ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012_THPT Thanh Bình_18
lượt xem 9
download
Tham khảo tài liệu 'đề thi thử đại học năm học 2012_thpt thanh bình_18', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012_THPT Thanh Bình_18
- TRƯỜNG THPT THANH BÌNH 2 ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2011 KHỐI: A Thời gian: 180 phút(không kể thời gian phát đề) ĐỀ SỐ 18 Câu I. (5,0 điểm) Cho hàm số y = x3 + 3x2 + mx + 1 (m là tham số) (1) 1. Tìm m để hàm số (1) đạt cực trị tại x1, x2 thỏa mãn x1 + 2x2 = 3. 2. Tìm m để đường thẳng y = 1 cắt đồ thị hàm số (1) tại ba điểm phân biệt A(0;1), B, C sao cho các tiếp tuyến của đồ thị hàm số (1) tại B và C vuông góc với nhau. Câu II. (4,0 điểm) x x 8 y x y y 1. Giải hệ phương trình: (x, y R) x y 5. sin 4 x cos 4 x 4 2 sin ( x ) 1 . 2. Giải phương trình: (x R) 4 Câu III.(2,0 điểm) Cho phương trình: log( x 2 10 x m) 2log(2 x 1) (với m là tham số) (2) Tìm m để phương trình (2) có hai nghiệm thực phân biệt. Câu IV. (2,0 điểm) 4 tan xdx Tính tích phân: . cos x 1 cos 2 x 0 Câu V. (4,0 điểm) 1. Trong hệ tọa độ Oxy, cho điểm A(3; 2), các đường thẳng 1: x + y – 3 = 0 và đường thẳng 2: x + y – 9 = 0. Tìm tọa độ điểm B thuộc 1 và điểm C thuộc 2 sao cho tam giác ABC vuông cân tại A. 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-3; 5; -5), B(5; -3; 7) và mặt phẳng (P): x + y + z - 6 = 0. Tìm tọa độ điểm M trên mặt phẳng (P) sao cho MA2 + MB2 đạt giá trị nhỏ nhất. Câu VI. (2,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy. Góc giữa mặt phẳng (SBC) và (SCD) bằng 600. Tính theo a thể tích khối chóp S.ABCD. Câu VII. (1,0 điểm) Cho ba số thực dương a, b, c thỏa mãn ab + bc + ca = 3. a3 b3 c3 3 2 2 . Chứng minh rằng: 2 b 3 c 3 a 3 4 (Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh:……………………………………….SBD:……………………
- HƯỚNG DẪN CHẤM BÀI THI Câu Phương pháp - Kết quả Điểm 2 1. Ta có y’ = 3x + 6x + m 0,5 Ycbt tương đương với phương trình 3x2 + 6x + m = 0 có hai nghiệm 0,5 phân biệt x1, x2 thỏa mãn x1 + 2x2 = 3. 9 - 3m 0 x x -2 I.1 1 2 (2điểm) 0,5 m x1.x2 3 x1 2 x2 3 Giải hệ trên ta được m = -105 0,5 2.+) Hoành độ điểm chung của (C) và d là nghiệm của phương trình 0,5 x3 + 3x2 + mx + 1 = 1 x(x2 + 3x + m) = 0 9 Từ đó tìm được m < và m 0 thì d cắt (C) tại ba điểm phân biệt 0,5 4 A(0; 1), B, C. +) B(x1; 1), C(x2; 1) với x1 ; x2 là nghiệm của phương trình x2 + 3x + m = 0 . 0,5 Hệ số góc của tiếp tuyến tại B là k1 = 3x12 + 6x1 + m I.2 và tại C là k2 = 3x22 + 6x2 + m (2điểm) Tiếp tuyến của (C) tại B và C vuông góc với nhau khi và chỉ khi 0,5 k1.k2 = -1 4m2 – 9m + 1 = 0 0,5 9 65 m ( t/m) 8 0,5 9 65 m ( t/m) 8 1. Điều kiện x, y ≥ 0 0,5 Xét y = 0, không thỏa mãn hpt +) y 0, đặt x t y , t ≥ 0. Hệ phương trình trở thành 5t 3 5 t 2 1 8 t t 2 1 (*) 3 t y 8 t y 2 y 5 y (t 1) 5 II.1 (t 2 1) 2 (2điểm) t 1 (*) 4t3 – 8t2 + t + 3 = 0 1 1 3 3 t = 1; t = - ; t = . Đối chiếu điều kiện ta được t = 2 2 2 Từ đó tìm được (x;y) = (9; 4). (HS có thể giải bài toán bằng phương pháp thế hoặc cách khác được 0,5 kết quả đúng vẫn được điểm tối đa) 2. PT 2sin 2x cos 2x + 2cos2 2x = 4(sin x + cos x) II.2 0,5 (2điểm) (cos x + sin x) (cos x – sin x) (sin 2x + cos 2x) = 2(sin x + cos x) s inx cos x 0 0,5 (cos x sinx)(sin 2 x cos2 x ) 2
- x 4 k 0,5 cos3 x sinx 2 Chứng minh được phương trình cos 3x – sin x = 2 vô nghiệm 0,5 k KL: x = 4 1 1 x x 2 2 3. PT 1 x 10 x m (2 x 1) m 3x 2 6 x 1(**) 2 2 1 III Ycbt (**) có hai nghiệm phân biệt thoả mãn x >- 2 (2điểm) 1 Lập bảng biến thiên của hàm số f(x) = 3x2 – 6x + 1 trong (- ;+∞ )ta 1 2 19 tìm đươc m (-2; ) 4 4 4 tan xdx tan xdx 0,5 = . cos x cos I= 1 cos 2 x 2 x 2 tan 2 x 0 0 tan xdx Đặt t = 2 tan 2 x t 2 2 tan 2 x tdt = 0,5 cos 2 x IV (2điểm) Đổi cận : x = 0 t = 2 0,5 x= t 3 4 3 3 tdt t dt 3 2 I= 0,5 2 2 1. B 1 B(a; 3 –a) . C 2 C(b; 9-b) AB. AC 0 0,5 ABC vuông cân tại A 2 2 AB AC 2ab - 10a - 4b + 16 = 0 (1) 2 V.1 0,5 2 2a - 8a = 2b 20b 48 (2) (2điểm) a = 2 không là nghiệm của hệ trên. 5a - 8 (1) b = . Thế vào (2) tìm được a = 0 hoặc a = 4 0,5 a-2 Với a = 0 suy ra b = 4. 0,5 Với a = 4 suy ra b = 6. 2.Gọi I là trung điểm của AB I ( 1; 1; 1) +) MA2 + MB2 = 2MI2 + IA2 + IB2 1 Do IA2 + IB2 không đổi nên MA2 + MB2 nhỏ nhất khi MI nhỏ nhất M là hình chiếu của I lên mặt phẳng (P) V.2 x-1 y-1 z-1 (2điểm) +) Phương trình đường thẳng MI : . = = 0,5 1 1 1 M là giao điểm của MI và mặt phẳng (P). 0,5 Từ đó tìm được M(2; 2; 2)
- 3. S M A B VI (2điểm) D C Gọi M là hình chiếu vuông góc của B lên SC. Chứng minh được góc DMB = 1200 và DMB cân tại M 0,5 2 Tính được: DM2 = a2 0,5 3 1 1 1 SCD vuông tại D và DM là đường cao nên = 2+ DM DS DC2 2 0,5 Suy ra DS = a 2 . Tam giác ASD vuông tại A suy ra SA = a. 1 Vậy thể tích S.ABCD bằng a3 0,5 3 a3 b3 c3 3 2 2 (***).Do ab + bc + ca = 3 nên b2 3 c 3 a 3 4 a3 b3 c3 2 2 VT (***) = b 2 ab bc ca c ab bc ca a ab bc ca a3 b3 c3 = (b c)(a b) (c a)(b c) (a b)(c a) a3 b c a b 3a Theo BĐT AM-GM ta có 0,5 (b c)(c a) 8 8 4 VII 3 5a 2b c a (1) (1điểm) (b c)(c a ) 8 Hoàn toàn tương tự ta chứng minh được: b3 c3 5b 2c a 5c 2a b (2), (3) (c a)(a b) (a b)(c a) 8 8 a bc Cộng vế với vế của (1), (2), (3) ta được VT (***) 4 Mặt khác ta dễ dàng chứng minh được : 0,5 a + b + c ≥ 3(ab bc ca ) = 3. Đẳng thức xảy ra khi a = b = c = 1 (Đpcm)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học năm 2013 môn Hóa khối A, B - Trường THPT Trần Nhân Tông (Mã đề 325)
6 p | 285 | 104
-
Đề thi thử Đại học năm 2013 môn Toán khối A - Trường THPT chuyên Quốc học
1 p | 201 | 47
-
Đáp án và đề thi thử Đại học năm 2013 khối C môn Lịch sử - Đề số 12
6 p | 186 | 19
-
Đề thi thử Đại học năm 2013 môn Địa lý (có đáp án)
7 p | 149 | 15
-
Đề thi thử Đại học năm 2013 môn tiếng Anh khối D - Mã đề 234
8 p | 154 | 11
-
Đề thi thử Đại học năm 2014 môn Toán - GV Nguyễn Ngọc Hân
2 p | 119 | 10
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 6) - Sở GD & ĐT TP Hồ Chí Minh
8 p | 123 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 143 | 9
-
Đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 134 | 9
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 8) - Sở GD & ĐT TP Hồ Chí Minh
9 p | 109 | 5
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 17
8 p | 101 | 4
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề thi 888) - Trường THPT chuyên Bắc Ninh
6 p | 98 | 4
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 26
8 p | 61 | 2
-
Đề thi thử Đại học năm 2014 lần 5 môn Vật lý (Mã đề thi 151) - Trường ĐHSP Hà Nội
7 p | 61 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 3
4 p | 53 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 4
6 p | 57 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 5
4 p | 52 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 6
6 p | 70 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn