ĐÁP ÁN MÔN TOÁN - KỲ THI ĐẠI HỌC KHỐI A NĂM 2009
lượt xem 41
download
Tài liệu tham khảo và tuyển tập đề thi, đáp án môn toán học giúp các bạn ôn thi tuyển sinh tốt hơn
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐÁP ÁN MÔN TOÁN - KỲ THI ĐẠI HỌC KHỐI A NĂM 2009
- BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN – THANG ĐIỂM ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối A ĐỀ CHÍNH THỨC (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) Khảo sát… I (2,0 điểm) ⎧ 3⎫ • Tập xác định: D = \ ⎨− ⎬ . ⎩ 2⎭ • Sự biến thiên: −1 - Chiều biến thiên: y ' = < 0, ∀x ∈ D. ( 2 x + 3) 0,25 2 ⎛ 3⎞ ⎛3 ⎞ Hàm số nghịch biến trên: ⎜ −∞; − ⎟ và ⎜ − ; +∞ ⎟ . 2⎠ ⎝2 ⎝ ⎠ - Cực trị: không có. 1 1 - Giới hạn và tiệm cận: lim y = lim y = ; tiệm cận ngang: y = . 2 2 x →−∞ x →+∞ 0,25 3 lim − y = −∞, lim + y = +∞ ; tiệm cận đứng: x = − . 2 ⎛ 3⎞ ⎛ 3⎞ x →⎜ − ⎟ x →⎜ − ⎟ ⎝ 2⎠ ⎝ 2⎠ - Bảng biến thiên: 3 x −∞ +∞ − 2 − − y' 1 +∞ 0,25 2 y 1 −∞ 2 • Đồ thị: y 3 x=− 2 1 y= 0,25 2 x O 2. (1,0 điểm) Viết phương trình tiếp tuyến… Tam giác OAB vuông cân tại O, suy ra hệ số góc tiếp tuyến bằng ±1 . 0,25 −1 = ±1 ⇔ x0 = −2 hoặc x0 = −1. Gọi toạ độ tiếp điểm là ( x0 ; y0 ) , ta có: 0,25 (2 x0 + 3) 2 • x0 = −1 , y0 = 1 ; phương trình tiếp tuyến y = − x (loại). 0,25 • x0 = −2 , y0 = 0 ; phương trình tiếp tuyến y = − x − 2 (thoả mãn). Vậy, tiếp tuyến cần tìm: y = − x − 2. 0,25 Trang 1/4
- Câu Đáp án Điểm II 1. (1,0 điểm) Giải phương trình… (2,0 điểm) 1 Điều kiện: sin x ≠ 1 và sin x ≠ − (*). 0,25 2 Với điều kiện trên, phương trình đã cho tương đương: (1 − 2sin x)cos x = 3(1 + 2sin x)(1 − sin x) π⎞ π⎞ 0,25 ⎛ ⎛ ⇔ cos x − 3 sin x = sin 2 x + 3 cos 2 x ⇔ cos ⎜ x + ⎟ = cos ⎜ 2 x − ⎟ 3⎠ 6⎠ ⎝ ⎝ π π 2π ⇔ x = + k 2π hoặc x = − + k . 0,25 2 18 3 π 2π (k ∈ ) . Kết hợp (*), ta được nghiệm: x = − +k 0,25 18 3 2. (1,0 điểm) Giải phương trình… ⎧2u + 3v = 8 Đặt u = 3 3 x − 2 và v = 6 − 5 x , v ≥ 0 (*). Ta có hệ: ⎨ 3 0,25 ⎩5u + 3v = 8 2 ⎧ 8 − 2u 8 − 2u ⎧ ⎪v = ⎪v = ⇔⎨ ⇔⎨ 3 3 0,25 ⎪(u + 2)(15u 2 − 26u + 20) = 0 ⎪15u 3 + 4u 2 − 32u + 40 = 0 ⎩ ⎩ ⇔ u = −2 và v = 4 (thoả mãn). 0,25 Thế vào (*), ta được nghiệm: x = −2. 0,25 Tính tích phân… III (1,0 điểm) π π 2 2 0,25 I = ∫ cos5 xdx − ∫ cos 2 x dx. 0 0 π Đặt t = sin x, dt = cos xdx; x = 0, t = 0; x = , t = 1. 2 0,50 π π 1 1 2 2 ⎛2 1⎞ 8 I1 = ∫ cos5 xdx = ∫ (1 − sin 2 x ) cos xdx = ∫ (1 − t ) 2 22 dt = ⎜ t − t 3 + t 5 ⎟ = . ⎝3 5 ⎠ 0 15 0 0 0 π π π ⎞2 π 8π 2 12 1⎛ 1 0,25 I 2 = ∫ cos 2 x dx = ∫ (1 + cos 2 x ) dx = ⎜ x + sin 2 x ⎟ = . Vậy I = I1 − I 2 = − . 20 2⎝ 2 ⎠0 4 15 4 0 Tính thể tích khối chóp... IV ( SIB ) ⊥ ( ABCD) và ( SIC ) ⊥ ( ABCD); suy ra SI ⊥ ( ABCD). (1,0 điểm) S Kẻ IK ⊥ BC ( K ∈ BC ) ⇒ BC ⊥ ( SIK ) ⇒ SKI = 60 . 0,50 B A I CK D Diện tích hình thang ABCD : S ABCD = 3a 2 . 0,25 3a 2 3a 2 ; suy ra S ΔIBC = Tổng diện tích các tam giác ABI và CDI bằng . 2 2 2S 3 5a 3 15a BC = ( AB − CD ) + AD 2 = a 5 ⇒ IK = ΔIBC = 2 ⇒ SI = IK .tan SKI = . BC 5 5 0,25 3 15a 3 1 Thể tích khối chóp S . ABCD : V = S ABCD .SI = . 3 5 Trang 2/4
- Câu Đáp án Điểm Chứng minh bất đẳng thức… V (1,0 điểm) Đặt a = x + y, b = x + z và c = y + z. Điều kiện x( x + y + z ) = 3 yz trở thành: c 2 = a 2 + b 2 − ab. 0,25 Bất đẳng thức cần chứng minh tương đương: a3 + b3 + 3abc ≤ 5c3 ; a, b, c dương thoả mãn điều kiện trên. 3 1 c 2 = a 2 + b 2 − ab = (a + b) 2 − 3ab ≥ (a + b) 2 − (a + b) 2 = (a + b) 2 ⇒ a + b ≤ 2c (1). 0,25 4 4 a 3 + b3 + 3abc ≤ 5c 3 ⇔ (a + b)(a 2 + b 2 − ab) + 3abc ≤ 5c 3 ⇔ (a + b)c 2 + 3abc ≤ 5c 3 0,25 ⇔ (a + b)c + 3ab ≤ 5c 2 . 3 (1) cho ta: (a + b)c ≤ 2c 2 và 3ab ≤ (a + b) 2 ≤ 3c 2 ; từ đây suy ra điều phải chứng minh. 4 0,25 Dấu bằng xảy ra khi: a = b = c ⇔ x = y = z. VI.a 1. (1,0 điểm) Viết phương trình AB... (2,0 điểm) Gọi N đối xứng với M qua I , suy ra N (11; −1) và N thuộc đường thẳng CD. 0,25 E ∈ Δ ⇒ E ( x;5 − x ) ; IE = ( x − 6;3 − x ) và NE = ( x − 11;6 − x). M B A I E là trung điểm CD ⇒ IE ⊥ EN . 0,25 IE.EN = 0 ⇔ ( x − 6)( x − 11) + (3 − x)(6 − x) = 0 ⇔ x = 6 hoặc C D EN x = 7. • x = 6 ⇒ IE = ( 0; −3) ; phương trình AB : y − 5 = 0. 0,25 • x = 7 ⇒ IE = (1; −4 ) ; phương trình AB : x − 4 y + 19 = 0. 0,25 2. (1,0 điểm) Chứng minh ( P) cắt ( S ), xác định toạ độ tâm và tính bán kính… ( S ) có tâm I (1;2;3), bán kính R = 5. 2− 4−3− 4 0,25 Khoảng cách từ I đến ( P) : d ( I ,( P) ) = = 3 < R; suy ra đpcm. 3 Gọi H và r lần lượt là tâm và bán kính của đường tròn giao tuyến, 0,25 H là hình chiếu vuông góc của I trên ( P) : IH = d ( I ,( P) ) = 3, r = R 2 − IH 2 = 4. ⎧ x = 1 + 2t ⎪ y = 2 − 2t ⎪ Toạ độ H = ( x; y; z ) thoả mãn: ⎨ 0,25 ⎪z = 3 − t ⎪ ⎩ 2 x − 2 y − z − 4 = 0. Giải hệ, ta được H (3; 0; 2). 0,25 VII.a Tính giá trị của biểu thức… (1,0 điểm) Δ = −36 = 36i 2 , z1 = −1 + 3i và z2 = −1 − 3i. 0,25 | z1 | = (−1)2 + 32 = 10 và | z2 | = (−1)2 + (−3)2 = 10. 0,50 Trang 3/4
- Câu Đáp án Điểm A = | z1 | 2 + | z2 | 2 = 20. 0,25 1. (1,0 điểm) Tìm m... VI.b (2,0 điểm) (C ) có tâm I (−2; −2), bán kính R = 2. 0,25 1 1 IA.IB.sin AIB ≤ R 2 = 1; S lớn nhất khi và chỉ khi IA ⊥ IB. Diện tích tam giác IAB : S = 0,25 2 2 −2 − 2 m − 2 m + 3 R =1 ⇔ Khi đó, khoảng cách từ I đến Δ : d ( I , Δ) = =1 0,25 2 1 + m2 8 ⇔ (1 − 4m ) = 1 + m 2 ⇔ m = 0 hoặc m = 2 . 0,25 15 2. (1,0 điểm) Xác định toạ độ điểm M ... Δ 2 qua A(1;3; −1) và có vectơ chỉ phương u = (2;1; −2). M ∈ Δ1 ⇒ M (−1 + t ; t; −9 + 6t ). 0,25 ⎡ ⎤ MA = (2 − t ;3 − t ;8 − 6t ), ⎣ MA, u ⎦ = (8t − 14; 20 − 14t ; t − 4) ⇒ ⎡ MA, u ⎤ = 3 29t 2 − 88t + 68. ⎣ ⎦ ⎡ MA, u ⎤ ⎣ ⎦ Khoảng cách từ M đến Δ 2 : d ( M , Δ 2 ) = = 29t 2 − 88t + 68. u 0,25 −1 + t − 2t + 12t − 18 − 1 11t − 20 Khoảng cách từ M đến ( P ) : d ( M ,( P) ) = = . 1 + ( −2 ) + 2 3 2 2 2 11t − 20 53 ⇔ 35t 2 − 88t + 53 = 0 ⇔ t = 1 hoặc t = 29t 2 − 88t + 68 = 0,25 . 3 35 ⎛ 18 53 3 ⎞ 53 t = 1 ⇒ M (0;1; −3); t = ⇒ M ⎜ ; ; ⎟. 0,25 ⎝ 35 35 35 ⎠ 35 Giải hệ phương trình… VII.b (1,0 điểm) ⎧ x 2 + y 2 = 2 xy ⎪ Với điều kiện xy > 0 (*), hệ đã cho tương đương: ⎨ 2 0,25 ⎪ x − xy + y = 4 2 ⎩ ⎧x = y ⎧x = y ⇔⎨2 ⇔⎨ 0,50 ⎩ y = ±2. ⎩y = 4 Kết hợp (*), hệ có nghiệm: ( x; y ) = (2;2) và ( x; y ) = (−2; −2). 0,25 -------------Hết------------- Trang 4/4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi - Đáp án môn Toán - Tốt nghiệp THPT ( 2013 )
1 p | 253 | 77
-
Đề thi thử THPT quốc gia lần 1, năm 2016 có đáp án môn: Toán - Trường THPT chuyên Lào Cai
1 p | 320 | 73
-
Tuyển tập đề thi học sinh giỏi có đáp án: Môn Toán 8 - Trường THCS Thanh Mỹ (Năm học 2011-2012)
49 p | 466 | 60
-
Đáp án môn Tóan Cao Đẳng năm 2008 - Khối B
4 p | 842 | 57
-
Bộ đề thi thử THPT quốc gia năm 2016 có đáp án môn Toán
30 p | 157 | 44
-
Đề thi tốt nghiệp và đáp án môn Toán năm 2013 - Hệ Giáo dục thường xuyên
4 p | 213 | 31
-
Đề kiểm tra chương 3 hình học có đáp án môn: Toán - Khối 11
8 p | 180 | 29
-
ĐÁP ÁN MÔN TOÁN TRƯỜNG CĐ CÔNG NGHIỆP THỰC PHẨM TP.HCM Câu
2 p | 215 | 12
-
Đề thi tuyển sinh lớp 10 trung học phổ thông có đáp án môn: Toán chuyên (Năm học 2013-2014)
4 p | 90 | 11
-
Đề thi tuyển sinh lớp 10 THPT chuyên có đáp án môn: Toán (Năm học 2013-2014)
5 p | 135 | 11
-
Đề thi thử đại học lần 1 có đáp án môn: Toán, khối A, A1, D, B - Trường THPT Phú Nhuận (Năm học 2014-2015)
6 p | 86 | 6
-
Đề thi thử THPT quốc gia, lần 3 có đáp án môn: Toán 12 - Trường THPT chuyên Lý Tự Trọng (Năm học 2014-2015)
6 p | 71 | 6
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 1
158 p | 17 | 5
-
Đề thi thử THPT quốc gia năm 2015, lần 2 có đáp án môn: Toán - Trường Đại học Vinh
6 p | 68 | 4
-
Đề kiểm tra khảo sát chất lượng đầu năm có đáp án môn: Toán 6 - Trường THCS Ngô Mây (Năm học 2014-2015)
2 p | 79 | 4
-
Đề kiểm tra chất lượng các môn thi THPT quốc gia có đáp án môn: Toán - Trường THPT Trần Phú (Năm học 2014-2015)
7 p | 102 | 4
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 p | 14 | 4
-
Đề kiểm tra khảo sát chất lượng đầu năm có đáp án môn: Toán 6 - Trường THCS Xuân Dương (Năm học 2014-2015)
3 p | 94 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn