intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI A NĂM HỌC 2010-2011 - ĐỀ SỐ 4

Chia sẻ: Nguyễn Văn Phú | Ngày: | Loại File: DOC | Số trang:6

204
lượt xem
91
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học môn toán khối a năm học 2010-2011 - đề số 4', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI A NĂM HỌC 2010-2011 - ĐỀ SỐ 4

  1. ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT KHỐI A Trường THPT Trần Hưng Đạo Thời gian: 180 phút Môn: Toán I.Phần chung cho tất cả thí sinh (7 điểm) 2x + 1 Câu I (2 điểm). Cho hàm số y = có đồ thị là (C) x+2 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2.Chứng minh đường thẳng d: y = -x + m luôn luôn c ắt đồ th ị (C) t ại hai đi ểm phân bi ệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Câu II (2 điểm) 1.Giải phương trình 9sinx + 6cosx – 3sin2x + cos2x = 8 log 2 x − log 2 x 2 − 3 > 5 (log 4 x 2 − 3) 2.Giải bất phương trình 2 dx Câu III (1 điểm). Tìm nguyên hàm I = ∫ sin x. cos 5 x 3 Câu IV (1 điểm). Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng 300. Hình chiếu H của điểm A trên mặt phẳng (A 1B1C1) thuộc đường thẳng B1C1. Tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a. Câu V (1 điểm). Cho a, b, c ≥ 0 và a 2 + b 2 + c 2 = 3 . Tỡm giỏ trị nhỏ nhất của biểu thức a3 b3 c3 P= + + 1 + b2 1 + c2 1+ a2 II.Phần riêng (3 điểm) 1.Theo chương trình chuẩn Câu VIa (2 điểm). 1.Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) có phương trình (x-1) 2 + (y+2)2 = 9 và đường thẳng d: x + y + m = 0. Tìm m đ ể trên đ ường th ẳng d có duy nh ất m ột đi ểm A mà t ừ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai ti ếp đi ểm) sao cho tam giác ABC vuông. 2.Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đ ường th ẳng d có ph ương  x = 1 + 2t  trình  y = t . Lập phương trình mặt phẳng (P) đi qua A, song song với d và kho ảng cách t ừ d  z = 1 + 3t  tới (P) là lớn nhất. Câu VIIa (1 điểm). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong m ỗi s ố luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. 2.Theo chương trình nâng cao (3 điểm) Câu VIb (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C): x 2 + y2 - 2x + 4y - 4 = 0 và đường thẳng d có phương trình x + y + m = 0. Tìm m để trên đ ường th ẳng d có duy nh ất m ột đi ểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai ti ếp đi ểm) sao cho tam giác ABC vuông. 2.Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đ ường th ẳng d có ph ương x −1 y z −1 == . Lập phương trình mặt phẳng (P) đi qua A, song song với d và kho ảng cách t ừ trình 2 1 3 d tới (P) là lớn nhất. Câu VIIb (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong m ỗi s ố luôn luôn có mặt hai chữ số chẵn và ba chữ số lẻ. 1
  2. -Hết- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 KHỐI A – MÔN TOÁN I.Phần dành cho tất cả các thí sính Điể Câu Đáp án m 1. (1,25 điểm) I a.TXĐ: D = R\{-2} (2 b.Chiều biến thiên điểm) +Giới hạn: lim−∞y = lim y = 2; lim2y = −∞ ; lim2y = + ∞ 0,5 + − x→ x →+ ∞ x →− x →− Suy ra đồ thị hàm số có một tiệm cận đứng là x = -2 và một tiệm cận ngang là y = 2 3 + y' = > 0 ∀x ∈ D ( x + 2) 2 0,25 Suy ra hàm số đồng biến trên mỗi khoảng (−∞ ;−2) và (−2;+ ∞) +Bảng biến thiên x −∞ +∞ -2 y’ + + 0,25 +∞ 2 y −∞ 2 c.Đồ thị: 1 1 ) và cắt trục Ox tại điểm( − ;0) Đồ thị cắt các trục Oy tại điểm (0; 2 2 Đồ thị nhận điểm (-2;2) làm tâm đối xứng y 0,25 2 -2 O x 2. (0,75 điểm) Hoành độ giao điểm của đồ thị (C ) và đường thẳng d là nghiệm của  x ≠ −2 2x + 1 = −x + m ⇔  2 phương trình 0,25 x+2  x + (4 − m) x + 1 − 2m = 0 (1) Do (1) có ∆ = m 2 + 1 > 0 va (−2) 2 + ( 4 − m).(−2) + 1 − 2m = −3 ≠ 0 ∀m nên đường thẳng d luôn luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B 2
  3. Ta có yA = m – xA; yB = m – xB nên AB2 = (xA – xB)2 + (yA – yB)2 = 2(m2 + 12) 0,5 suy ra AB ngắn nhất  AB2 nhỏ nhất  m = 0. Khi đó AB = 24 1. (1 điểm) II (2 Phương trình đã cho tương đương với 0,5 điểm) 9sinx + 6cosx – 6sinx.cosx + 1 – 2sin2x = 8  6cosx(1 – sinx) – (2sin2x – 9sinx + 7) = 0  6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0 0,25  (1-sinx)(6cosx + 2sinx – 7) = 0 1 − sin x = 0  6 cos x + 2 sin x − 7 = 0 (VN ) π 0,25  x = + k 2π 2 2. (1 điểm) x > 0 ĐK:  log 2 x − log 2 x − 3 ≥ 0 2 2 Bất phương trình đã cho tương đương với 0,5 log 2 x − log 2 x 2 − 3 > 5 (log 2 x − 3) (1) 2 đặt t = log2x, BPT (1)  t 2 − 2t − 3 > 5 (t − 3) ⇔ (t − 3)(t + 1) > 5 (t − 3) t ≤ −1 0,25 log x ≤ −1 t ≤ −1  ⇔ t > 3 ⇔ 2 ⇔ 3 < t < 4 3 < log 2 x < 4 (t + 1)(t − 3) > 5(t − 3) 2   1 0 < x ≤ 2 Vậy BPT đã cho có tập nghiệm là: (0; 1 ] ∪ (8;16) ⇔  2 8 < x < 16 III dx dx I=∫ 3 = 8∫ 3 1 điểm 3 2 sin 2 x. cos 2 x sin x. cos x. cos x 0,5 đặt tanx = t dx 2t ⇒ dt = ; sin 2 x = 1+ t2 2 cos x (t 2 + 1) 3 dt ⇒ I = 8∫ =∫ dt 2t 3 t3 ( ) 1+ t2 t 6 + 3t 4 + 3t 2 + 1 =∫ dt t3 3 1 3 1 = ∫ (t 3 + 3t + + t −3 ) dt = tan 4 x + tan 2 x + 3 ln tan x − +C 0,5 2 tan 2 x t 4 2 3
  4. Câu Do AH ⊥ ( A1 B1C1 ) nên góc ∠AA1 H là góc giữa AA1 và (A1B1C1), theo giả IV 1 điểm thiết thì góc ∠AA1 H bằng 300. Xét tam giác vuông AHA1 có AA1 = a, góc a3 ∠AA1 H =300 ⇒ A1 H = . Do tam giác A1B1C1 là tam giác đều cạnh a, H 2 a3 thuộc B1C1 và A1 H = nên A1H vuông góc với B1C1. Mặt khác 2 0,5 AH ⊥ B1C1 nên B1C1 ⊥ ( AA1 H ) A B C K A1 C H 1 B1 Kẻ đường cao HK của tam giác AA1H thì HK chính là khoảng cách giữa 0,25 AA1 và B1C1 0,25 A1 H . AH a 3 Ta có AA1.HK = A1H.AH ⇒ HK = = AA1 4 Câu V a3 b3 c3 + b2 + + c2 + + a2 Ta cú: P + 3 = 1 điểm 1+ b 1+ c 1+ a 2 2 2 1+ b2 a3 a2 1 + c2 b3 b2 6 ⇔ P+ = + + + + + 42 42 2 1+ b2 2 1+ b2 42 2 1 + c2 2 1 + c2 0,5 1+ a 3 2 2 c c 6 6 6 a b c + + + ≥ 33 + 33 + 33 42 2 1+ a 2 1+ a 2 2 16 2 16 2 16 2 3 3 9 ⇒ P+ ≥ (a 2 + b 2 + c 2 ) = 6 22 222 28 3 9 3 9 3 3 ⇒P≥ − = − = 0,5 22 22 22 2 6 3 22 Để PMin khi a = b = c = 1 Phần riêng. 1.Ban cơ bản Câu 1.( 1 điểm) VIa Từ phương trình chính tắc của đường tròn ta có tâm I(1;-2), R = 3, từ A kẻ được 2 tiếp tuyến AB, AC tới đường tròn và AB ⊥ AC => tứ giác ABIC là 2 0,5 điểm hình vuông cạnh bằng 3 ⇒ IA = 3 2 4
  5. m −1  m = −5 ⇔ = 3 2 ⇔ m −1 = 6 ⇔  m = 7 2 0,5 2. (1 điểm) Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có AH ≥ HI => HI lớn nhất khi 0,5 A≡I Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véc tơ pháp tuyến. H ∈ d ⇒ H (1 + 2t ; t ;1 + 3t ) vì H là hình chiếu của A trên d nên AH ⊥ d ⇒ AH .u = 0 (u = (2;1;3) là véc tơ chỉ phương của d) 0,5 ⇒ H (3;1;4) ⇒ AH (−7;−1;5) Vậy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0  7x + y -5z -77 = 0 Câu Từ giả thiết bài toán ta thấy có C 42 = 6 cách chọn 2 chữ số chẵn (vì không có 0,5 VIIa số 0)và C 2 = 10 cách chọn 2 chữ số lẽ => có C 2 . C 2 = 60 bộ 4 số thỏa mãn 5 5 5 1 bài toán điểm 0,5 Mỗi bộ 4 số như thế có 4! số được thành lập. Vậy có tất cả C 42 . C 52 .4! = 1440 số 2.Ban nâng cao. Câu 1.( 1 điểm) VIa Từ phương trình chính tắc của đường tròn ta có tâm I(1;-2), R = 3, từ A kẻ được 2 tiếp tuyến AB, AC tới đường tròn và AB ⊥ AC => tứ giác ABIC là hình vuông 0,5 2 điểm cạnh bằng 3 ⇒ IA = 3 2 m −1  m = −5 ⇔ = 3 2 ⇔ m −1 = 6 ⇔  m = 7 2 0,5 2. (1 điểm) Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có AH ≥ HI => HI lớn nhất khi 0,5 A≡I Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véc tơ pháp tuyến. H ∈ d ⇒ H (1 + 2t ; t ;1 + 3t ) vì H là hình chiếu của A trên d nên AH ⊥ d ⇒ AH .u = 0 (u = (2;1;3) là véc tơ chỉ phương của d) 0,5 ⇒ H (3;1;4) ⇒ AH (−7;−1;5) Vậy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0  7x + y -5z -77 = 0 Câu 0,5 Từ giả thiết bài toán ta thấy có C 5 = 10 cách chọn 2 chữ số chẵn (kể cả số có 2 VIIa 3 2 3 chữ số 0 đứng đầu) và C 5 =10 cách chọn 2 chữ số lẽ => có C 5 . C 5 = 100 bộ 5 1 số được chọn. 5
  6. điểm Mỗi bộ 5 số như thế có 5! số được thành lập => có tất cả C 52 . C 53 .5! = 12000 0,5 số. Mặt khác số các số được lập như trên mà có chữ số 0 đứng đầu là C 4 .C 5 .4!= 960 . Vậy có tất cả 12000 – 960 = 11040 số thỏa mãn bài toán 1 3 6
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2