ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 116
lượt xem 5
download
Tham khảo đề thi - kiểm tra 'đáp án và đề thi thử đại học - trường thpt nguyễn huệ - đắk lắk - đề số 116', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 116
- SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK ĐỀ THI THỬ ĐẠI HỌC TRƯỜNG THPT NGUYỄN HUỆ MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y = f ( x) = x 4 − 2 x 2 1. Khảo sát và vẽ đồ thị (C) của hàm số. 2. Trên (C) lấy hai điểm phân biệt A và B có hoành độ lần lượt là a và b. Tìm đi ều ki ện đ ối v ới a và b để hai tiếp tuyến của (C) tại A và B song song với nhau. Câu II (2 điểm) 1 2 ( cos x − sin x ) 1. Giải phương trình lượng giác: = tan x + cot 2 x cot x − 1 1 2. Giải bất phương trình: log 3 x − 5 x + 6 + log 1 x − 2 > log 1 ( x + 3) 2 3 2 3 π 2 Câu III (1 điểm) Tính tích phân: I = cos 2 x ( sin 4 x + cos 4 x ) dx 0 Câu IV (1 điểm) Cho một hình trụ tròn xoay và hình vuông ABCD c ạnh a có hai đ ỉnh liên ti ếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại n ằm trên đ ường tròn đáy th ứ hai c ủa hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45 0. Tính diện tích xung quanh và thể tích c ủa hình trụ. Câu V (1 điểm) Cho phương trình x + 1 − x + 2m x ( 1 − x ) − 2 4 x ( 1 − x ) = m 3 Tìm m để phương trình có một nghiệm duy nhất. PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng ∆ định bởi: (C ) : x + y 2 − 4 x − 2 y = 0; ∆ : x + 2 y − 12 = 0 . Tìm điểm M trên ∆ sao cho từ M vẽ được với (C) hai 2 tiếp tuyến lập với nhau một góc 600. 2. Trong không gian với hệ tọa độ Oxyz, cho tứ di ện ABCD v ới A(2;1;0), B(1;1;3), C(2;-1;3), D(1;-1;0). Tìm tọa độ tâm và bán kính của mặt cầu ngoại tiếp tứ diện ABCD. Câu VII.a (1 điểm) Có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác nhau và 3 viên bi vàng có bán kính khác nhau. Hỏi có bao nhiêu cách chọn ra 9 viên bi có đủ ba màu? 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc 9 đường thẳng ( d ) : x − y − 3 = 0 và có hoành độ xI = , trung điểm của một cạnh là giao điểm của (d) 2 và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là ( S ) : x 2 + y 2 + z 2 − 4 x + 2 y − 6 z + 5 = 0, ( P) : 2 x + 2 y − z + 16 = 0 . Điểm M di động trên (S) và điểm N di động trên (P). Tính đ ộ dài ngắn nh ất c ủa đo ạn th ẳng MN. Xác định vị trí của M, N tương ứng. Câu VII.b (1 điểm) Cho a, b, c là những số dương thỏa mãn: a 2 + b 2 + c 2 = 3 . Chứng minh bất đẳng thức 1 1 1 4 4 4 + + + 2 + 2 a+b b+c c+a a +7 b +7 c +7 2 ----------------------Hết---------------------- 1
- HƯỚNG DẪN Câu 1: 1, + MXĐ: D = ᄀ + Sự biến thiên x=0 Giới hạn: xlim y = + ; xlim y = + y ' = 4 x 3 − 4 x = 4 x ( x 2 − 1) ; y ' = 0 − + x= 1 • Bảng biến thiên yCT 1 = y ( −1) = −1; yCT 2 = y ( 1) = −1; yCᄃ = y ( 0 ) = 0 • Đồ thị Câu 1: 2, Ta có f '( x ) = 4 x 3 − 4 x . Gọi a, b lần lượt là hoành độ của A và B. Hệ số góc tiếp tuyến của (C) tại A và B là k A = f '(a ) = 4a − 4a, k B = f '(b) = 4b − 4b 3 3 Tiếp tuyến tại A, B lần lượt có phương trình là: y = f ' ( a ) ( x − a ) + f ( a ) = f ' ( a ) x + f (a ) − af' ( a ) ; y = f ' ( b ) ( x − b ) + f ( b ) = f ' ( b ) x + f (b) − bf' ( b ) Hai tiếp tuyến của (C) tại A và B song song hoặc trùng nhau khi và chỉ khi: k A = k B � 4a 3 − 4a = 4b3 − 4b � ( a − b ) ( a 2 + ab + b 2 − 1) = 0 (1) Vì A và B phân biệt nên a b , do đó (1) tương đương với phương trình: a 2 + ab + b2 − 1 = 0 (2) Mặt khác hai tiếp tuyến của (C) tại A và B trùng nhau � + ab + b − 1 = 0 a2 � + ab + b − 1 = 0 2 a2 2 ۹� � ( a b) � 4 , f ( a ) − af ' ( a ) = f ( b ) − bf ' ( b ) −3a + 2a 2 = −3b 4 + 2b 2 Giải hệ này ta được nghiệm là (a;b) = (-1;1), hoặc (a;b) = (1;-1), hai nghiệm này tương ứng với cùng một cặp điểm trên đồ thị là ( −1; −1) và ( 1; −1) . Vậy điều kiện cần và đủ để hai tiếp tuyến của (C) tại A và B song song với nhau là a 2 + ab + b 2 − 1 = 0 a 1 a b cos x.sin 2 x.sin x. ( tan x + cot 2 x ) 0 Câu 2: 1, Điều kiện: cot x 1 2
- 1 2 ( cos x − sin x ) cos x.sin 2 x = � = 2 sin x Từ (1) ta có: sin x cos 2 x cos x cos x � 2sin x.cos x = 2 sin x + −1 cos x sin 2 x sin x π x = + k 2π 2 4 � cos x = � ( k �ᄀ ) Giao với điều kiện, ta được họ nghiệm của phương trình đã 2 π x = − + k 2π 4 π cho là x = − + k 2π ( k ᄀ ) 4 Câu 2: 2, Điều kiện: x > 3 Phương trình đã cho tương đương: 1 1 1 log 3 ( x 2 − 5 x + 6 ) + log 3−1 ( x − 2 ) > log 3−1 ( x + 3) 2 2 2 1 1 1 � log 3 ( x 2 − 5 x + 6 ) − log 3 ( x − 2 ) > − log 3 ( x + 3 ) � log 3 �x − 2 ) ( x − 3) � log 3 ( x − 2 ) − log 3 ( x + 3) �( �> 2 2 2 � −2� x x−2 x < − 10 � log 3 �x − 2 ) ( x − 3) � log 3 � � ( � > � ( x − 2 ) ( x − 3) > � � x2 − 9 > 1 � � +3� x x+3 x > 10 Giao với điều kiện, ta được nghiệm của phương trình đã cho là x > 10 Câu 3: 1, π π 2 � 1 � 1 2� 1 � I = � 2 x �− sin 2 2 x � = �− sin 2 2 x � ( sin 2 x ) cos 1 dx 1 � d 0 � 2 � 2 0� 2 � π π 2 2 π π 1 1 1 1 = � sin 2 x ) − � 2 xd ( sin 2 x ) = sin 2 x| d( sin 2 2 − sin 2 x| 2 = 0 3 20 40 2 0 12 0 Câu 4: Gọi M, N theo thứ tự là trung điểm của AB và CD. Khi đó OM ⊥ AB và O ' N ⊥ CD . Giả sử I là giao điểm của MN và OO’. Đặt R = OA và h = OO’. Khi đó: ∆IOM vuông cân tại O nên: 2 h 2a 2 OM = OI = IM � = �h= a. 2 2 2 2 2 2 2 �� � 2� a a 2 2 a a 3a 2 Ta có: R = OA = AM + MO = � �+ � 2 2 2 � = +2 = �� �4 � 4 8 2 � � 8 3a 2 a 2 3 2π a 3 � V = π R 2h = π . . = , 8 2 16 a 3 a 2 3π a 2 và S xq = 2π Rh=2π . . = . 2 2 2 2 Câu 5: Phương trình x + 1 − x + 2m x ( 1 − x ) − 2 4 x ( 1 − x ) = m3 (1) Điều kiện : 0 x 1 N ếu x [ 0;1] thỏa mãn (1) thì 1 – x cũng thỏa mãn (1) nên để (1) có nghiệm duy nhất thì cần có điều 1 1 1 1 m=0 kiện x = 1 − x � x = . Thay x = vào (1) ta được: 2. + m − 2. = m3 2 2 2 2 m= 1 ( ) 1 2 * Với m = 0; (1) trở thành: 4 x − 4 1 − x = 0 � x = Phương trình có nghiệm duy nhất. 2 * Với m = -1; (1) trở thành x + 1 − x − 2 x ( 1 − x ) − 2 4 x ( 1 − x ) = −1 � ( ) ( x + 1− x − 2 4 x ( 1− x) + x +1− x − 2 x ( 1− x) = 0 � ) ( 4 x − 4 1− x ) +( 2 x − 1− x ) 2 =0 3
- 1 1 + Với 4 x − 4 1− x = 0 � x = + Với x − 1− x = 0 � x = 2 2 Trường hợp này, (1) cũng có nghiệm duy nhất. * Với m = 1 thì (1) trở thành: ( ) =( ) 2 2 x + 1− x − 24 x ( 1− x) = 1− 2 x ( 1− x) � 4 x − 4 1− x x − 1− x Ta thấy phương trình (1) có 1 2 nghiệm x = 0, x = nên trong trường hợp này (1) không có nghiệm duy nhất. 2 Vậy phương trình có nghiệm duy nhất khi m = 0 và m = -1. Câu 6a: 1, Đường tròn (C) có tâm I(2;1) và bán kính R = 5 . Gọi A, B là hai tiếp điểm của (C) với hai tiếp của (C) kẻ từ M. Nếu hai tiếp tuyến này lập với nhau một góc 600 thì IAM là nửa tam giác đều suy ra IM = 2R=2 5 . Như thế điểm M nằm trên đường tròn (T) có phương trình: ( x − 2 ) + ( y − 1) = 20 . 2 2 Mặt khác, điểm M nằm trên đường thẳng ∆ , nên tọa độ của M nghiệm đúng hệ phương trình: ( x − 2) + ( y − 1) = 20 (1) 2 2 Khử x giữa (1) và (2) ta được: x + 2 y − 12 = 0 (2) x=3 ( −2 y + 10 ) + ( y − 1) = 20 � 5 y − 42 y + 81 = 0 � 2 2 2 27 x= 5 � 9� � 33 � 27 Vậy có hai điểm thỏa mãn đề bài là: M � �hoặc M � ; � 3; � 2� �5 10 � Câu 6a:2, Ta tính được AB = CD = 10, AC = BD = 13, AD = BC = 5 . Vậy tứ diện ABCD có các cặp cạnh đối đôi một bằng nhau. Từ đó ABCD là một tứ diện gần đều. Do đó tâm của mặt cầu ngoại tiếp của tứ diện là trọng tâm G của tứ diện này. � 3 3� 14 Vậy mặt cầu ngoại tiếp tứ diện ABCD có tâm là G � ;0; �bán kính là R = GA = , . � 2 2� 2 9 Số cách chọn 9 viên bi tùy ý là : C18 . Những trường hợp không có đủ ba viên bi khác màu là: + Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và vàng chỉ là 8. 9 9 + Không có bi xanh: có C13 cách. + Không có bi vàng: có C15 cách. 9 Mặt khác trong các cách chọn không có bi xanh, không có bi vàng thì có C10 cách chọn 9 viên bi đỏ được tính hai lần. Vậy số cách chọn 9 viên bi có đủ cả ba màu là: C10 + C18 − C13 − C15 = 42910 cách. 9 9 9 9 9 � 3� 9 Câu 6b: 1, I có hoành độ xI = và I � d ) : x − y − 3 = 0 � I � ; � ( 2 � 2� 2 Vai trò A, B, C, D là như nhau nên trung điểm M của cạnh AD là giao điểm của (d) và Ox, suy ra M(3;0) 9 9 AB = 2 IM = 2 ( xI − xM ) + ( yI − yM ) = 2 2 2 + =3 2 4 4 S 12 S ABCD = AB. AD = 12 � AD = ABCD = = 2 2. AB 3 2 AD ⊥ ( d ) , suy ra phương trình AD: 1. ( x − 3) + 1. ( y − 0 ) = 0 � x + y − 3 = 0 . M AD Lại có MA = MD = 2 . Vậy tọa độ A, D là nghiệm của hệ phương trình: 4
