Đề thi môn giải tích 2 lần 2
lượt xem 12
download
Tham khảo đề thi - kiểm tra 'đề thi môn giải tích 2 lần 2', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi môn giải tích 2 lần 2
- ÑEÀ KIEÅM TRA GIÖÕA HOÏC KYØ NAÊM HOÏC 2009-2010 - CA 1 Moân hoïc: Giaûi tích 2. Ngaøy thi: 24/04/2010 Thôøi gian laøm baøi: 45 phuùt Ñaùp aùn: 1b, 2a, 3a, 4d, 5c, 6d, 7d, 8a, 9b, 10d, 11c, 12a, 13d, 14d, 15a, 16a, 17c, 18b, 19b, 20b . LÖU YÙ: • Sinh vieân phaûi ghi hoï teân, maõ ñeà vaø MSSV ñaày ñuû vaøo ñeà thi vaø phieáu traéc nghieäm. ÑEÀ 5261 (Ñeà thi goàm 19 caâu, ñöôïc in trong 2 maët moät tôø A4) Caâu 1 : Cho f ( x, y) = 6 s in y · ex . Tìm khai trieån Maclaurint cuûa haøm f ñeán caáp 3. a Caùc caâu kia sai. c 1 + 2 y + 3 xy + 3 x2 y − xy 2 + y 3 + o( ρ3 ) . b 6 y + 6 xy + 3 x2 y − y 3 + o( ρ3 ) . d 3 y − 6 xy + 3 x2 y − xy 2 + o( ρ3 ) . Caâu 2 : Tính I = ydxdy vôùi D laø nöûa hình troøn ( x − 1 ) 2 + y 2 ≤ 1 , y ≤ 0 . D −2 1 2 a I= . b I= . c I= . d Caùc caâu kia sai. 3 3 3 Caâu 3 : Tính tích phaân I = 1 2 ydxdy vôùi D giôùi haïn bôûi caùc ñöôøng x = y 2 , x = y. D 3 a I =1 . b I=4 . c Caùc caâu kia sai. d I= . 2 0 1 Caâu 4 : Cho f ( x, y) = √ 2 . Tìm mieàn xaùc ñònh Df vaø mieàn giaù trò Ef . x + y2 a Df = I R\{0 }; Ef = [0 , +∞) . c Df = I 2 \{( 0 , 0 ) }; Ef = [0 , +∞) . R b Caùc caâu kia sai. d Df = I 2 \{( 0 , 0 ) }; Ef = ( 0 , +∞) . R Caâu 5 : Giaù trò lôùn nhaát M vaø nhoû nhaát m cuûa f ( x, y) = 3 + 2 xy treân D = {( x, y) ∈ I 2 : x2 + y 2 ≤ 1 } R a M = 4 ,m = 0 . b Caùc caâu kia sai. c M = 4 ,m = 2 . d M = 4 ,m = 3 . √ Caâu 6 : Cho maët baäc hai y + 4 x2 + z 2 + 2 = 0 . Ñaây laø maët gì? a Nöûa maët caàu. b Paraboloid elliptic. c Maët truï. d Maët noùn moät phía. Caâu 7 : Cho f ( x, y) = 2 x2 − 3 xy + y 3 . Tính d2 f ( 1 , 1 ) . a 2 dx2 + 6 dxdy + 6 dy 2 . c Caùc caâu kia sai. b 4 dx − 3 dxdy + 6 dy . 2 2 d 4 dx2 − 6 dxdy + 6 dy 2 . Caâu 8 : Cho haøm 2 bieán z = ( x + y 2 ) ex/2 vaø ñieåm P ( −2 , 0 ) . Khaúng ñònh naøo sau ñaây ñuùng ? a P laø ñieåm ñaït cöïc tieåu. c P khoâng laø ñieåm döøng. b Caùc caâu kia sai. d P laø ñieåm ñaït cöïc ñaïi. Caâu 9 : Cho maët baäc hai x2 + z 2 − y 2 = 2 x + 2 z − 2 . Ñaây laø maët gì? a Maët caàu. b Maët noùn 2 phía. c Paraboloid elliptic. d Maët truï. √ 2 Caâu 10 : Tính theå tích vaät theå giôùi haïn bôûi 0 ≤ z ≤ x + y 2 vaø x2 + y 2 ≤ 1 π 2 π a I = π. b Caùc caâu kia sai. c I= . d I= . 3 3 1
- √ Caâu 11 : Cho maët baäc hai 4 − x2 − z 2 + 3 − y = 0 . Ñaây laø maët gì? a Maët truï. b Paraboloid elliptic. c Nöûa maët caàu. d Maët noùn moät phía. Caâu 12 : Cho f ( x, y) = 3 y/x . Tính df ( 1 , 1 ) . a 3 ln 3 ( −dx + dy) . b 3 ln 3 ( 2 dx − dy) . c 3 ln 3 ( −dx + 2 dy) . d Caùc caâu kia sai. Caâu 13 : Tính I = xdxdy vôùi D laø nöûa hình troøn x2 + ( y − 2 ) 2 ≤ 1 , x ≥ 0 . D −1 3 2 a I= . b I= . c Caùc caâu kia sai. d I= . 2 2 3 Caâu 14 : Cho haøm z = z( x, y) xaùc ñònh töø phöông trình z 3 − 4 xz + y 2 − 4 = 0 . Tính zy ( 1 , −2 ) neáu ′ z( 1 , −2 ) = 2 . 2 1 1 a . b − . c Caùc caâu kia sai. d . 3 2 2 Caâu 15 : Cho f ( x, y) = y ln ( xy) . Tính fxx . ′′ a −y . x2 b x2 . y c Caùc caâu kia sai. d 0 . Caâu 16 : Cho f = f ( u, v) = euv , u = u( x, y) = x3 y, v = v( x, y) = x2 . Tìm df . a veuv ( 3 x2 ydx + x3 dy) + ueuv 2 xdx. c veuv 3 x2 ydx + ueuv 2 xdy. b Caùc caâu kia sai. d veuv x3 dy + ueuv 2 xdx. Caâu 17 : Cho f ( x, y) = 3 x3 + 2 y 2 . Tìm mieàn xaùc ñònh D cuûa fx ( x, y) . ′ a D = I 2 \{( 0 , 0 ) }. R c D=I 2 . R b Caùc caâu kia sai. d D = {( x, y) ∈ I 2 |x = 0 }. R x+y Caâu 18 : Cho f ( x, y) = . Tính df ( 1 , 1 ) 2 x+y a −1 3 dx + 1 dy. 3 b −1 dx + 1 dy. 9 9 c Caùc caâu kia sai. d 2 3 dx − 1 dy. 3 1 1 Caâu 19 : Ñoåi thöù töï laáy tích phaân trong tích phaân keùp dy √ f ( x, y) dx 0 − y 1 1 0 1 1 x2 a dx f ( x, y) dy. c dx f( x, y) dy+ dx f ( x, y) dy. −1 x2 −1 x2 0 0 0 1 1 1 b dx f ( x, y) dy+ dx f ( x, y) dy. d Caùc caâu kia sai. −1 x2 0 0 Caâu 20 : Tìm giaù trò lôùn nhaát, giaù trò nhoû nhaát cuûa z = x2 + xy − 1 trong tam giaùc ABC vôùi A( 1 , 1 ) ; B( 2 , 2 ) ; C( 3 , 1 ) a zmax = 1 1 , zmin = 7 . c Caùc caâu kia sai. b zmax = 1 1 , zmin = 1 . d zmax = 1 1 , zmin = −7 . CHUÛ NHIEÄM BOÄ MOÂN KYÙ DUYEÄT: 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi môn giải tích 2 lần 1
1 p | 110 | 12
-
Đề thi thử Đại học Toán lần 2 (2013-2014) khối D (Kèm đáp án)
6 p | 55 | 8
-
Đề thi thử Đại học Toán lần 2 (2013-2014) khối A,A1,B (Kèm đáp án)
7 p | 64 | 5
-
Đề cương ôn tập kiểm tra lần 2 môn Tiếng Anh 12 năm 2018-2019 - Trường THPT chuyên Bảo Lộc
1 p | 35 | 4
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Hóa học - Sở GD&ĐT Nghệ An - Mã đề 214
5 p | 49 | 3
-
Đề thi giữa học kì 2 môn Ngữ văn lớp 12 năm 2022-2023 có đáp án - Trường THPT Hồ Nghinh
8 p | 5 | 2
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Vật lí - Sở GD&ĐT Nghệ An - Mã đề 213
5 p | 28 | 2
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn GDCD - Sở GD&ĐT Nghệ An - Mã đề 305
12 p | 16 | 2
-
Đề thi thử THPTQG môn Toán lần 2 năm 2019 - THPT Hai Bà Trưng, Vĩnh Phúc
15 p | 11 | 2
-
Đề thi định kì lần 2 môn Toán lớp 11 năm 2018-2019 - THPT Chuyên Bắc Ninh - Mã đề 105
5 p | 32 | 1
-
Đề thi định kì lần 2 môn Toán lớp 11 năm 2018-2019 - THPT Chuyên Bắc Ninh - Mã đề 104
5 p | 47 | 1
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn tiếng Anh - Sở GD&ĐT Nghệ An - Mã đề 419
7 p | 18 | 1
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn GDCD - Sở GD&ĐT Nghệ An - Mã đề 307
7 p | 20 | 1
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Toán - Sở GD&ĐT Nghệ An - Mã đề 107
7 p | 65 | 1
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Lịch sử - Sở GD&ĐT Nghệ An - Mã đề 321
5 p | 21 | 1
-
Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Địa lí - Sở GD&ĐT Nghệ An - Mã đề 319
5 p | 19 | 1
-
Đề thi giữa học kì 2 môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Trần Văn Lan, Nam Định
14 p | 3 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn