2 = 10 − 3 x x 9, x + =2 2 x −1 2 2x 3 1 1 10, 3 + + =2 x +1 2 2x 11, x + 4 + x − 4 = 2 x + 2 x 2 − 16 12, 4 x −1 + 4 x = 4 x + 1 x 35 13, x + > x −1 2 12 14, x + 1 − 12 − x = − x 2 + 11x − 23 15, 7 + x − 9 − x = − x 2 + 2 x + 63 16, 3 − x + x − 1 − 4 4 x − x 2 − 3 + 2 ≥ 0 17, 4 x − x2 −1 + x + x2 −1 = 2 18, 9 ( x + 1) − x 2 = x + 9 − x 20 + x 20 − x 19, − = 6 x x x−2 + x+2 20, x2 − 4 − x + 1 = 2 21, x + 17 − x 2 + x 17 − x 2 = 9 22, x + 4 − x 2 = 2 + 3x 4 − x 2 1 1 23, 1 − −2 +1 > 3 x +1 x 4 2 24, x + = x − +4 x x CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 3
- Bài 4. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1 1, x 2 + 2 x x − = 3 x + 1 x 3, x 2 + 3 x 4 − x 2 = 1 + 2 x 4, 1 − x 2 + 2 3 1 − x 2 = 3 3 5, 1 + x − x2 = x + 1 − x 2 6, x + 7 + x + 2 x 2 + 7 x = 35 − 2 x 7, 2 x + 3 + 1 + x = 3 x + 2 2 x 2 + 5 x + 3 − 2 5 1 8, 5 x + > 2x + +4 2 x 2x 9, x −1 + x + 3 + 2 ( x − 1)( x + 3) + 2 x = 4 10, 3 x − 2 + x − 1 = 4 x − 9 + 2 3 x 2 − 5 x + 2 11, 1 + x + 8 − x = 3 + (1 + x )( 8 − x ) 12, 3 + x + 6 − x = 3 + ( 3 + x )( 6 − x ) 13, 3 x + 1 + 2 − x + 2 2 + 5 x − 3 x 2 = 9 − 2 x 14, x + 2 − x 2 + x 2 − x 2 = 3 15, x + 4 − x = 5 + 4 x − x2 16, x + 2 + 6− x = 8− ( x + 2 )( 6 − x ) (2 − x) + 3 ( 7 + x ) = 3 + 3 ( 7 + x )( 2 − x ) 3 2 2 17, 8− x 18, 1 + x + 8 − x − (1 + x ) =3 1+ x 19, 2 1 − 4 x + 5 x + 1 = (1 − 4 x )(1 + x ) + 5 x 2 − 6 x + 15 20, x 2 − 6 x + 18 = x 2 − 6 x + 11 x −1 21, 1 − x + ( x − 1)( x − 2 ) + ( x − 2 ) =3 x−2 x+2 22, x 2 − 4 + 4 ( x − 2 ) = −3 x−2 8x2 23, 1 + 2 x − 1 − 2 x = 1 + 1 − 4 x2 2(2 − x) 2 24, x − 4− x = 2 + 4x − x2 25, ( )( x + 3 − x −1 1 + x2 + 2 x − 3 = 4 ) 26, x 2 + x ≤ 2 x 2 + 2 − 1 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 4
- Bài 5. Giải các phương trình và bất phương trình sau trên tập hợp số thực x +1 1, ( x − 3)( x + 1) + 4 ( x − 3) = −3 x−3 2, 2 1 − x − 1 + x + 3 1 − x 2 = 3 − x x+3 3, 2 x 2 − 9 = ( x + 5 ) x −3 x −1 4, 2 x 2 − 1 = x 2 + 2 x + 5 x +1 2 5, = 1 + 3 + 2x − x2 x +1 + 3 − x 6, x 2 − x = ( 2 − 2 x ) x + 3 7, x 2 − 3 x + 6 = 2 ( 2 − x ) 3 + x 8, 2 x 2 − 7 x + 15 = ( 9 − 4 x ) 3 + x 9, x 2 − 1 = 2 x x 2 + 2 x 10, x 2 + 4 x = ( x + 2 ) x 2 − 2 x + 4 11, x + 1 = x2 + 4 x + 5 12, 3 x = 3x 2 − 14 x + 14 13, 7 x + 7 + 7 x − 6 + 2 49 x 2 + 7 x − 42 < 181 − 14 x 14, ( 3 + x ) ( 4 − x )(12 + x ) + x = 28 2 x 2 − 3x + 5 15, = x2 + 2x −1 5 − 2x ( ) 16, 2 x 2 + 14 − 2 x 2 + 8 x x + 8 x − 14 x ( x + 8 ) + 24 = 0 17, x 2 − x − 2 1 + 16 x = 2 ( )( 18, x + 15 x + 36 x + 5 x + 4 = 520 x ) x+4 19, 2 x 2 − 16 = ( 6 + x ) x−4 1 1 2 3 20, x − x 2 + 3x + = x 3 9 9 21, x 4 − 2 x 2 + x = 2 ( x 2 − x ) 22, 5 x 2 − 11x + 7 + ( 4 x − 5 ) x 2 − x + 1 = 0 5x2 − 9 x + 7 23, = x2 + x + 1 5 − 4x 24, 5 x 2 − 11x + 7 = 2 ( 3 − 2 x ) x 2 + x + 2 1 25,5 16 − x 2 − =4 16 − x 2 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 5
- Bài 6. Giải các phương trình và bất phương trình sau trên tập hợp số thực x2 + 2 1, ( x + 1) − 3x 2 7 x x x −1 15, x 2 + ( x + 1) ≤3 x +1 x2 − 3 16, 2 x 2 − 5 x − 3 x ≥6 x 17, 6 x 2 − 3 3 x 2 − 2 x − 1 ≤ 4 x + 4 18, 2 ( 2 x 2 + 8 x + 6 ) = 4 + x ( ) 3 19, x −1 + 1 + 2 x −1 = 2 − x x +1 20, 2 x 2 − 8 x + 3 ( 5 − x ) = 12 x −5 21, 2 x 2 − 3 x + 1 ≥ 4 x − 4 x 2 − 3 x + 1 x 4 − 4 x 2 + 16 4 − x2 x 22, ≤ + +1 x (4 − x ) 2 2 x 4 − x2 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 6
- Bài 7. Giải các phương trình và bất phương trình sau trên tập hợp số thực x +1 1, 3 x + 5 < ( 3 x + 6 ) x+2 2, 3 ( x 2 − 3x + 9 ) < 2 x − 3 x − 6 3, 3 ( x 2 + 5 x + 9 ) ≤ 2 ( x + 3) + 5 x x− x 4, ≥1 1 − 2 ( x − x + 1) 2 x −2 1 5, ≥ 6 ( x2 − 2 x + 4) − 2 x 2 3x − 4 x 6, ≤1 5 ( x 2 + 13 x + 16 ) − 12 7, 3 x 2 + 12 x + 3 − x ≤ 1 − x x +1 8, ≤1 2 x + 5x + 1 + 3 x 2 9, ( x +1 )( x +3 ) >3 x 2 − 10 x + 9 10, 7 ( x − 1)( x − 4 ) ≤ x − x − 2 11, x 2 − 6 x + 1 ≥ (1 + x ) x 12, 4 + x 2 = 5 x ( x − 2 ) 2 x+2 13, ≤ 3 x ( x + 1)( x + 4 ) 7 x 1 14, ≥ 4 x + 10 x + 1 x + 2 2 2 9 x2 − 5x + 1 15, . ≥ x 5 3x − 1 4x2 − 2x + 1 16, ≤ x 2x +1 17, 6 ( x 2 − 6 x + 4 ) + x ≤ 2 ( 2 + x ) 18, x 2 + 15 x + 9 ≤ 6 x ( 3 + x ) x3 − 7 x 2 − 8 19, ≥ 2x 3 x −7 20, ( x − 2 ) ≤ ( x 2 + 4 ) x 3 21, 2 + ( x − 2) ( 4 + x2 ) ≤ x + 2 x 22, x 3 + 5 x 2 + ( x 2 − 10 x + 1) x ≤ 1 + 5 x 2 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 7
- Bài 8. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 6 x 2 − 7 x + 13 ≤ ( 7 − 6 x ) x 2 + 3 2, 15 x 2 − 7 x + 13 + (12 x − 7 ) x 2 + 3 = 0 18 x 2 − 7 x + 19 3, > 5 + 2 x2 7 − 12 x 18 x 2 + 15 x − 6 4, = 3x + 1 − 2 5 − 12 x 5, 8 x 2 − 9 x + 8 + ( 8 x − 5 ) 1 + 3 x = 0 6, ( x + 1) + 2 ( 3 − x ) 2 x + 1 = 6 x − 5 2 2 x2 − 5x + 4 2 ( x + 1) 7, −1 = 2x − 3 2x + 3 +1 8, 2 + x ( 3 x − 5 ) + ( 3 x − 5 ) x 2 − 1 = 0 9, 4 (1 + x ) = ( 2 x + 1) 2 x + 1 10, x + 4 + x 2 − x + 4 = 3 x 2 11, 7 x 2 − 2 x = 1 + 2 x 2 − x + 1 12, 7 x ( 2 x − 1) ≤ 2 x ( 2 x + 1) 3 2 13, x + 4 x2 + x − 7 = x + 7 4 14, 3x 2 − 28 + 8 x 2 + x − 7 = 0 15, 23 x 2 − 32 x = 4 x 3x 2 + 5 x + 2 + 7 16, 2 x 2 + x − 4 = 2 2 x 2 + 3 x + 4 2 x − 1 − 28 x 2 17, 3 x 2 + 1 < 24 x − 1 x 2 2 − x − 6 x2 18, = 1 + 1 + 5x2 5 ( 2 x − 1) 5 13 19, 3x 2 + x + + 2 x 2 x 2 + x + 5 = 0 2 4 2 x2 − 5x + 7 + 2 x2 + 2 x − 3 20, ≤ 9 − 2x x2 + 2x − 3 x 2 + x + 10 3 ( 2 − x ) 21, ≥ −1 4 x 2 − 5 x + 26 5 − 2x 5 x + 17 22, > x+5 − x 16 x + 1 2 − x 2 (1 + x )( x − 4 ) 23, ≤ 11 − 2 x x − 3x + 4 x +3 2 24, 4− x ( = 4 x + 1 −1 ) CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 8
- Bài 9. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 2 ( 2 − x ) + 7 x 3 − 4 x ≤ 16 2 2, 4 x 4 − 8 x 2 + 7 2 x 4 − x 2 > 2 3, 2 x 2 + 7 x + 1 + x + 1 ≤ 3 x 3 x2 + 6x + 1 + x 4, ≥1 5 x −1 4 x2 + x + 1 − 3 x + 3 5, ≤ −1 x−2 3 x2 − 5x + 4 − 5 x + 3 6, ≤1 1− x 4 x + 7 x − 16 7, ≥6 ( x + 1)( x + 4 ) + x − 2 ( x + 1) + 3 ≤ 2 + x 2 8, x2 + 3x + 4 + x 15 + ( 2 x − 1) 2 9, x 2 + 3x + 4 − 2 x ≥4 ( x +1 )( x +2 ) 2 (1 + x ) 2 ( 10, 2 x + 1 )( x +2 ≤ ) x2 + 3x + 1 − x 2 4 x 2 − 3x + 1 − 5 x − 4 11, ≤1 2x − 3 7 4 x 2 − 5 x + 1 − x + 15 12, =2 7−x 13, 6 x 2 + 24 x + 26 ≤ x (1 − x ) 14, 6 x 2 + 24 x + 26 = ( 7 − x ) x 4 15, ( 3 − x ) ≥ 6 + 3 x − + 8 2 x − 1 2 x 4 16, ( x − 6 ) < 16 + 3x − 4 x − 1 + 33 2 x 36 17, 11x 2 + 19 x − 4 x 2 − 9 = 27 x x 3 1 18, 2 x 2 − 9 x + 3 = 10 ( 3 x − 1)− x x2 1 1 3 19, 2 − 2 x − 1 ≤ ( x − 3) + 2 x 5 2 1 20, 14 x 2 < 3 + 10 − 4 x 1 − 4 x 2 x x 2 − 3 x − 6 10 x 2 − x − 2 21, < 2 + x − x2 x CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 9
- Bài 10. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x 3 + 12 x ≤ 18 x 2 + 9 ( 3 x − 2 ) 3 x − 2 2, x ( x − 3) + 21x + 9 ( 5 − x ) x − 5 = 0 2 3, 7 x 2 − 6 ≥ 9 x (1 − x 2 ) 1 − x 2 4, x ( 6 − 25 x 2 ) + 9 ( 9 − 4 x 2 ) 9 − 4 x 2 = 0 1 − x 2x −1 5, ≤ 1− 2x 2 x −1 x ( x − 1)( 2 − x ) 6, ≥ 2 2 − 3x 3x − 2 8 7, x 2 + x − + 36 2 x − 9 + 4 x ≤ 18 x 8, x 3 + ( x 2 − 16 x + 12 ) 4 x − 3 + 8 x 2 = 6 x x −1 9, ( x + 1) + .( x − 2) ≥ 3 2 2 x x 2 + x + 1 3 x + 2 ( x + 1) 2 10, ≥ 2 x 3 x + 4 ( x + 1) x ( 3x2 + 2 x − 4) 11, = ( x − 1)( x + 2 ) 3x 2 + 4 x − 8 12, ( 3x 2 + 12 x + 8 ) (1 + x )( 2 + x ) ≤ x ( 3x 2 + 6 x + 4 ) 13, 7 x 2 + 5 2 x + 7 = x 4 + 1 14, 4 x 3 + 3 x 2 + 4 x + 1 = 2 ( 3 x + 1) 3 x + 1 7 1 15, x 2 + 19 x + 11 ≤ + 5 x + + 18 2 x − 1 x x 16, x 3 + 13 x 2 − 53x + 39 ≤ ( 5 x 2 − 4 x − 15 ) 2 x − 5 1 17, 8 x − 2 + 1 − 2 x ≥ 4 x 2 − 10 x + 5 x 18, ( x − 3) + ( 2 x − 7 ) x − 3 = 0 2 19, 2 x + 1 + 3 x − 2 = 2 x 2 − x − 2 + 3 1 + x 20, 5 x + 10 x − 2 = 2 + 4 x 2 − 4 + 5 2 + x 21, 12 x − 1 + 13x < 2 + 12 x 2 − 1 + 8 x + 1 22, 10 x − 4 + 8 x 2 − 1 = 5 1 + x + 10 x − 1 12 6 23, 2 x + = 5 + − 2 x2 + x + 7 x x x 4 + 2 x3 − x 2 − 2 x + 3 24, = x2 + x + 1 2x + 2x − 3 2 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 10
- Bài 11. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x + 7 + 2 ( 3 x − 2 )( 3 − 2 x ) = 5 3x − 2 + 5 3 − 2 x 2, 11 − 3 x + 10 1 − x = 5 x + 1 + 4 1 − x 2 3, ( x − 2 )( x − 7 ) = 2 − 2x 5 − 2x 3 − 2x −1 ( ) 4, ( x 2 + 5 x + 12 ) 1 − 1 − 2 x = 4 x 2 + 10 x 2 ( x + 3)( 2 x + 3) 5, 2 − 1 − 2 x ≤ x2 + 8x + 2 x 2 − x + 28 9 − 2x 6, = 3x 1 + 3x − 1 x − 7 x + 55 2 3 7, ≥ ( 9 − 2 x )( 5 − x ) 4 − 1 + 3x 8, 5 x + 17 + 14 x + 1 = 6 x 2 + 4 x + 3 + 7 3 − x x3 + 3x 2 − 4 x + 6 9, = 1+ x 6 − x − 3x 2 10, x 3 + 3 x 2 − x + 6 ≤ ( 3 x 2 + x − 5 ) 2 + x 11, ( 3 x 2 + 2 x − 7 ) 1 + 2 x + x 3 + 6 x 2 − 5 x + 12 > 0 10 12, x 2 + x ≤ ( x − 1) x − 1 + 1 x x3 + 3x 2 − 3x 13, 10 3x − 1 ≥ 3x − 1 x + 25 x − 68 x + 12 3 2 5 ( x − 2) 14, = 5 x + 20 x − 4 2 5x −1 + 3 x 3 + 44 x 2 − 33 x 15, ≤ ( x 2 + 4 x − 3) 4 x − 3 6 2 x 3 + 22 x − 11x 1 16, >6 x− 2x + 2x −1 2 2 x + 5 x − 28 x + 12 3 2 17, 6 ( x − 3) ≤ x2 + x − 2 ( x − 2 +1 ) x 3 + 10 x 2 − 23 x + 2 18, 1 + =6 x−2 x2 + x − 2 19, (13 − 4 x ) 2 x − 3 + ( 4 x − 3) 5 − 2 x = 2 + 8 16 x − 4 x 2 − 15 ( 20, (13 + 4 x ) x − 1 + ( 4 x + 9 ) x + 1 ≤ 6 2 x + 1 + 2 x 2 − 1 ) 21, ( 2 x − 1) x + 1 + ( 2 x + 1) x − 1 = 1 22, ( 4 x − 1) 2 x − 1 + ( 4 x + 1) 2 x + 1 = 4 23, (13x + 1) 1 + x = 2 ( 7 x + 3) x + 1 24, 8 x = 19 + x 3 + 6 x x + 1 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 11
- Bài 12. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 8 x 3 + 8 = ( 2 x + 3 − 12 x 2 ) 2 x + 3 + 12 x 2 + 18 x 2, ( 3x 2 + 9 x + 5 ) 3 x + 2 + x 3 + 12 x 2 + 18 x = 1 3, x 3 + 12 x 2 + ( 6 x 2 + 8 x − 24 ) x − 3 = 1 + 36 x 4, 9 ( x 2 + 3 x + 6 ) x + 2 = 27 ( x + 1) + x 3 2 x 3 + 12 x 2 + 24 x + 27 5, 2 2 + x ≥ 3x 2 + 4 x + 8 8 x 3 + 6 x ( x + 5 ) + 27 6, 5 x + 5 < 12 x 2 + x + 5 7, x 3 + 3 x 2 + 3 x = ( 3 x + 4 ) x + 7 8, x 3 + 6 x 2 + 12 x + ( 4 x + 2 ) x = 20 9, 7 x 3 + 3 x 2 + (12 x 2 + x ) x = 1 + 3 x 3 9 10, 3x x − 5 x + + x2 = x x 3 26 11, x 2 + 15 ( x + 1) + 2 x 3x + 10 + ≤ x x 3 3x 12, +1 < 3− x 2 3 − x2 9 − 4x 3 − 2x 13, + ≥2 2 − x2 2 − x2 5x 2 + 3x + 1 14, ≥5 ( x + 1) ( x3 − 1) 6 x2 − 8 15, +1 ≥ x 4 − x (6 − x) 4 5x 16, > +9 2 − x3 x3 − 2 3 2 − x3 12 x 17, + 14 ≤ 1− x 3 3 1 − x3 1 18, x 2 + 12 x + 16 − 1 1 − x ≤ 12 x 19, 16 x 3 < (11x 2 − x + 2 ) ( x − 1)( 2 + x ) 11 1 + x 2 16 20, ≤ ( x + 1) 3 24 x2 + x +1 11 21, (12 x 2 − 25 x + 12 ) 1 + x + 16 (1 − x ) = 0 3 6 x3 − 5 x 22, ≤ 2 x2 −1 3x 2 − 1 CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 12
- Bài 13. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x 2 + 4 x + 9 > 7 x ( x − 3) x 2 − x + 23 2, > 7 x −7 x−2 ( 3, x 2 + 7 x + 6 ≤ 8 x − 1 ( x − 2 ) ) ( 4, ( 3 + x )( 4 + x ) ≤ 4 2 x − 1 ( x − 2 ) ) x2 + 8x 5, ≥ 9 x +1 x −1 1 1 6, x + 14 + = 10 1 − x x x 7, ( 4 + x ) + 10 ( 4 − x ) x ≥ 0 2 ( 8, x 2 + 11x < 3 3 x + 1 ( x − 3) ) 2 x 2 + 3x + 2 + x − 2 9, ≤1 2 x −3 2x2 + 7 x + 8 + 2 10, >1 2 x−x 2 x 2 + 10 x + 8 11, ≤1 x−3 x + 2 12, x + 3 ≤ 3 x + 2 ( x 2 + 7 x − 9 ) 13, x 2 + 3x + 2 + x 2 + 3x ≥ 4 2 14, x 2 + 12 x + 2 ≥ 7 x x + x x2 −1 15, x 2 + 15 x − 8 x ≥1 x 1 − 2 x2 16, 1 − 3 x ≤ 2 x 2 + 10 x x 3 − 4 x2 17, 3 > 5 x + 14 x + 4 x 2 x 18, ( 3 x 2 − 3x − 1) 3x − 1 + 2x ≤ 0 x 1 2x 19, 4 x − ≥ x 3x + 1 − 4 x2 20, x + 3 ≥ 6 x − 4 x 2 − 29 x + 36 21, ( x 2 + 2 − 8 x ) x + 2 + 12 x ≤ x 2 + 2 x x2 + 9x + 4 4 22, 2 x+ ≥2 3 x + 2 x + 12 x CREATED BY HOÀNG MINH THI; XYZ1431988@GMAIL.COM TRUNG ĐOÀN 1 – SƯ ĐOÀN 8 – QUÂN ĐOÀN BỘ BINH 13
- Bài 14. Giải các phương trình và bất phương trình sau trên tập hợp số thực x +1 1, 2 x 2 − 1 = ( x 2 + 1) x −1 1 1 2, x2 + 2 +3 ≤ x− +2 x x 1 3, 2 1 + 3x − x 2 ≥ + x + 3 x 2 4, 3 2 + 4 x − x 2 ≤ + 4 + 2 x x 5 5, + 2 x + 4 > 5 5 + 4 x − 2 x 2 x 6, x 2 + 4 = 5 ( x − 2 ) x 7, x 2 + 4 x ≤ 2 ( x − 2 ) x 1 8, x 2 + 10 x = 7 x x − +1 x x2 − 1 9, x 2 + 12 x = 8 x +1 x 10, x + 1 ( ) x +1 +1 = 2 x2 − 2 11, x 2 + 8 x − 2 − 9 x =0 x 3x 2 − 4 x3 + 5 12, 3x 3 = 5 x3 + 3x 2 + 5 x3 13, 3 x 2 − 2 x + x + 3 ≤ 5 x − x + 1 x 2 (1 − x ) 14, + x + 9 ≤ x ( x 2 + x + 3) 1− x x 2 + 24 x + 25 15, ≤4 x x −5 x 2 − x + 16 16, ≤5 x x−4 17, 7 x + 3x 2 − x + 3 + 1 ≤ x 18, 3 4 x 2 − 2 x + 4 + 6 x ≤ 1 − x 19, 2 x 2 + 8 x + 9 + x + 3 ≤ 11 x x 2 + 12 20, ≤ x −1 2 x2 + 9 − x x2 + x + 4 21, ≥ x −2 x −1 2 x 2 − 20 x + 18 − 4 x 22, + x
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên đề: Phương trình, bất phương trình vô tỉ, hệ phương trình và hệ bất phương trình
15 p | 962 | 303
-
Chuyên đề Phương trình và bất phương trình chứa giá trị tuyệt đối
2 p | 508 | 155
-
TÀI LIỆU LUYỆN THI ĐẠI HỌC VÀ THPT CHUYÊN; MÔN TOÁN; CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH; BÀI TẬP GIẢI PHƯƠNG TRÌNH BẬC CAO (PHẦN 1)
10 p | 555 | 152
-
Chuyên đề luyện thi ĐH 3: Phương trình và bất phương trình chứa giá trị tuyệt đối - Huỳnh Chí Hào
3 p | 1070 | 122
-
PHƯƠNG TRÌNHH VÀ BẤT PHƯƠNG TRÌNH LÔGARIT
3 p | 399 | 110
-
TÀI LIỆU LUYỆN THI ĐẠI HỌC VÀ THPT CHUYÊN; MÔN TOÁN; CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNHBÀI TẬP SỬ DỤNG BIẾN ĐỔI TƯƠNG ĐƯƠNG – NÂNG CAO LŨY THỪA (PHẦN 1)
18 p | 244 | 56
-
Ôn thi phương trình và bất phương trình
5 p | 164 | 46
-
Chuyên đề: Phương trình - Bất phương trình - Hệ phương trình Đại số (ThS. Lê Văn Đoàn)
250 p | 231 | 45
-
TÀI LIỆU MÔN TOÁN: CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH
14 p | 217 | 45
-
TÀI LIỆU LUYỆN THI ĐẠI HỌC VÀ THPT CHUYÊN; MÔN TOÁN; CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH ; BÀI TẬP SỬ DỤNG LƯỢNG LIÊN HỢP – TRỤC CĂN THỨC – HỆ TẠM THỜI (PHẦN 1)
13 p | 178 | 42
-
Chuyên đề luyện thi ĐH: Phương trình và bất phương trình chứa căn thức - Huỳnh Chí Hào
7 p | 344 | 41
-
CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH CHỨA CĂN
10 p | 213 | 32
-
Chuyên đề Phương trình và bất phương trình: Lý thuyết sử dụng biến đổi tương đương, nâng cao lũy thừa (Phần 5)
138 p | 132 | 16
-
Chuyên đề Phương trình và bất phương trình: Lý thuyết sử dụng ẩn phụ căn thức (phần 4)
118 p | 168 | 12
-
Chuyên đề 4: Phương trình và bât phương trình chứa căn thức
4 p | 166 | 7
-
Chuyên đề phương trình và bất phương trình chứa căn - Nguyễn Thanh Vân
26 p | 16 | 3
-
Chuyên đề phương trình bậc 2 và ứng dụng hệ thức vi-ét
101 p | 19 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn