Khóa luận tốt nghiệp: Nghiên cứu sự phụ thuộc của hệ số trùng phùng vào bề dày và mật độ mẫu phân tích
lượt xem 10
download
Nội dung chính của khóa luận nghiên cứu sự phụ thuộc của hệ số trùng phùng vào bề dày và mật độ mẫu phân tích bằng cách sử dụng mẫu chuẩn RGU do IAEA cung cấp và đo bằng hệ phổ kế gamma sử dụng đầu dò HPGe. Mời các bạn tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Khóa luận tốt nghiệp: Nghiên cứu sự phụ thuộc của hệ số trùng phùng vào bề dày và mật độ mẫu phân tích
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH KHOA VẬT LÝ HÀ THỊ KIM NGÂN KHÓA LUẬN TỐT NGHIỆP NGHIÊN CỨU SỰ PHỤ THUỘC CỦA HỆ SỐ TRÙNG PHÙNG VÀO BỀ DÀY VÀ MẬT ĐỘ MẪU PHÂN TÍCH Chuyên ngành: Sư phạm Vật lý Thành phố Hồ Chí Minh, Năm 2020
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH KHOA VẬT LÝ NGHIÊN CỨU SỰ PHỤ THUỘC CỦA HỆ SỐ TRÙNG PHÙNG VÀO BỀ DÀY VÀ MẬT ĐỘ MẪU PHÂN TÍCH Người thực hiện: HÀ THỊ KỊM NGÂN Người hướng dẫn khoa học: ThS. LÊ QUANG VƯƠNG Thành phố Hồ Chí Minh, Năm 2020
- i LỜI CẢM ƠN Trong suốt quá trình thực hiện khoá luận, tôi đã nhận được nhiều sự giúp đỡ to lớn từ quý Thầy/Cô, bạn bè và gia đình. Tôi xin được gửi lời cảm ơn chân thành và sâu sắc đến: • ThS. Lê Quang Vương – người hướng dẫn khoa học, đã tận tình chỉ bảo, giúp đỡ, động viên, truyền đạt vốn kiến thức quý báu và tạo mọi điều kiện thuận lợi để tôi có thể hoàn thành khoá luận. • Quý Thầy/Cô trong Bộ môn Vật lý Hạt nhân, Khoa Vật lý, Trường Đại học Sư Phạm TP.HCM đã truyền đạt những kiến thức quý báu qua từng bài giảng, từng môn học trong suốt quá trình học tập. Những kiến thức mà Thầy/Cô truyền đạt là nền tảng để tôi có thể tiếp thu và giải quyết các vấn đề trong khoá luận và là hành trang cho tôi đi tiếp trong công việc sau này. • Quý Thầy/Cô trong Hội đồng bảo vệ khoá luận đã dành thời gian xem xét và đóng góp các ý kiến để khoá luận được hoàn thiện hơn. • Phòng thí nghiệm Vật lý hạt nhân, Trường Đại học Sư phạm TP.HCM đã đáp ứng các điều kiện cơ sở vật chất, trang thiết bị cần thiết để tôi thực hiện khoá luận này. • Viện Y tế Công cộng Thành phố Hồ Chí Minh đã hỗ trợ các đo đạc mẫu phân tích trên hệ phổ kế gamma. • Các thành viên trong gia đình đã luôn ở bên động viên, nhắc nhở và tạo mọi điều kiện để con có thể học tập và thực hiện khoá luận. • Tất cả các bạn bè đã và đang động viên, giúp đỡ tôi trong quá trình học tập và hoàn thành khoá luận. TP. Hồ Chí Minh, tháng 07 năm 2020 Sinh viên Hà Thị Kim Ngân
- ii DANH MỤC CÁC CHỮ VIẾT TẮT Chữ viết tắt Tiếng Anh Tiếng Việt HPGE High Purity Germanium Đầu dò bán dẫn Germanium siêu tinh khiết IAEA International Atomic Enery Agency Cơ quan năng lượng nguyên tử quốc tế NIST National Institute of Standards and Viện Tiêu chuẩn và Công Technology nghệ MCNP Monte Carlo N Particles Chương trình mô phỏng Monte Carlo ETNA Efficiency Transfer for Nuclide Chương trình chuyển đổi hiệu suất
- iii DANH MỤC CÁC BẢNG BIỂU Bảng 2.1. Thông tin về bề dày, khối lượng, mật độ khối của các mẫu RGU ...........12 Bảng 2.2. Thành phần nguyên tố có trong mẫu RGU [9] .........................................13 Bảng 2.3. Cấu trúc thẻ mô tả nguồn (Source card) trong tệp đầu vào......................14 Bảng 3.1. Xác suất phát gamma của các đồng vị trong mẫu RGU [16] ...................16 Bảng 3.2. Hiệu suất đỉnh thực nghiệm của mẫu RGU .............................................17 Bảng 3.3. Hệ số trùng phùng theo bề dày của mẫu RGU .........................................19 Bảng 3.4. Hiệu suất thực nghiệm đã hiệu chỉnh trùng phùng của mẫu RGU ..........20 Bảng 3.5. Hiệu suất trước và sau khi hiệu chỉnh trùng phùng của các đồng vị trong mẫu tại bề dày 1cm ...................................................................................................22 Bảng 3.6. Hiệu suất trước và sau khi hiệu chỉnh trùng phùng của các đồng vị trong mẫu tại bề dày 3,7 cm ...............................................................................................23 Bảng 3.7. Hệ số trùng phùng theo mật độ tại đỉnh năng lượng 609,3 keV của 214 Bi ...................................................................................................................................25 Bảng 3.8. Hệ số trùng phùng theo mật độ tại đỉnh năng lượng 768,4 keV của 214 Bi ...................................................................................................................................26
- iv DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 2.1. Hệ phổ kế gamma tại Viện Y tế Công cộng TP.HCM .............................10 Hình 2.2. Mô hình đầu dò GEM50P4-83 .................................................................11 Hình 2.3. Mô phỏng hệ phổ kế gamma HPGe bằng chương trình MCNP - CP ......13 Hình 3.1. Hiệu suất trước và sau khi hiệu chỉnh trùng phùng của đồng vị 214Bi tại bề dày 1cm .....................................................................................................................24 Hình 3.2. Hiệu suất trước và sau khi hiệu chỉnh trùng phùng của đồng vị 214Bi tại bề dày 3,7cm ..................................................................................................................24
- v MỤC LỤC LỜI CẢM ƠN ............................................................................................................ i DANH MỤC CÁC CHỮ VIẾT TẮT...................................................................... ii DANH MỤC CÁC BẢNG BIỂU ........................................................................... iii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ .......................................................... iv MỤC LỤC ..................................................................................................................v MỞ ĐẦU ....................................................................................................................1 CHƯƠNG 1. TỔNG QUAN .....................................................................................3 1.1. Tình hình nghiên cứu .....................................................................................3 Tình hình nghiên cứu trên thế giới .............................................................3 Tình hình nghiên cứu tại Việt Nam ............................................................4 Mục tiêu và nội dung nghiên cứu ...............................................................5 1.2. Cơ sở lí thuyết .................................................................................................6 Hiệu suất đỉnh năng lượng toàn phần .........................................................6 Hiệu chỉnh trùng phùng bằng chương trình MCNP-CP .............................7 1.3. Nhận xét chương 1 ..........................................................................................9 CHƯƠNG 2. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU ...................10 2.1. Hệ phổ kế gamma sử dụng đầu dò HPGe...................................................10 Đầu dò Germanium siêu tinh khiết ..........................................................10 Buồng chì .................................................................................................11 Mẫu chuẩn ................................................................................................11 2.1.4. Hệ phổ kế gamma sử dụng đầu dò HPGe trong mô phỏng ......................12 2.2. Đánh giá hệ số trùng phùng .........................................................................14 2.3. Kết luận chương 2 .........................................................................................15 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN .........................................................16 3.1. Hiệu suất đỉnh thực nghiệm .........................................................................16
- vi 3.2. Hệ số trùng phùng theo bề dày mẫu ...........................................................19 3.3. Hệ số trùng phùng theo mật độ mẫu...........................................................25 3.4. Nhận xét chương 3 ........................................................................................28 KẾT LUẬN ..............................................................................................................29 KIẾN NGHỊ .............................................................................................................30 TÀI LIỆU THAM KHẢO ......................................................................................31 PHỤ LỤC .................................................................................................................33
- 1 MỞ ĐẦU Hệ phổ kế gamma dùng đầu dò bán dẫn siêu tinh khiết (HPGe) được các nhà nghiên cứu sử dụng rộng rãi để xác định hoạt độ của đồng vị phóng xạ. Với các ưu điểm nổi trội như khả năng phân tích đa nguyên tố, xử lí mẫu không quá phức tạp, năng suất phân giải cao nên nhiều cơ sở ở Việt Nam đã trang bị hệ phổ kế này trong nghiên cứu và phân tích mẫu môi trường. Để xác định hoạt độ phóng xạ trong mẫu môi trường, cần phải tính chính xác hiệu suất đỉnh năng lượng toàn phần bằng phương pháp xây dựng đường cong hiệu suất theo năng lượng. Tuy nhiên, khi tiến hành đo đạc thì giá trị hiệu suất luôn nhỏ hơn giá trị thật của nó mà ba nguyên nhân gây ảnh hưởng lớn nhất là phông (ảnh hưởng từ 0 đến 100%), hiệu ứng tự hấp thụ trong mẫu (0-50%) và hiệu ứng trùng phùng tổng (0-100%) – đây là hiệu ứng được nhắc đến chủ yếu trong khóa luận này [5]. Hiệu ứng trùng phùng là hiệu ứng xảy ra khi hai hoặc nhiều tia gamma được phát ra từ sự phân rã của một hạt nhân và được ghi nhận dưới một xung duy nhất trong thời gian phân giải của đầu dò. Nhiều công trình tập trung giải quyết vấn đề về hiệu suất đỉnh năng lượng toàn phần, các yếu tố ảnh hưởng đến hiệu suất bằng nhiều phương pháp khác nhau như sử dụng thuật toán, phương pháp thực nghiệm và bán thực nghiệm,… Ngày nay, thế giới khoa học công nghệ phát triển nhanh chóng đặc biệt là công nghệ thông tin, những phương pháp mô phỏng đem lại nhiều lợi ích giúp con người giải quyết công việc nhanh hơn với độ chính xác cao. Vì vậy, trong khóa luận này, tôi sẽ sử dụng chương trình MCNP-CP để nghiên cứu sự phụ thuộc của hệ số trùng phùng vào bề dày và mật độ mẫu phân tích bằng cách sử dụng mẫu chuẩn RGU do IAEA cung cấp và đo bằng hệ phổ kế gamma sử dụng đầu dò HPGe. Nội dung khoá luận bao gồm: Chương 1: Tổng quan. Chương này trình bày tình hình nghiên cứu trong và ngoài nước về các vấn đề liên quan đến khoá luận, mục tiêu và nội dung nghiên cứu, cơ sở lý thuyết được sử dụng trong khoá luận. Chương 2: Đối tượng và phương pháp nghiên cứu. Chương này giới thiệu về hệ phổ kế gamma HPGe, mô phỏng hệ phổ kế gamma và hướng dẫn xác định hệ số trùng phùng bằng chương trình MCNP – CP.
- 2 Chương 3: Kết quả và thảo luận. Chương này sẽ đưa ra các kết quả về việc tính toán và đánh giá hệ số trùng phùng khi bề dày thay đổi từ 1,0 cm đến 3,7 cm và khi mật độ mẫu thay đổi từ 1,0 g/cm3 đến 2,2 g/cm3, hiệu suất đỉnh năng lượng toàn phần thực nghiệm và sau khi hiệu chuẩn trùng phùng, từ đó rút ra sự phụ thuộc của hiệu ứng trùng phùng vào bề dày và mật độ mẫu phân tích.
- 3 CHƯƠNG 1. TỔNG QUAN 1.1. Tình hình nghiên cứu Tình hình nghiên cứu trên thế giới Các nhà nghiên cứu sử dụng hệ phổ kế gamma với đầu dò HPGe để đo đạc và phân tích mẫu môi trường. Để xác định được hoạt độ của các đồng vị có trong mẫu cần phải hiệu chuẩn hệ phổ kế gamma bằng cách tính chính xác hiệu suất đỉnh năng lượng toàn phần. Tuy nhiên khi tiến hành đo đạc thì giá trị hiệu suất đỉnh luôn sai lệch so với giá trị thật của nó, do đó cần phải thực hiện một số hiệu chỉnh. Đầu tiên hiệu chỉnh phông môi trường bằng cách trừ đi phổ phông môi trường trước khi xác định số đếm để loại bỏ các yếu tố gây nhiễu đến phổ như các hạt vũ trụ, khí radon tích tụ trong buồng chì. Tiếp theo cần xác định hệ số trùng phùng để hiệu chỉnh lại hiệu suất đỉnh năng lượng toàn phần. Hiệu ứng trùng phùng phụ thuộc vào từng loại mẫu và đầu dò, khoảng cách giữa nguồn và đầu dò, độ phức tạp của sơ đồ phân rã, yếu tố hình học, bề dày và mật độ mẫu phân tích. Do đó, nhiều nghiên cứu về việc hiệu chỉnh hiệu ứng trùng phùng ra đời bằng cách áp dụng các phương pháp giải tích, thực nghiệm, bán thực nghiệm và mô phỏng. Năm 1990, Semkov và cộng sự [13] đã xây dựng các thuật toán ma trận để hiệu chỉnh hiệu ứng trùng phùng tổng trong máy quang phổ gamma cho các phân rã có độ phức tạp bất kỳ. Họ đã thử nghiệm tính hợp lí của phương pháp bằng cách áp dụng nó để xác định hiệu suất đỉnh của đầu dò Ge sử dụng hai nguồn thương mại, tiêu chuẩn hóa, được thực hiện bởi Amersham và NIST. Áp dụng hiệu ứng trùng phùng mang lại hiệu suất đỉnh với độ sai lệch trung bình giữa hai nguồn là 2,2%, so với độ lệch dự kiến là 2,6%, từ đó cho thấy tính hợp lệ của phương pháp. Tuy nhiên việc áp dụng hiệu chỉnh bậc một - trùng phùng do hai tia gamma đóng góp mang lại độ lệch trung bình là 3,9%, cho thấy thuật ngữ bậc cao hơn trong trùng phùng tổng là cần thiết cho các sơ đồ phân rã phức tạp. Phương pháp giải tích chỉ có thể giải quyết cho trường hợp sơ đồ phân rã hạt nhân đơn giản, phương pháp thực nghiệm yêu cầu cấu hình nguồn tương tự cấu hình đo nên khá khó khăn trong phòng thí nghiệm. Vì thế, các nhà nghiên cứu có thể áp dụng các phương pháp mô phỏng để giải quyết vấn đề trùng phùng vì các chương trình máy tính đơn giản, dễ sử dụng.
- 4 Năm 2001, García-Talavera và các cộng sự [7] đã áp dụng phương pháp Monte Carlo sử dụng chương trình Geant3 kết hợp Sch2for để tính toán hiệu chỉnh trùng phùng trong phép đo phổ gamma. Kết quả của phương pháp được chứng minh là phù hợp trong phạm vi sai số thống kê so với kết quả tính toán theo thực nghiệm của 152 Eu. Phương pháp mô phỏng sau đó được áp dụng để đánh giá sự cần thiết của việc điều chỉnh trùng phùng cho các hạt nhân phóng xạ từ chuỗi Urani, Thorium, Actinium có lượng phát thải gamma có thể đo được trong phổ. Kết quả, đối với phân rã Uranium, ngoại trừ 214 Bi, không cần đưa ra các yếu tố hiệu chỉnh trùng phùng, đối với phân rã Thorium việc đưa ra hiệu chỉnh cho 228Ac và 208Tl là rất cần thiết nếu cần có kết quả chính xác, đối với 235U và 227Th, giá trị của các hiệu chỉnh rất nhạy cảm với hình học đo, đặc biệt cần chú ý đến đỉnh 205,3 keV của đồng vị 235U vì đỉnh bị ảnh hưởng nhiều nhất bởi hiệu ứng trùng phùng. Năm 2006, Lépy và các cộng sự [10] đã xác định hệ số hiệu chỉnh trùng phùng cho các nguồn điểm được tính toán bởi chương trình ETNA. Với khoảng cách giữa nguồn điểm với đầu dò từ 1 cm đến 10 cm và phạm vi các hạt nhân được nghiên cứu gồm 60 Co, 124 Sb, 134 Cs, 152 Eu và 133 Ba, có sự phù hợp tốt giữa phương pháp thực nghiệm và tính toán bằng ETNA với sai số tương đối là 2% tại 15, 10 và 8 cm, 5% ở 5 cm và lên đến 10% ở 1 cm. Do đó, kết quả ETNA là đáng tin cậy và việc sử dụng phần mềm giúp tăng đáng kể độ chính xác của kết quả phân tích định lượng bằng phép đo phổ gamma và tránh các chuỗi hiệu chuẩn tốn thời gian. Tình hình nghiên cứu tại Việt Nam Năm 2007, Trần Thiện Thanh [4] đã tính toán hệ số trùng phùng tổng trong hệ phổ kế gamma cho nguồn chuẩn dạng hình học điểm và dạng hình học trụ sử dụng chương trình MCNP đối với hai đồng vị phóng xạ 152Eu và 134Cs. Khi khảo sát ảnh hưởng của hệ số trùng phùng cho hai nguồn hình học của đồng vị 152Eu và134Cs, tác giả nhận thấy rằng với khoảng cách lớn hơn 10 cm thì ảnh hưởng khoảng 3% và 30% khi đo thực nghiệm tại vị trí gần đầu dò. Điều này có thể giải thích là do góc khối từ nguồn đến đầu dò tăng làm tăng xác suất các bức xạ gamma phát ra có khả năng được ghi nhận trong đầu dò.
- 5 Trương Thị Hồng Loan và cộng sự [12] đã tính hệ số trùng phùng tổng cho nguồn chuẩn dạng hình học điểm bằng phương pháp Monte Carlo sử dụng chương trình MCNP4C2 kết hợp với chương trình tự phát triển. Nhóm tác giả đã sử dụng nguồn 137Cs để kiểm tra tính chính xác của chương trình và hiệu chỉnh trùng phùng cho nguồn 60Co tại đỉnh năng lượng 1173 keV và 1332 keV khi đo với khoảng cách gần với đầu dò. Kết quả cho thấy có sự trùng khớp giữa phương pháp truyền thống và phương pháp mô phỏng trong tính toán hệ số trùng phùng tổng của 60Co (sai số nhỏ hơn 3%). Năm 2014, Ngô Quang Huy và Đỗ Quang Bình [8] đã áp dụng công thức bán thực nghiệm để xác định hiệu suất của các mẫu hình trụ được thiết lập ở vùng năng lượng từ 185 đến 1764 keV. Các tổn thất do hiệu ứng trùng phùng cho phổ gamma trong chuỗi 238U và 232Th được đo bởi phương pháp đơn giản về khoảng cách xa dần giữa mẫu và đầu dò. Các công thức bán thực nghiệm để xác định hiệu suất và hệ số hiệu chỉnh hiệu ứng trùng phùng đã được sử dụng để phân tích hoạt độ của 238 U, 226 Ra, 232Th, 137Cs và 40K trong một vài chế phẩm hoá học khác nhau. Năm 2018, Trần Thiện Thanh và cộng sự [14] đã trình bày một quy trình tính toán hệ số trùng phùng để đo mẫu môi trường. Thứ nhất, các yếu tố hiệu chỉnh hiệu ứng trùng phùng cho thấy sự phù hợp với cả hai chương trình MCNP-CP và ETNA. Thứ hai, hoạt độ của bốn mẫu kiểm tra chất lượng được xác định với hệ số hiệu ứng trùng phùng tính bằng chương trình MCNP – CP. Cuối cùng, kết quả đo hoạt độ của bốn mẫu bằng cả hai đầu dò HPGe loại p được đánh giá theo tiêu chuẩn IAEA là phù hợp với tất cả các hạt nhân phóng xạ. Điều này cho thấy quy trình được trình bày là một phương pháp đơn giản, hữu ích và có độ chính xác cao cho các phòng thí nghiệm phân tích sử dụng phổ gamma khi phân tích mẫu môi trường. Hơn nữa việc hiệu chỉnh hiệu ứng trùng phùng là một việc quan trọng cần phải xử lí chính xác. Mục tiêu và nội dung nghiên cứu Qua tìm hiểu tình hình nghiên cứu trong và ngoài nước, tôi thấy rằng khi hiệu chuẩn hiệu suất đỉnh, việc hiệu chỉnh hệ số trùng phùng theo bề dày và mật độ mẫu là vấn đề cần được quan tâm. Do đó, tôi chọn tên đề tài là “Nghiên cứu sự phụ thuộc của hệ số trùng phùng vào bề dày và mật độ mẫu phân tích” với mục tiêu là đánh giá
- 6 được sự phụ thuộc của hiệu ứng trùng phùng vào bề dày mẫu và sự phụ thuộc của hiệu ứng trùng phùng vào mật độ mẫu phân tích. Nội dung của khoá luận bao gồm tính toán hiệu suất đỉnh năng lượng toàn phần của các đồng vị 210Pb, 234Th, 226Ra, 214Pb và 214Bi có trong mẫu RGU ứng với các bề dày khác nhau. Sau đó xác định hệ số trùng phùng theo bề dày và mật độ mẫu phân tích bằng chương trình MCNP – CP. Cuối cùng, tính toán lại hiệu suất đỉnh tại từng đỉnh năng lượng sau khi hiệu chỉnh trùng phùng. 1.2. Cơ sở lí thuyết Hiệu suất đỉnh năng lượng toàn phần Hiệu suất đỉnh năng lượng toàn phần là xác suất của một photon phát ra từ nguồn mất toàn bộ năng lượng hoặc một phần năng lượng của nó trong thể tích hoạt động của đầu dò. Trong thực nghiệm, hiệu suất đỉnh năng lượng toàn phần được xác định bởi công thức sau [11]: N (E) (E) = (1.1) AI ( E ) m t Trong đó ( E ) : hiệu suất đỉnh của đầu dò ở mức năng lượng E. N ( E ) : số đếm tại đỉnh năng lượng toàn phần ứng với mức năng lượng E trên phổ gamma đã trừ phông (keV). A : hoạt độ phóng xạ của nguồn tại thời điểm đo (Bq/kg). I ( E ) : xác suất phát bức xạ gamma có năng lượng E của đồng vị phóng xạ (keV). m: khối lượng mẫu (kg). t : thời gian đo (s). Sai số của hiệu suất đỉnh năng lượng toàn phần được xác định bằng công thức [3,11]:
- 7 2 ( E ) A N ( E ) I t m 2 2 2 2 2 = + + + + ( E ) A N( E ) I t m Do sai số của cân điện tử là 0,001g và mẫu được đo trong khoảng thời gian rất lớn nên: t m 2 2 =0, =0 t m Từ đây, ta có công thức xác định sai số tương đối của hiệu suất ghi đỉnh năng lượng toàn phần: A N (E) I 2 2 2 ( E ) = ( E ). + + (1.2) A N (E) I Trong đó: ( E ) : sai số hiệu suất đỉnh năng lượng toàn phần N (E) : sai số diện tích đỉnh năng lượng I : sai số hiệu suất phát gamma A : sai số hoạt độ Hiệu chỉnh trùng phùng bằng chương trình MCNP-CP Hiện nay, chương trình MCNP được sử dụng rộng rãi để đánh giá hiệu suất của đầu dò trong bức xạ hạt nhân, tuy nhiên chương trình MCNP chỉ xem xét một nguồn đồng vị trên lịch sử. Chương trình MCNP – CP có thể thực hiện các mô phỏng thống kê liên quan đến phân rã phóng xạ của một số đồng vị phóng xạ nhất định, đưa ra những đặc tính của các hạt nhân có tương quan phát ra. Phần quan trọng để tạo nên một chương trình MCNP-CP chính là tệp đầu vào. Trong tệp đầu vào của chương trình MCNP – CP chứa các thông số như cấu hình hệ đo, thời gian gieo hạt, số hạt cần gieo, các thông số chính xác của nguồn và được chia ra làm 3 phần: định nghĩa ô mạng, định nghĩa mặt và định nghĩa vật liệu. Tuy nhiên, chương trình MCNP - CP vẫn có một vài điểm khác biệt như mở rộng thẻ vật liệu
- 8 SDEF sử dụng thẻ ZAM để xác định chính xác đồng vị cần mô phỏng và bổ sung thẻ CPS để mô phỏng các nguồn hạt tương quan. • Trong phần mở rộng thẻ vật liệu SDEF sử dụng thẻ ZAM: - Hình thức 1: SDEF … ZAM=zzzaaam… - Hình thức 2: SDEF … ZAM=Dn… Với: zzzaaam tương ứng với zzz là số nguyên tử, aaa là số khối và m là chỉ số đồng phân của hạt nhân phóng xạ quan tâm. n là chỉ số phân bố • Trong phần cài đặt thẻ nguồn CPS: - Hình thức: CPS DCPGT IAS IGA IKX ILX IPO IBT ICE IAE IGG ISS Với: DCPGT là thời gian tương tác của các hạt trong các lần dao động. IAS là chuyển đổi chế độ mô phỏng tương tự. IGA là phát xạ tia gamma phân rã. IGG là tương quan góc gamma – gamma. ISS là phân rã bức xạ đồng phân Còn lại là các phát xạ hạt khác nhau. - Mặc định: DCPGT = 50 IAS=IGA=IKX=ILX=IPO=IBT=ICE=IAE =IGG=ISS=1 - Cách sử dụng: Thiết lập tham số cho nguồn hạt nhân liên quan đến vấn đề nghiên cứu. - Thẻ CPS – chế độ mô phỏng nguồn: + DCPGT > 0: các hạt được nhóm lại trong khoảng thời gian tương ứng theo thời gian phát xạ của chúng. Sau đó, mỗi nhóm hạt được theo dõi trong lịch sử khác nhau, do đó giả sử không có mối tương quan giữa các nhóm. Chế độ này có thể được coi là chế độ nguồn thực tế. + DCPGT = 0: tất cả các hạt được xem xét trong một nhóm bất kể thời gian phát xạ của chúng, gọi là trường hợp tương quan bắt buộc.
- 9 + DCPGT = -1: các hạt được lấy mẫu theo cách tương tự như được thực hiện trong hai trường hợp trước, nhưng mỗi hạt được theo dõi trong một lịch sử riêng biệt bất chấp thời gian phát xạ của nó, gọi là chế độ nguồn không tương quan bắt buộc. + DCPGT < 0 (khác -1): tất cả các hạt được lấy mẫu một cách ngẫu nhiên bằng cách sử dụng xác suất phân rã. Theo dõi các hạt được thực hiện trong lịch sử riêng biệt, một lịch sử trên một hạt. Đây là trường hợp của nguồn hoàn toàn không tương thích. - Để mô phỏng cho hiệu ứng trùng phùng, sử dụng cấu trúc thẻ: CPS 2j 1 0 6r Mô phỏng loại bỏ hiệu ứng trùng phùng, sử dụng cấu trúc thẻ: CPS -1 Sau khi thiết lập bộ dữ kiện đầu vào, chạy chương trình và cho dữ kiện đầu ra. Trong dữ kiện đầu ra, xác định hiệu suất tại đỉnh năng lượng khi không có hiệu ứng trùng phùng và có trùng phùng, từ đó tính toán được hệ số hiệu ứng trùng phùng. 1.3. Nhận xét chương 1 Trong chương này, khoá luận đã trình bày: một số nghiên cứu tiêu biểu ở trong và ngoài nước có liên quan đến các vấn đề cần giải quyết của khoá luận. Đồng thời, nêu rõ mục tiêu và nội dung của khoá luận. Trình bày một số cơ sở lý thuyết được sử dụng trong khoá luận gồm: hiệu suất đỉnh năng lượng toàn phần và giới thiệu tổng quát về phương pháp hiệu chỉnh hiệu ứng trùng phùng bằng chương trình MCNP-CP.
- 10 CHƯƠNG 2. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1. Hệ phổ kế gamma sử dụng đầu dò HPGe Phổ gamma của các mẫu chuẩn RGU được đo bởi hệ phổ kế gamma sử dụng đầu dò HPGe đặt tại Viện Y tế Công cộng TP.HCM. Hình 2.1. Hệ phổ kế gamma tại Viện Y tế Công cộng TP.HCM Hệ phổ kế gồm các phần chính như: đầu dò GEM50P4-83 được làm lạnh bằng nitơ lỏng với các thiết bị kèm theo gồm tiền khuếch đại, thiết bị Lynx DSA tích hợp nguồn nuôi cao thế; khối khuếch đại; bộ biến đổi tương tự thành số và khối phân tích đa kênh, nguồn phóng xạ, buồng chì che chắn quanh đầu dò và nguồn. Hệ phổ kế được kết nối với máy tính thông qua cổng cáp và chương trình Meastro sẽ ghi nhận và xử lí phổ. Đầu dò Germanium siêu tinh khiết Đầu dò GEM50P4-83 có chiều cao là 168 mm gồm một tinh thể Germanium cao 77 m, có đường kính 65,9 mm. Bên trong tinh thể Gemanium là một hốc chân không có chiều cao 4,9 mm, đường kính là 11,5 mm; bên trong hốc tinh thể là một lớp Ge/B có bề dày 0,0003 mm. Bên ngoài tinh thể là một lớp Ge/Li có bề dày 0,7 mm. Tinh thể được bao bọc bởi một lớp nhôm có bề dày 0,8 mm và chiều cao 105
- 11 mm được ngăn cách với lớp nhôm ngoài cùng có bề dày 1 mm bởi một khoảng chân không. Hiệu suất tương đối của đầu dò là 50%, độ phân giải năng lượng tại đỉnh 1332 keV của đồng vị 60Co là 1,9 keV. (Phụ lục A) Hình 2.2. Mô hình đầu dò GEM50P4-83 Buồng chì Đầu dò GEM50P4-83 được đặt trong buồng chì để giảm sự ảnh hưởng của bức xạ vũ trụ và giảm phông môi trường. Tuy nhiên, tương tác gamma với chì cũng tạo ra tia X, các tia X này có thể được đầu dò ghi nhận và làm cho phổ gamma bị nhiễu. Để hạn chế vấn đề trên nên người ta lót thêm bên trong buồng chì lớp đồng và lớp thiếc. Buồng chì che chắn trong hệ phổ kế gamma tại Viện Y tế Công cộng có dạng hình trụ với chiều cao bên ngoài là 630 mm, chiều cao bên trong là 400 mm. Bao bọc lớp chì là lớp thép carbon có bề dày 13 mm, tiếp theo là lớp chì có bề dày 101 mm. Kế tiếp lớp chì là lớp thiếc dày 0,5 mm đến lớp đồng dày 1,6 mm, xét từ ngoài vào trong. Mẫu chuẩn Để nghiên cứu sự phụ thuộc của hệ số trùng phùng vào bề dày và mật độ mẫu, khoá luận đã sử dụng mẫu chuẩn RGU có hoạt độ 4940 ± 30 Bq/kg được cung cấp bởi IAEA [15]. Mẫu chuẩn được đựng trong hộp hình trụ được làm từ nhựa Polymetyl
- 12 Mehacylate có đường kính trong và bề dày thành lần lượt là 7,3 cm và 1mm. Mẫu chuẩn được nhốt trong 30 ngày để đạt đến trạng thái cân bằng. Do mẫu chuẩn đã đạt trạng thái cân bằng nên có thể sử dụng hoạt độ được cung cấp để tính hiệu suất đỉnh năng lượng toàn phần cho các đồng vị phát gamma trong chuỗi U như 210Pb, 234Th, 238 226 Ra, 214Pb và 214Bi. Bảng 2.1. Thông tin về bề dày, khối lượng, mật độ khối của các mẫu RGU STT Tên mẫu Bề dày (cm) Khối lượng (g) Mật độ khối (g/cm3) 1 U1 1,0 64,6 1,56 2 U2 1,5 97,2 1,52 3 U3 2,0 130,1 1,55 4 U4 2,6 155,9 1,44 5 U5 2,9 172,2 1,42 6 U6 3,7 231,9 1,50 2.1.4. Hệ phổ kế gamma sử dụng đầu dò HPGe trong mô phỏng Trước khi tiến hành mô phỏng bằng chương trình MCNP – CP cần phải tạo ra tệp đầu vào có chứa tất cả các thông tin cần thiết như: mô tả đầu dò, mẫu, vật liệu, các kết quả gi nhận, các quá trình vật lý,…. Trong tệp đầu vào của chương trình MCNP – CP, hệ phổ kế gamma HPGe được chia thành các ô mạng đồng nhất được giới hạn bởi các mặt. Ở khoá luận này, hệ phổ kế được chia thành 24 ô: Từ ô thứ nhất đến ô thứ 6 được dùng để mô tả đầu dò, từ ô thứ 7 đến ô thứ 18 được dùng để mô tả buồng chì, từ ô thứ 19 đến ô thứ 24 miêu tả mẫu được đo. Riêng ô thứ 98 mô tả lớp chân không bên trong buồng chì tiếp xúc với đầu dò và ô thứ 99 mô tả khoảng chân không bên ngoài buồng chì. Tương ứng với 24 ô mạng ở trên cần 64 mặt khác nhau để liên kết tạo thành 24 ô mạng với độ quan trọng của 24 ô đầu bằng 1 và ô thứ 99 bằng 0, nghĩa là trong quá trình mô phỏng nếu có hạt nào ra ngoài buồng chì thì không theo dõi hạt này nữa.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Khóa luận tốt nghiệp: Nghiên cứu hành vi của người tiêu dùng Nhật Bản nhằm đẩy mạnh xuất khẩu hàng hóa Việt Nam sang thị trường này
121 p | 903 | 169
-
Khóa luận tốt nghiệp: Nghiên cứu tính toán lưới và áp dụng giải bài toán trong an toàn thông tin
66 p | 369 | 123
-
Khóa luận tốt nghiệp: Nghiên cứu chính sách phân phối của công ty Unilever Việt Nam - Bài học kinh nghiệm cho các doanh nghiệp Việt Nam
102 p | 425 | 115
-
Khóa luận tốt nghiệp: Nghiên cứu thử nghiệm chế biến rượu vang chuối
89 p | 459 | 82
-
Khóa luận tốt nghiệp: Nghiên cứu và mô phỏng mạng truy nhập quang FTTX
89 p | 297 | 76
-
Khóa luận tốt nghiệp: Nghiên cứu thị trường logistics miền Bắc Việt Nam
119 p | 387 | 71
-
Khóa luận tốt nghiệp: Nghiên cứu công tác quản trị nhân lực của Công ty Cổ phần tư vấn khảo sát thiết kế xây dựng Hà Nội
125 p | 262 | 67
-
Khóa luận tốt nghiệp: Nghiên cứu phát triển du lịch sinh thái khu vực Hồ Núi Cốc , Thái Nguyên
114 p | 449 | 57
-
Khóa luận tốt nghiệp: Nghiên cứu chiết tách và xác định thành phần hóa học trong hạt Tiêu đen (Piper nigrum L.) ở huyện Đăk Đoa, tỉnh Gia Lai
53 p | 397 | 56
-
Khóa luận tốt nghiệp: Nghiên cứu việc sử dụng nghiệp vụ phái sinh để phòng ngừa rủi ro. Tỷ giá đối với các doanh nghiệp xuất nhập khẩu Việt Nam
121 p | 259 | 51
-
Khóa luận tốt nghiệp: Nghiên cứu hoạt động marketing-mix của Công ty Cổ phần Công nghệ ASD Việt Nam
68 p | 475 | 48
-
Khóa luận tốt nghiệp: Nghiên cứu xử lý Amoni bằng phương pháp sinh học sử dụng các vi khuẩn tự dưỡng
59 p | 268 | 43
-
Khóa luận tốt nghiệp: Nghiên cứu vấn đề sử dụng các hợp đồng ngoại hối phát sinh đối với bảo hiểm rủi ro tỷ giá cho các doanh nghiệp xuất nhập khẩu Việt Nam
107 p | 190 | 21
-
Khóa luận tốt nghiệp: Nghiên cứu mô hình xúc tiến và hỗ trợ thương mại điện tử cho doanh nghiệp - Kinh nghiệm trên thế giới và bài học đối với Việt Nam
98 p | 162 | 20
-
Khóa luận tốt nghiệp: Nghiên cứu và ứng dụng kiểm thử tự động sử dụng Puppeteer - CodeceptJS cho Công ty TNHH Seta - International Việt Nam
41 p | 107 | 15
-
Khóa luận tốt nghiệp: Nghiên cứu hành vi tiêu dùng của người dân về sản phẩm thịt lợn đen trên địa bàn thị trấn Bằng Lũng, huyện Chợ Đồn, tỉnh Bắc Kạn
141 p | 47 | 12
-
Khóa luận tốt nghiệp: Nghiên cứu chế độ tài sản của vợ chồng theo Luật Hôn nhân và gia đình Việt Nam
68 p | 19 | 9
-
Tóm tắt Khóa luận tốt nghiệp: Nghiên cứu ứng dụng tích hợp tại thư viện khoa học tổng hợp tỉnh Bắc Giang
13 p | 142 | 6
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn