Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Đồng Tháp (2012-2013)
lượt xem 6
download
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Đồng Tháp (2012-2013) nhằm giúp cho học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập và đặc biệt khi giải những bài tập cần phải tính toán một cách nhanh nhất, thuận lợi nhất đồng thời đáp ứng cho kỳ thi tuyển vào lớp 10.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Đồng Tháp (2012-2013)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN ĐỒNG THÁP NĂM HỌC 2012 – 2013 ĐỀ CHÍNH THỨC Đề thi môn: TOÁN Ngày thi: 27/6/2012 (Đề thi gồm có 01 trang) Thời gian làm bài: 150 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm) a. Tính giá trị của biểu thức A 6 2 5 6 2 5 b. Với giá trị nào của x thì biểu thức sau có nghĩa: B 2x 6 1 x c. Chứng minh bất đẳng thức sau: 1 1 1 1 (với n N* ) 2 1 1 2 3 2 2 3 (n 1) n n n 1 Câu 2: (2,0 điểm) ax y 2a Cho hệ phương trình: (I) x a 1 ay a. Giải hệ phương trình (I) khi a 3. b. Tìm a để hệ phương trình (I) có nghiệm duy nhất. c. Với giá trị nào của a thì hệ phương trình (I) có nghiệm nguyên. Tìm nghiệm nguyên đó. Câu 3: (1,5 điểm) Cho hai hàm số y m 1 x 4 m và y x 2 . a. Xác định m để đồ thị hai hàm số cắt nhau tại điểm có hoành độ bằng 3 . b. Vẽ đồ thị hai hàm số đã cho trên cùng một mặt phẳng tọa độ với giá trị m tìm được ở câu a. Câu 4: (1,5 điểm) Cho phương trình x 2 6x 1 0 (1). Gọi x1 , x 2 là hai nghiệm của phương trình (1), đặt Sn x1n x 2 n (với n N; n 1) . a. Tính S1; S2 ; S3 . b. Chứng minh rằng: Sn 2 6Sn 1 Sn . Câu 5: (3,0 điểm) a. Tìm độ dài hai cạnh góc vuông của tam giác ABC vuông tại A, biết đường cao 12 AH cm ; BC 5cm. 5 b. Cho đường tròn (O). Từ một điểm M nằm bên ngoài đường tròn vẽ tiếp tuyến MA (A là tiếp điểm). Tia MO cắt (O) tại B và C (B nằm giữa M và O); kẻ AH vuông góc BC (H BC) , tia AH cắt (O) tại D (D A). b1. Chứng tỏ AMDO là tứ giác nội tiếp. b2. Chứng minh BM.CH BH.CM. HẾT.
- S GIÁO D C VÀ ÀO T O KỲ THI TUY N SINH L P 10 THPT CHUYÊN NG THÁP NĂM H C 2012 - 2013 HƯ NG D N CH M THI THI CHÍNH TH C MÔN: TOÁN (Hư ng d n ch m g m có 03 trang) I. Hư ng d n ch m: 1. N u thí sinh làm bài theo cách khác so v i hư ng d n ch m nhưng l p lu n ch t ch , ưa n k t qu úng thì giám kh o ch m s i m t ng ph n như hư ng d n quy nh. 2. Vi c chi ti t hóa (n u có) thang i m trong hư ng d n ch m ph i m b o không làm sai l ch hư ng d n ch m và ph i ư c th ng nh t th c hi n trong toàn H i ng ch m thi. 3. i v i các câu hình h c: n u thí sinh không v hình ho c v hình không úng thì không ch m i m bài làm. II. áp án và thang i m: Câu 1: (2 i m) áp án i m a. A = 6 + 2 5 − 6 − 2 5 = 5 +1− ( 5 −1 = 2) 0,5 b. 2x + 6 ≥ 0 x ≥ −3 B có nghĩa khi ⇔ ⇔ −3 ≤ x ≤ 1 0,5 1− x ≥ 0 x ≤ 1 c. 1 1 1 Ta có: = − (k ∈ N* ) 0,25 ( k + 1) k + k k +1 k k +1 1 1 1 Khi ó: + + ⋅⋅⋅ + 2 1 +1 2 3 2 + 2 3 (n + 1) n + n n + 1 1 1 1 1 1 1 = 1− + − + − ⋅⋅⋅ + − 0,25 2 2 3 3 n n +1 1 1 = 1− < 1 do n ∈ N* nên > 0 0,5 n +1 n +1 Câu 2: (2 i m) ax + y = 2a ax + y = 2a ⇔ (I) x − a = 1 − ay x + ay = 1 + a a. 3x + y = 6 Thay a = 3 vào h (I), ta có: 0,25 x + 3y = 4 7 x = 4 7 3 ⇔ V y h có nghi m ; 0,25 y = 3 4 4 4 b. a 1 H phương trình (I) có nghi m duy nh t khi: ≠ ⇒ a ≠ ±1 0,5 1 a 1/3
