Đề thi thử đại học môn toán năm 2012_Đề số 25
lượt xem 18
download
Tham khảo tài liệu 'đề thi thử đại học môn toán năm 2012_đề số 25', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 25
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 25 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số : y ( x – m)3 – 3x (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1. x 1 3 3x k 0 2) Tìm k để hệ bất phương trình sau có nghiệm: 1 1 2 3 log 2 x log 2 ( x 1) 1 2 3 Câu II: (2 điểm) 1) Tìm tổng tất cả các nghiệm x thuộc [ 2; 40] của phương trình: sinx – cos2x = 0. 2) Giải phương trình: log 2 x 1 log 1 (3 x) log 8 ( x 1)3 0 . 2 e 2 Câu III: (1 điểm) Tính tích phân: ln xdx . I x x 1 Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, BAD 600 , SA vuông góc mặt phẳng (ABCD), SA = a. Gọi C là trung điểm của SC. Mặt phẳng (P) đi qua AC và song với BD, cắt các cạnh SB, SD của hình chóp lần lượt tại B, D. Tính thể tích của khối chóp S.ABCD. Câu V: (1 điểm) Cho a, b, c là ba cạnh của một tam giác. Chứng minh bất đẳng thức: ab bc ca a b c c(c a) a (a b) b(b c ) c a a b b c II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho phương trình hai cạnh của một tam giác là 5x – 2y + 6 = 0 và 4x + 7y – 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. 2) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;5;6). Viết phương trình mặt phẳng (P) qua A; cắt các trục tọa độ lần lượt tại I, J, K mà A là trực tâm của IJK. 2 3 25 Câu VII.a (1 điểm) Tính tổng: S 1.2.C25 2.3.C25 ... 24.25.C25 . B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x2 + y2 – 6x + 5 = 0. Tìm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2) Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Viết phương trình đường thẳng (D) vuông góc với mặt phẳng (Oxy) và cắt được các đường thẳng AB, CD. Câu VII.b (1 điểm) Tìm số phức z thoả mãn điều kiện: z 5 và phần thực của z bằng hai lần phần ảo của nó.
- Hướng dẫn Đề số 25 x 3 3 3x k 0 (1) . Điều kiện (2) có nghĩa: x > 1. Câu I: 2) Ta có : 1 1 log 2 x 2 log2 ( x 1)3 1 (2) 2 3 Từ (2) x(x – 1) 2 1 < x 2. Hệ PT có nghiệm (1) có nghiệm thoả 1 < x 2 (x 1)3 3x k 0 (x 1)3 3x < k 1 x 2 1 x 2 3 Đặt: f(x) = (x – 1) – 3x và g(x) = k (d). Dựa vào đồ thị (C) (1) có nghiệm x (1;2] k min f ( x ) f (2) 5 . Vậy hệ có nghiệm k > – 5 1;2 2 Câu II: 1) Ta có: sinx – cos2x = 0 2sin2x + sinx –1 = 0 x k ,k . 6 3 2 3 3 Vì x [ 2; 40] nên 2 k 40 2 k 40 2 2 6 3 6 6 0,7 k 18,8 k 1,2,3,...,18 . 2 (1 2 3 ... 18) 117 . Gọi S là tổng các nghiệm thoả YCBT: S = 18. 6 3 log x 1 log 2 (3 x) log 2 ( x 1) 0 2) Điều kiện: 1 x 3 . PT 2 1 x 3 1 17 x 1 3 x x 1 x 2 x 4 0 x (tmđk) 2 e e e 2 ln x 1 dx ... e 2 5 . Câu III: Ta có : I x ln xdx x ln xdx 2 4 x 1x 1 1 SC Câu IV: Ta có: SAC vuông tại A SC SA2 AC 2 2a AC = = a SAC đều Vì (P) 2 chứa AC và (P) // BD BD // BD. Gọi O là tâm hình thoi ABCD và I là giao điểm của AC và 2 2 BD I là trọng tâm của SBD. Do đó: B D BD a . 3 3 Mặt khác, BD (SAC) DB (SAC) BD AC a2 1 Do đó: SAB'C'D' = AC .B D . 2 3 a3 Đường cao h của khối chóp S.ABCD chính là đường cao của tam giác đều SAC h . 2 a3 3 1 Vậy thể tích của khối chóp S. ABCD là V = h.S AB 'C ' D ' . 3 18 a b b c c a Câu V: Ta có BĐT 1 1 1 0 ca c aba bcb 1 b 1 c 1 a 1 a 1 b 1 0 (1) c 1 c 1 a 1 b a b c a b c Đặt: x 0; y 0; z 0 x. y.z 1 . Khi đó : b c a x 1 y 1 z 1 0 x 2 y 2 z 2 xy 2 yz 2 zx 2 x y z 0 (1) (*) y 1 z 1 x 1
- 1 x y z 2 3 xyz x y z x y z ( theo BĐT Cô–si) Vì x 2 y 2 z 2 3 3 Và xy 2 yz 2 zx 2 3 3 xyz 3 (theo BĐT Cô–si). Do đó: (*) đúng. Vậy (1) được CM. Dấu "=" xảy ra x = y = z a = b = c. Khi đó tam giác ABC là tam giác đều. Câu VI.a: 1) Giả sử AB: 5x – 2y + 6 = 0; AC: 4x + 7y – 21 = 0. Vậy A(0;3) Đường cao đỉnh B đi qua O nhận VTCP a (7; 4) của AC làm VTPT BO: 7x – 4y = 0 B(–4; –7) A nằm trên Oy đường cao AO chính là trục Oy. Vậy AC: y + 7 = 0 xyz 2) Ta có I(a;0;0), J(0;b;0), K(0;0;c) ( P ) : 1 abc IA (4 a;5; 6), JA (4;5 b;6); JK (0; b; c ), IK ( a; 0; c) 4 5 6 a b c 1 77 77 77 Ta có: 5b 6c 0 a ; b ; c phương trình mp(P) 4 5 6 4a 6c 0 n n Câu VII.a: Xét nhị thức Newton: x 1 Cn x k . k k 0 n n 2 k ( k 1)Cn x k 2 k Lấy đạo hàm đến cấp hai hai vế ta được: n( n 1) x 1 (1) k 2 25 25 Cho x = 1 và n = 25 từ (1) 25. 24.223 = k k k (k 1)C k (k 1)C = 5033164800. 25 25 k 2 k 2 Câu VI.b: 1) (C) có tâm I(3;0) và bán kính R = 2. M Oy M(0;m) AMB 600 (1) Qua M kẽ hai tiếp tuyến MA và MB ( A và B là hai tiếp điểm) AMB 1200 (2) Vì MI là phân giác của AMB nên: IA MI = 2R m 2 9 4 m 7 (1) AMI = 300 MI sin 300 23 43 IA 2 (2) AMI = 600 MI R m 9 MI = (vô nghiệm) 0 3 3 sin 60 Vậy có hai điểm M1(0; 7 ) và M2(0; – 7 ) 2) BA ( 4;5;5) , CD (3; 2; 0) , CA ( 4;3; 6) Gọi (P) là mặt phẳng qua AB và (P) (Oxy) (P) có VTPT n1 BA, k = (5; –4; 0) (P): 5x – 4y = 0 (Q) là mặt phẳng qua CD và (Q) (Oxy) (Q) có VTPT n2 CD, k = (–2;–3; 0) (Q): 2x + 3y – 6 = 0 Ta có (D) = (P)(Q) Phương trình của (D) Câu VII.b: Giả sử : z = a + bi (a- phần thực, b- phần ảo) a 2 5 a 2 5 a 2 b 2 5 a 2b z 5 Ta có: b 5 b 5 a 2b b 5 a 2b Kết luận: Có hai số phức thoả yêu cầu bài toán: z 2 5 5i; z 2 5 5i .
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học môn Sinh lần 1 năm 2011 khối B
7 p | 731 | 334
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Sinh lần 2
4 p | 539 | 231
-
Đề thi thử Đại học môn Sinh năm 2010 khối B - Trường THPT Anh Sơn 2 (Mã đề 153)
5 p | 456 | 213
-
Đề thi thử Đại học môn Văn khối D năm 2011
4 p | 885 | 212
-
Đề thi thử Đại học môn Toán 2014 số 1
7 p | 278 | 103
-
Đề thi thử Đại học môn tiếng Anh - Đề số 10
6 p | 384 | 91
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 1-4)
4 p | 223 | 35
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 2
7 p | 229 | 25
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 5-8)
4 p | 138 | 17
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 1
11 p | 143 | 15
-
Đề thi thử Đại học môn Lý năm 2013 - Trường THPT chuyên Lương Văn Chánh (Mã đề 132)
7 p | 177 | 12
-
Đề thi thử Đại học môn Lý năm 2011 - Trường THPT Nông Cống I
20 p | 114 | 9
-
Đề thi thử đại học môn Lý khối A - Mã đề 132
6 p | 54 | 9
-
Đề thi thử Đại học môn Toán năm 2011 - Trường THPT Tây Thụy Anh
8 p | 79 | 8
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011
6 p | 105 | 7
-
Đề thi thử Đại học môn Toán năm 2011 khối A
6 p | 104 | 7
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án
7 p | 102 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn