intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 198

Chia sẻ: X X | Ngày: | Loại File: DOC | Số trang:4

35
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đáp án và đề thi thử đại học - trường thpt nguyễn huệ - đắk lắk - đề số 198', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 198

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK ĐỀ THI THỬ ĐẠI HỌC TRƯỜNG THPT NGUYỄN HUỆ MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút. A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): Câu I (2 điểm): Cho hàm số y = x 3 − 3mx 2 + 3(m 2 − 1) x − m3 + m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm): π 1. Giải phương trình : 2cos3x.cosx+ 3(1 + s in2x)=2 3cos 2 (2 x + ) 4 2. Giải phương trình : log 2 (5 − 2 x) + log 2 (5 − 2 x).log 2 x +1 (5 − 2 x) = log 2 (2 x − 5) 2 + log 2 (2 x + 1).log 2 (5 − 2 x ) 1 2 π π tan( x − ) 6 Câu III (1 điểm): Tính tích phân I = 4 dx 0 cos2x Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SC và mặt phẳng (AMN). Chứng minh SC vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P = 3( x 2 + y 2 + z 2 ) − 2 xyz . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng ∆ : 3 x − 4 y + 4 = 0 . Tìm trên ∆ hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x + 6 y − 4 z − 2 = 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v(1; 6; 2) , vuông góc với mặt phẳng (α ) : x + 4 y + z − 11 = 0 và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P = (1 + 2 x + 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): x2 y 2 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : + = 1 và hai điểm A(3;-2) , B(-3;2) . 9 4 Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x + 6 y − 4 z − 2 = 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v(1;6; 2) , vuông góc với mặt phẳng (α ) : x + 4 y + z − 11 = 0 và tiếp xúc với (S). Câu VIIb (1 điểm): 2 1 22 2n n 121 Tìm số nguyên dương n sao cho thoả mãn Cn + Cn + Cn2 + ... + 0 Cn = 2 3 n +1 n +1
  2. ------------------------------------ ĐÁP ÁN VÀ THANG ĐIỂM Câu Điểm 2. Ta có y = 3x − 6mx + 3(m − 1) , 2 2 Để hàm số có cực trị thì PT y , = 0 có 2 nghiệm phân biệt 05 � x 2 − 2mx + m 2 − 1 = 0 có 2 nhiệm phân biệt � ∆ = 1 > 0, ∀m I Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là 025 B(m+1;-2-2m) m = −3 + 2 2 Theo giả thiết ta có OA = 2OB � m 2 + 6m + 1 = 0 � 025 m = −3 − 2 2 Vậy có 2 giá trị của m là m = −3 − 2 2 và m = −3 + 2 2 . 1. � π � PT � cos4x+cos2x+ 3(1 + sin 2 x ) = 3 �+ cos(4x+ ) � 1 05 � 2 � � cos4x+ 3 sin 4 x + cos2x+ 3 sin 2 x = 0 π π � sin(4 x + ) + sin(2 x + ) = 0 6 6 π π x=− +k π 18 3 � 2sin(3x + ).cosx=0 � 05 6 π x= + kπ 2 π π π Vậy PT có hai nghiệm x= + kπ và x=− +k . 2 18 3 −1 5 II
  3. 1 Đặt t = t anx � dt= dx = (tan 2 x + 1) dx cos 2 x x =0�t =0 05 III π 1 x = �t = 6 3 1 1 Suy ra 3 dt 1 3 1− 3 . 025 I =− = = 0 (t + 1) 2 t + 10 2 AM ⊥ BC , ( BC ⊥ SA, BC ⊥ AB ) Ta có � AM ⊥ SC (1) 05 AM ⊥ SB, ( SA = AB) Tương tự ta có AN ⊥ SC (2) Từ (1) và (2) suy ra AI ⊥ SC Vẽ IH song song với BC cắt SB tại H. Khi đó IH vuông góc với (AMB) 1 Suy ra VABMI = S ABM .IH 3 a2 Ta có S ABM = 05 4 IH SI SI .SC SA2 a2 1 1 1 = = = 2 = 2 = � IH = BC = a IV BC SC SC 2 SA + AC 2 a + 2a 2 3 3 3 2 3 1a a a Vậy VABMI = = 3 4 3 36 Ta c ó: P = 3 � + y + z ) 2 − 2( xy + yz + zx ) � 2 xyz (x � �− 025 = 3 [ 9 − 2( xy + yz + zx ) ] − 2 xyz = 27 − 6 x( y + z ) − 2 yz ( x + 3) ( y + z)2 27 − 6 x(3 − x) − ( x + 3) 2 1 025 = (− x 3 + 15 x 2 − 27 x + 27) 2 Xét hàm số f ( x) = − x 3 + 15 x 2 − 27 x + 27 , với 0
  4. 2. Ta có mặt cầu (S) có tâm I(1;-3;2) r bán kính R=4 và Véc tơ pháp tuyến của (α ) là n(1; 4;1) 025 r Vì ( P ) ⊥ (α ) và song song với giá của v nên nhận véc tơ uu r r r 025 n p = n � = (2; −1; 2) làm vtpt. Do đó (P):2x-y+2z+m=0 v m = −21 Vì (P) tiếp xúc với (S) nên d ( I ( P )) = 4 d (I ( P )) = 4 025 m=3 Vậy có hai mặt phẳng : 2x-y+2z+3=0 và 2x-y+2z-21=0. 025 10 10 k 05 Ta có P = (1 + 2 x + 3x 2 )10 = � 10 (2 x + 3x 2 ) k = �� 10Cki 2 k −i3i x k +i ) Ck ( Ck k =0 k =0 i =0 k +i = 4 �= 0 �= 1 �= 2 i i i 025 Theo giả thiết ta có �� � � � � 0 i k 10 �� �� �=4 �=3 �=2 k k k i, k N Vậy hệ số của x 4 là: C10 24 + C10C3 223 + C10C22 32 = 8085 . 4 3 1 2 025 1. Ta có PT đường thẳng AB:2x+3y=0 x2 y 2 Gọi C(x;y) với x>0,y>0.Khi đó ta có + = 1 và diện tích tam giác ABC là 9 4 05 1 85 85 x y S ABC = AB.d (C AB ) = 2x + 3y = 3 + 2 2 13 13 3 4 85 � 2 y 2 � x 170 3 2� + � 3 = 13 � 9 4 � 13 x2 y 2 05 + =1 2 � 9 4 �=3 x 3 2 Dấu bằng xảy ra khi � � 2 . Vậy C( ; 2) . �= y x �= 2 y 2 3 2 Xét khai triển (1 + x )n = Cn0 + Cn x + Cn2 x 2 + ... + Cn x n 1 n VIa Lấy tích phân 2 vế cân từ 0 đến 2 , ta được: 3n +1 − 1 2 2 1 23 3 2 n+1 n 05 = 2Cn + Cn + Cn + ... + 0 Cn n +1 2 3 n +1 2 1 22 2 2n n 3n +1 − 1 121 3n +1 − 1 Cn + Cn + Cn + ... + 0 Cn = � = 2 3 n +1 2( n + 1) n + 1 2( n + 1) � 3n +1 = 243 � n = 4 05 Vậy n=4.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2