- �+ y −3= 0 x � = −x + 3 � y � = −x + 3 � y � �� �� ( x − 3) + y 2 = 2 �x − 3) + y 2 = 2 �x − 3) + ( 3 − x ) = 2 ( ( 2 2 2 2 � = 3− x y �=2 x x=4 �� �� hoặc .Vậy A(2;1), D(4;-1), � −3 = 1 � =1 x y y = −1 x +x xI = A C � 3� 9 2 xC = 2 xI − x A = 9 − 2 = 7 I � ; � trung điểm của AC, suy ra: � là � � 2� 2 y + yC yC = 2 yI − y A = 3 − 1 = 2 yI = A 2 Tương tự I cũng là trung điểm BD nên ta có: B(5;4). Vậy tọa độ các đỉnh của hình chữ nhật là (2;1), (5;4), (7;2), (4;-1). Câu 6b: 2, Mặt cầu (S) tâm I(2;-1;3) và có bán kính R = 3. 2.2 + 2. ( −1) − 3 + 16 Khoảng cách từ I đến mặt phẳng (P): d = d ( I , ( P ) ) = =5�d > R. 3 Do đó (P) và (S) không có điểm chung.Do vậy, min MN = d –R = 5 -3 = 2. Trong trường hợp này, M ở vị trí M0 và N ở vị trí N0. Dễ thấy N0 là hình chiếu vuông góc của I trên mặt phẳng (P) và M0 là giao điểm của đoạn thẳng IN0 với mặt cầu (S). Gọi ∆ là đường thẳng đi qua điểm I và vuông góc với (P), thì N0 là giao điểm của ∆ và (P). r Đường thẳng ∆ có vectơ chỉ phương là n P = ( 2; 2; −1) và qua I nên có phương trình là x = 2 + 2t y = −1 + 2t ( t ᄀ ) .Tọa độ của N0 ứng với t nghiệm đúng phương trình: z = 3−t 15 5 � 4 13 14 � 2 ( 2 + 2t ) + 2 ( −1 + 2t ) − ( 3 − t ) + 16 = 0 � 9t + 15 = 0 � t = − = − .Suy ra N 0 � ; − ; � − . 9 3 �3 3 3 � uuuu 3 uuu r r Ta có IM 0 = IN 0 . Suy ra M0(0;-3;4) 5 1 1 4 Câu 7b: Áp dụng bất đẳng thức + ( x > 0, y > 0) x y x+ y 1 1 4 1 1 4 1 1 4 Ta có: + ; + ; + a + b b + c a + 2b + c b + c c + a a + b + 2c c + a a + b 2a+b+c Ta lại có: 1 2 2 � 2 = 2 � 2a 2 + b 2 + c 2 + 4 − 4a − 2b − 2c �0 2a + b + c 2a + b + c + 4 a + 7 2 2 � 2 ( a − 1) + ( b − 1) + ( c − 1) � 2 2 2 0 1 2 1 2 Tương tự: ; 2b + c + a b + 7 2c + a + b c + 7 2 2 1 1 1 4 4 4 Từ đó suy ra + + + 2 + 2 a+b b+c c+a a +7 b +7 c +7 2 Đẳng thức xảy ra khi và chỉ khi a = b = c = 1. 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án và đề thi thử ĐH môn Lý phần điện xoay chiều (4 đề)
20 p | 256 | 87
-
Đáp án và đề thi thử ĐH môn Hóa (2007-2008)_M234
4 p | 135 | 26
-
Đáp án và đề thi thử ĐH môn Hóa_Biên soạn: Phạm Ngọc Sơn
5 p | 129 | 24
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 1
4 p | 113 | 7
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 6
4 p | 114 | 7
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 8
5 p | 85 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 7
4 p | 82 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 5
4 p | 73 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 15
4 p | 67 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 3
4 p | 101 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 2
4 p | 84 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 14
4 p | 87 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 13
4 p | 72 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 12
4 p | 78 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 11
4 p | 72 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 10
4 p | 69 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 9
4 p | 68 | 4
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 4
5 p | 69 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn