intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hình thành lý thuyết trường và phương thức sử dụng toán tử hamilton p8

Chia sẻ: Fewte Dsafw | Ngày: | Loại File: PDF | Số trang:5

77
lượt xem
11
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Định lý Cho f ∈ C(H, 3)∩ B(D, 3), g ∈ C(D, 3)∩ B(D, 3), h ∈ C(3+, 3)∩ B(3+, 3) thoả m n f(0, t) = 0 v g(0) = 0 B i toán SP1 có nghiệm duy nhất v ổn định xác định theo công thức (8.3.3)Nhận xét Ph−ơng pháp trên có thể sử dụng để giải các b i toán giả Cauchy khác.

Chủ đề:
Lưu

Nội dung Text: Giáo trình hình thành lý thuyết trường và phương thức sử dụng toán tử hamilton p8

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt .d o .d o c u -tr a c k c u -tr a c k  + ∞ g( ξ )  − ( ξ − x ) 2  2 ( ξ + x )2 x dξ + x h(t − τ) e 4a 2 τ dτ t − 1 −   e 4a 2 t − e 4a 2 t ∫ ∫ τ3 / 2 u(x, t) = 2a π  0 t      0  f (ξ, t − τ)  − 4a 2 τ 2 2 (ξ −x ) (ξ+ x) +∞ t −  dξ  e + ∫ dτ ∫ − e 4a τ 2 (8.3.3)  τ   0 0 §Þnh lý Cho f ∈ C(H, 3)∩ B(D, 3), g ∈ C(D, 3)∩ B(D, 3), h ∈ C(3+, 3)∩ B(3+, 3) tho¶ m n f(0, t) = 0 v g(0) = 0 B i to¸n SP1 cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc (8.3.3) NhËn xÐt Ph−¬ng ph¸p trªn cã thÓ sö dông ®Ó gi¶i c¸c b i to¸n gi¶ Cauchy kh¸c. §4. B i to¸n hçn hîp thuÇn nhÊt B i to¸n HP1a Cho c¸c miÒn D = [0, l], H = D × [0, T] v h m g ∈ C(D, 3) T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn nhiÖt ∂2u ∂u = a2 2 víi (x, t) ∈ H0 (8.4.1) ∂t ∂x ®iÒu kiªn ban ®Çu u(x, 0) = g(x) (8.4.2) v ®iÒu kiÖn biªn u(0, t) = 0, u(l, t) = 0 (8.4.3) • T×m nghiÖm cña b i to¸n HP1a d¹ng t¸ch biÕn u(x, t) = X(x)T(t) ThÕ v o ph−¬ng tr×nh (8.4.1) v ®iÒu kiÖn biªn (8.4.3) ®−a vÒ hÖ ph−¬ng tr×nh vi ph©n X”(x) + λX(x) = 0 (8.4.4) T’(t) + λa T(t) = 0 2 (8.4.5) X(0) = X(l) = 0 víi λ ∈ 3 (8.4.6) LËp luËn t−¬ng tù nh− b i to¸n HH1a, t×m nghiÖm riªng kh«ng tÇm th−êng cña hÖ ph−¬ng tr×nh (8.4.4) v (8.4.6), nhËn ®−îc hä nghiÖm riªng trùc giao trªn ®o¹n [0, l] 2 kπ  kπ  x víi Ak ∈ 3 v λk =   , k ∈ ∠* Xk(x) = Aksin l l Thay v o ph−¬ng tr×nh (8.4.5) t×m ®−îc hä nghiÖm riªng ®éc lËp Trang 140 Gi¸o Tr×nh To¸n Chuyªn §Ò
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt .d o .d o c u -tr a c k c u -tr a c k 2  kπa  − t víi Bk ∈ 3, k ∈ ∠* l Tk(t) = Bk e Suy ra hä nghiÖm riªng ®éc lËp cña b i to¸n HP1 2  kπa  kπ − t x víi ak = AkBk , k ∈ ∠* l uk(x, t) = Xk(x)Tk(t) = ak e sin l • T×m nghiÖm tæng qu¸t cña b i to¸n HP1 d¹ng chuçi h m 2  kπa  kπ +∞ +∞ − t ∑u ∑a l u(x, t) = (x, t ) = e sin x (8.4.7) k k l k =1 k =1 Thay v o ®iÒu kiÖn ban ®Çu (8.4.2) kπ +∞ u(x, 0) = ∑ a k sin x = g(x) l k =1 NÕu h m g cã thÓ khai triÓn th nh chuçi Fourier th× kπ l 2 ak = ∫ g(x ) sin xdx (8.4.8) l0 l §Þnh lý Cho h m g ∈ C1(D, 3) tho¶ m n g(0) = g(l) = 0. Chuçi h m (8.4.7) víi c¸c hÖ sè ak tÝnh theo c«ng thøc (8.4.8) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n HP1a. Chøng minh • H m g theo gi¶ thiÕt tho¶ m n ®iÒu kiÖn Diriclet v do ®ã khai triÓn ®−îc th nh chuçi Fourier héi tô ®Òu trªn ®o¹n [0, l]. Do ®ã chuçi h m (8.4.7) víi c¸c hÖ sè ak tÝnh theo c«ng thøc (8.4.8) l héi tô ®Òu v cã thÓ ®¹o h m tõng tõ theo x hai lÇn, theo t mét lÇn trªn miÒn H. KiÓm tra trùc tiÕp thÊy r»ng chuçi h m (8.4.7) v c¸c chuçi ®¹o h m riªng cña nã tho¶ m n ph−¬ng tr×nh (8.4.1) v c¸c ®iÒu kiÖn (8.4.2), (8.4.3) • LËp luËn t−¬ng tù nh− b i to¸n CP1 suy ra tÝnh æn ®Þnh v duy nhÊt nghiÖm. ∂2u ∂u víi (x, t) ∈ [0, 1] × [0, T] VÝ dô Gi¶i b i to¸n = ∂t ∂x 2 u(x, 0) = x(1 - x) v u(0, t) = u(1, t) = 0 Theo c«ng thøc (8.4.8) ta cã k = 2n 0 1 − (-1) k l  8 ak = 2 ∫ x(1 − x) sin kπxdx = 4 = k = 2n + 1 kπ33  (2n + 1) 3 π 3  0 ThÕ v o c«ng thøc (8.4.7) suy ra nghiÖm cña b i to¸n 8 +∞ 1 u(x, t) = 3 ∑ 22 e −( 2 n +1) π t sin(2n + 1)πx π n =0 (2n + 1) 3 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 141
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt .d o .d o c u -tr a c k c u -tr a c k §5. B i to¸n hçn hîp kh«ng thuÇn nhÊt B i to¸n HP1b Cho c¸c miÒn D = [0, l], H = D × [0, T], c¸c h m f ∈ C(H, 3) v g ∈ C(D, 3) T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn nhiÖt 2∂ u ∂u 2 + f(x, t) víi (x, t) ∈ H0 =a ∂t ∂x 2 ®iÒu kiÖn ban ®Çu u(x, 0) = 0 v c¸c ®iÒu kiÖn biªn u(0, t) = 0, u(l, t) = 0 • T×m nghiÖm b i to¸n HP1b d¹ng chuçi h m kπ +∞ ∑ T (t ) sin u(x, t) = (8.5.1) x k l k =1 Khai triÓn Fourier h m f(x, t) ®o¹n [0, l], thÕ v o b i to¸n HP1b   2  Tk (t ) +  kπa  Tk (t )  sin kπ x = kπ +∞ +∞ ∑ ′  l  ∑f (t ) sin x  k l l   k =1   k =1 kπx kπ l +∞ 2 ∑T víi fk(t) = ∫ f (x, t ) sin dx v x =0 (0) sin k l0 l l k =1 §−a vÒ hä ph−¬ng tr×nh vi ph©n hÖ sè h»ng 2  kπa  ′ Tk (t) +   Tk(t) = fk(t), Tk(0) = 0 (8.5.2) l Gi¶i hä ph−¬ng tr×nh vi ph©n tuyÕn tÝnh hÖ sè h»ng (8.5.2) t×m c¸c h m Tk(t) thÕ v o c«ng thøc (8.5.1) suy ra nghiÖm cña b i to¸n. §Þnh lý Cho h m f ∈ C(H, 3) ∩ C1(D, 3). Chuçi h m (8.5.1) víi c¸c h m Tk(t) x¸c ®Þnh bëi hÖ ph−¬ng tr×nh (8.5.2) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n HP1b. B i to¸n HP1 Cho c¸c miÒn D = [0, l], H = D × [0, T], c¸c h m f ∈ C(H, 3), g ∈ C(D, 3) v c¸c h m p, q ∈ C([0, T], 3). T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn nhiÖt ∂u ∂ 2u = a2 2 + f(x, t) víi (x, t) ∈ H0 ∂t ∂x ®iÒu kiÖn ban ®Çu u(x, 0) = g(x) v c¸c ®iÒu kiÖn biªn u(0, t) = p(t), u(l, t) = q(t) Trang 142 Gi¸o Tr×nh To¸n Chuyªn §Ò
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt .d o .d o c u -tr a c k c u -tr a c k • T×m nghiÖm b i to¸n HP1 d−íi d¹ng x u(x, t) = v(x, t) + w(x, t) + p(t) + (q(t) - p(t)) (8.5.3) l Trong ®ã h m v(x, t) l nghiÖm cña b i to¸n HP1a ∂2v ∂v = a2 2 ∂t ∂x x v(x, 0) = g(x) - p(0) - (q(0) - p(0)) = g1(x) l v(0, t) = v(l, t) = 0 (8.5.4) víi ®iÒu kiÖn biªn g1(0) = g1(l) = 0 ⇔ g(0) = p(0), g(l) = q(0) H m w(x, t) l nghiÖm cña b i to¸n HP1b ∂2w ∂2w ∂w x = a2 2 + f(x, t) - p’(t) - (q’(t) - p’(t)) = a2 2 + f1(x, t) ∂t ∂x ∂x l w(x, 0) = 0 w(0, t) = w(l, t) = 0 (8.5.5) • Gi¶i c¸c b i to¸n (8.5.4) v (8.5.5) t×m h m v(x, t) v h m w(x, t) thÕ v o c«ng thøc (8.5.3) suy ra nghiÖm cña b i to¸n. §Þnh lý Cho c¸c h m f ∈ C(H, 3) ∩ C1(D, 3), g ∈ C2(D, 3) v p, q ∈ C1([0, T], 3) tho¶ mn g(0) = p(0), g(l) = q(0) H m u(x, t) x¸c ®Þnh theo c«ng thøc (8.5.3) víi h m v(x, t) v h m w(x, t) l nghiÖm cña c¸c b i to¸n (8.5.4) v (8.5.5) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n HP1. ∂2u ∂u = 4 2 víi (x, t) ∈ [0, 1] × [0, T] VÝ dô Gi¶i b i to¸n ∂t ∂x u(x, 0) = x v u(0, t) = 0, u(1, t) = e-t • T×m nghiÖm cña b i to¸n d−íi d¹ng u(x, t) = v(x, t) + w(x, t) + xe-t víi h m v(x, t) l nghiÖm cña b i to¸n HP1a víi g1(x) = 0 cßn h m w(x, t) l nghiÖm cña b i to¸n HP1b víi f1(x, t) = xe-t. B i to¸n HP1a cã nghiÖm v(x, t) = 0 Gi¶i b i to¸n HP1b 2(-1) k +1 − t 1 fk(t) = 2 e − t ∫ x sin kπxdx = e víi k ∈ ∠* kπ 0 Gi¶i hä ph−¬ng tr×nh vi ph©n hÖ sè h»ng 2(-1) k +1 − t ′ Tk (t) + (2kπ)2Tk(t) = e , Tk(0) = 0 kπ Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 143
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt .d o .d o c u -tr a c k c u -tr a c k T×m ®−îc c¸c h m ( ) víi k ∈ ∠ 2(-1) k 2 e − ( 2 kπ ) t − e − t * Tk(t) = kπ(4 k π − 1) 22 Suy ra nghiÖm cña b i to¸n ( ) +∞ 2(-1) k ∑ 2 e −( 2 kπ) t − e − t sin kπx u(x, t) = xe-t + kπ(4 k 2 π 2 − 1) k =1 NhËn xÐt B»ng c¸ch kÐo d i liªn tôc, c¸c c«ng thøc trªn vÉn sö dông ®−îc trong tr−êng hîp c¸c h m f v g cã ®¹o h m liªn tôc tõng khóc. §6. B i to¸n Dirichlet trong h×nh trßn • XÐt to¸n tö vi ph©n Laplace trong mÆt ph¼ng ∂ 2u ∂ 2 u ∆u(x, y) = + ∂x2 ∂y2 §æi biÕn to¹ ®é cùc x = rcosϕ, y = rsinϕ Theo c«ng thøc ®¹o h m h m hîp ∂u ∂r ∂u ∂ϕ ∂u 1 ∂u ∂u = cos ϕ − sin ϕ + = ∂x ∂r ∂x ∂ϕ ∂x ∂r r ∂ϕ ∂u ∂r ∂u ∂ϕ ∂u 1 ∂u ∂u + = sin ϕ + cos ϕ = ∂y ∂r ∂y ∂ϕ ∂y ∂r r ∂ϕ ∂2u 2 ∂2u 2 ∂2u ∂u 1 ∂u 1 ∂ 2u = cos2ϕ 2 − cosϕsinϕ + 2 cosϕsinϕ + sin2ϕ + 2 sin2ϕ 2 ∂x2 ∂r∂ϕ r ∂ϕ r ∂r r ∂r ∂ϕ r ∂2u ∂2u 2 ∂2u 2 ∂u 1 ∂u 1 ∂2u = sin 2 ϕ 2 + cosϕsinϕ − 2 cosϕsinϕ + cos 2 ϕ + 2 cos 2 ϕ 2 ∂y2 ∂r∂ϕ r ∂ϕ r ∂r r ∂r ∂ϕ r Suy ra biÓu thøc to¹ ®é cùc cña to¸n tö Laplace ∂ 2 u 1 ∂u 1 ∂ 2 u 1 ∂  ∂u  1 ∂ 2 u + +2 ∆u(r, ϕ) = r  + = ∂r 2 r ∂r r ∂ϕ2 r ∂r  ∂r  r 2 ∂ϕ2 B i to¸n DE1a Cho miÒn D = [0, R] × [0, 2π] v h m g ∈ C([0, 2π], 3). T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u(r, ϕ) = 0 víi (r, ϕ) ∈ D0 (8.6.1) v ®iÒu kiÖn biªn u(R, θ) = g(θ) (8.6.2) Trang 144 Gi¸o Tr×nh To¸n Chuyªn §Ò
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2