- c. 1 x = 2 − a + 1 Gi i h (I) theo a ta ư c 0,25 y = 1 − 1 a +1 1 x, y nguyên khi = k v i k ∈» 0,25 a +1 1− k ⇔a= v i k ∈ » và k ≠ 0 0,25 k 1 x = 2 − a + 1 1− k H có nghi m nguyên v i a= , k ∈ » và k ≠ 0 0,25 y = 1 − 1 k a +1 Câu 3: (1,5 i m) a. Phương trình hoành giao i m: 0,5 x = (m + 1)x + 4 − m ⇔ x 2 − (m + 1)x − 4 + m = 0 (*) 2 Thay x = −3 vào phương trình (*) ta có: 0,5 9 − (m + 1)(−3) − 4 + m = 0 ⇔ 4m = −8 ⇔ m = −2 b. V i m = −2 ta có hai hàm s là y = − x + 6 và y = x 2 . 10 8 6 4 0,5 2 5 5 2 (H c sinh v úng th c a m i hàm s ư c 0,25 ) Câu 4: (1,5 i m) a. Pt: x 2 − 6x + 1 = 0 S1 = x1 + x 2 = 6 S2 = x12 + x 2 2 = 34 0,75 3 3 S3 = x + x 2 = 198 1 b. Sn + 2 = x1n + 2 + x 2 n + 2 = x1n + 2 + x 2 n + 2 + x1n +1x 2 + x1x 2 n +1 − x1n +1x 2 − x1x 2 n +1 0,25 = x1n +1 ( x1 + x 2 ) + x 2 n +1 ( x1 + x 2 ) − x1x 2 ( x1n + x 2 n ) 0,25 = 6Sn +1 − Sn 0,25 2/3
- Câu 5: (3 i m) a. t AB = x ; AC = y ( 0 < x, y < 5 ) A Theo h th c lư ng và nh lí Py-ta-go ta có h : 12 x.y = 12 0,5 2 5 2 B C x + y = 25 H 5cm x = 3 x = 4 Gi i h ta ư c: hay y = 4 y = 3 0,5 V y hai c nh góc vuông có dài là 4cm và 3cm. b. b1. Ch ng minh ư c MAO = MDO = 90o 0,5 Xét t giác AMDO có: MAO + MDO = 180o 0,25 nên AMDO là t giác n i ti p b2. Ch ng minh ư c AB là ư ng phân giác trong 0,25 c a ∆MAH A AM BM ⇒ = (1) (tính ch t ư ng phân giác) 0,25 AH BH B H O M C Ch ng minh ư c AC là ư ng phân giác ngoài 0,25 c a ∆MAH AM CM D ⇒ = (2) (tính ch t ư ng phân giác) 0,25 AH CH T (1) và (2) suy ra: BM CM = hay BM.CH = BH.CM 0,25 BH CH (H c sinh gi i mà không ghi y căn c t 50% s i m) -----------H T---------- 3/3
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Đà Nẵng (2011-2012)
3 p | 776 | 43
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Đắk Lắk (2011-2012)
3 p | 494 | 33
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Hà Nội (2011-2012)
3 p | 481 | 20
-
Đề thi tuyển sinh 10 Toán - Tr. chuyên Lê Qúy Đôn Bình Định (2012-2013)
5 p | 90 | 15
-
Đề thi tuyển sinh 10 Toán chuyên tin học - Sở GD&ĐT Thái Nguyên (2012-2013)
3 p | 87 | 14
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Tp.HCM (2011-2012)
4 p | 104 | 13
-
Đề thi tuyển sinh 10 Toán- Sở GD&ĐT Cần Thơ (2009-2010)
3 p | 274 | 12
-
Đề thi tuyến sinh 10 Toán chuyên - Trường THPT chuyên Bến Tre (2010-2011)
2 p | 104 | 11
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Bình Dương (2013-2014)
5 p | 112 | 10
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Hải Dương (2013-2014)
9 p | 113 | 7
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Hải Phòng (2013-2014)
8 p | 83 | 7
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Nam Định (2013-2014)
3 p | 87 | 7
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Nghệ An (2013-2104)
3 p | 88 | 6
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Thái Nguyên (2012-2013)
4 p | 84 | 6
-
Đề thi tuyển sinh 10 Toán chuyên - Sở GD&ĐT Thái Nguyên (2012-2013)
3 p | 72 | 6
-
Đề thi tuyển sinh 10 Toán vòng 1 - Tr.ĐH Khoa học tự nhiên năm 2011
8 p | 88 | 5
-
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Bắc Ninh (2012-2013)
8 p | 69 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn