intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

KHÓA LUẬN TỐT NGHIỆP ’’PHÂN DẠNG CÁC BÀI TOÁN ĐẠI SỐ TỔ HỢP TRONG CHƯƠNG TRÌNH TOÁN TRUNG HỌC PHỔ THÔNG’’

Chia sẻ: đinh Tuấn Vũ | Ngày: | Loại File: DOC | Số trang:85

332
lượt xem
101
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

LỜI MỞ ĐẦU Toán tổ hợp là một lĩnh vực toán học được nghiên cứu từ khá sớm và ngày càng được quan tâm nhờ vai trò quan trọng của nó trong nội bộ toán học cũng như trong các nghành khoa học khác. Kết quả quan trọng của nó đánh dấu bởi bài toán đếm số phân hoạch cuả Leonhard Euler. Trong toán học những kết quả của nó đóng vai trò kiến thức nền tảng của giải tích, xác suất, thống kê, hình học...

Chủ đề:
Lưu

Nội dung Text: KHÓA LUẬN TỐT NGHIỆP ’’PHÂN DẠNG CÁC BÀI TOÁN ĐẠI SỐ TỔ HỢP TRONG CHƯƠNG TRÌNH TOÁN TRUNG HỌC PHỔ THÔNG’’

  1. Trường Đại học Hoa Lư KHÓA LUẬN TỐT NGHIỆP "PHÂN DẠNG CÁC BÀI TOÁN ĐẠI SỐ TỔ HỢP TRONG CHƯƠNG TRÌNH TOÁN TRUNG HỌC PHỔ THÔNG’’ SVTH: Đinh Thị Ngát  
  2. Khóa luận tốt nghiệp Trường Đại học Hoa Lư LỜI MỞ ĐẦU Toán tổ hợp là một lĩnh vực toán học được nghiên cứu từ khá sớm và ngày càng được quan tâm nhờ vai trò quan trọng của nó trong nội bộ toán học cũng như trong các nghành khoa học khác. Kết quả quan trọng của nó đánh dấu bởi bài toán đếm số phân hoạch cuả Leonhard Euler. Trong toán học những kết quả của nó đóng vai trò kiến thức nền tảng của giải tích, xác suất, thống kê, hình học,… Trong thực tiễn giáo dục thì việc dạy và học toán tổ hợp cũng rất quan trọng bởi khi học tốt toán tổ hợp người học sẽ có năng lực sáng tạo và tư duy nhạy bén để học tốt môn học khác cũng như các lĩnh vực khác trong cuộc sống. Các bài toán đại số tổ hợp luôn là một nội dung quan trọng trong các đề thi đại học và cao đẳng ở nước ta, mặc dù mức độ không khó nhưng các thí sinh thường gặp khó khăn khi giải các bài toán này. Trong các kỳ thi học sinh giỏi quốc gia, thi toán sinh viên giữa các trường đại học và cao đ ẳng, thi Olympic toán khu vực và quốc tế các bài toán tổ hợp xuất hiện là một thử thách lớn cho các thí sinh. Rất nhiều các bài toán hay và khó được giải một cách khá gọn và đẹp bằng cách sử d ụng các kiến thức về tổ hợp. Em là người rất yêu thích toán tổ hợp nhưng mới chỉ bết sơ qua về nó khi còn ngồi trên ghế nhà trường phổ thông. Vì vậy em lựa chọn đề tài: ’’PHÂN DẠNG CÁC B ÀI TOÁN ĐẠI SỐ TỔ HỢP TRONG CHƯƠNG với mục đích nghiên cứu về lý thuyết tổ hợp TRÌNH TOÁN TRUNG HỌC PHỔ THÔNG’’ từ đó xây dựng một cách có hệ thống, có sáng tạo các bài toán đại số tổ hợp. Trong khóa luận này em đã tổng kết và phân dạng các bài tập đại số tổ hợp. Tuy các dạng bài tập này không mới nhưng khóa luận đ ã hệ thống và mở rộng một số bài tập hay và khó là đóng góp nhỏ của khóa luận. Khóa luận đ ược chia làm hai chương: Chương 1: (Cơ sở lý thuyết về tổ hợp ) chương này tập trung trình bày lý thuyết về tổ hợp và một số lý thuyết về tập hợp làm cơ sở để phân dạng và giải các bài toán đại số tổ hợp. Đinh Thị Ngát – D 1 Toán Tin B 2
  3. Khóa luận tốt nghiệp Trường Đại học Hoa Lư Chương 2 : (Các d ạng toán đại số tổ hợp) đây là chương chứa nội dung chính của khóa luận. Chương này em phân dạng và hệ thống các bài toán đại số tổ hợp. Đặc biệt trong chương này em đã sáng tạo và tổng quát một số bài toán để có đ ược các bài toán hay và khó. Trong quá trình làm khóa luận, em đã tham khảo một số tài liệu liên quan đến toán tổ hợp, trao đổi, lấy ý kiến của thầy cô và các b ạn sinh viên lớp sư phạm ngành Toán, của các giảng viên Toán ở trường Đại học Hoa Lư, một số giáo viên Toán ở trường phổ thông, các bạn sinh viên chuyên nghành Toán và các em học sinh trương phổ thông. Đ ồng thời tổng kết kinh nghiệm từ thực tế qua quá trình giảng dạy của thầy cô. Mặc dù đã rất cố gắng trong quá trình làm khóa luận nhưng do sự hạn chế về thời gian và trình độ kiến thức nên b ản khóa luận không tránh được những thiếu sót, rất mong được sự đóng góp ý kiến của thầy cô và các bạn. Em xin gửi lời cảm ơn sâu sắc đến thầy B ùi Đức Lợi đã tận tình chỉ bảo, hướng dẫn và tạo điều kiện cho em trong quá trình thực hiện khóa luận. Em cũng xin gửi lời cảm ơn chân thành đến các thầy cô trong bộ môn Toán (khoa khoa học tự nhiên trường Đại học Hoa Lư), thầy Nguyễn Đức Hải (trường THPT N ho Quan B), bạn bè và người thân đã động viên, giúp đ ỡ em hoành thành tốt khóa luận. Ninh Bình, tháng 5 năm 2012 Sinh viên Đ inh Thị Ngát Đinh Thị Ngát – D 1 Toán Tin B 3
  4. Khóa luận tốt nghiệp Trường Đại học Hoa Lư Chương I: Cơ sở lý thuyết về tổ hợp Chương này sẽ nhắc lại một số lý thuyết về tập hợp và hệ thống lý thuyết cơ bản của toán tổ hợp như: Hoán vị, chỉnh hợp, tổ hợp, nhị thức Newton,.. Các nội dung này cũng được giảng dạy cho học sinh trung học phổ thông hệ cơ b ản, nâng cao và hệ chuyên nghành toán. 1.1. Nhắc lại về tập hợp 1. Tập hợp con Định nghĩa: Cho tập hợp A . Tập hợp B gọi là tập con của tập A khi mọi phần tử của tập B đ ều thuộc A . B  A   x, xB  x  A . Tính chất: - Mọi tập hợp A đều có 2 tập con là  và A . - Tập A có n phần tử thì số tập con của A là 2n . 2. Tập hợp sắp thứ tự Một tập hợp hữu hạn có m p hần tử được gọi là sắp thứ tự nếu với mỗi phần tử của tập hợp đó ta cho tương ứng một số tự nhiên từ 1 đến m , sao cho với những phần tử khác nhau ứng với những số khác nhau. Khi đó bộ sắp thứ tự m phần tử là một dãy hữu hạn m phần tử và hai bộ sắp thứ tự  a1 , a2 ,..., am  và  b1 , b2 ,..., bm  bằng nhau khi mọi phần tử tương ứng bằng nhau  a , a ,..., a  =  b , b ,..., b   ai = bi i  1,2,.., m. 1 2 m 1 2 m 3. Số phần tử của một số tập hợp Tập hợp A có hữu hạn phần tử thì số phần tử của A được kí hiệu là: │ A │ hoặc n  a  . A, B, C là 3 tập hợp hữu hạn, khi đó: │ A  B │= │ A │+│ B │-│ A  B │. Đinh Thị Ngát – D 1 Toán Tin B 4
  5. Khóa luận tốt nghiệp Trường Đại học Hoa Lư │ A  B  C │=│ A │+│ B │+│ C │-│ A  B │-│ B  C │- │ A  C │ +│ A  B  C │. Tổng quát: Cho A , A2 ,..., An là n tập hợp hữu hạn ( n  1) . 1 Khi đó: n n  Ai  Ak  │ A1  …  An │=  Ai  i 1 1i  k  n n n 1 Ai  Ak  Al +…+ (1) A1  A2  ...  An .  + (1) 1i  k l  n 1.2. Quy tắc cộng và quy tắc nhân 1.2.1. Quy tắc cộng Giả sử có hai công việc: Việc thứ nhất có thể làm bằng n cách, Việc thứ hai có thể làm bằng m cách. Và nếu hai việc này không thể làm đồng thời, khi đó sẽ có n  m cách làm một trong hai việc trên. Quy tắc cộng dạng tổng quát: Giả sử các công việc T1, T2 ,..., Tm có thể làm tương ứng bằng n1, n2 ,..., nm cách và giả sử không có hai việc nào có thể làm đồng thời. Khi đó số cách làm một trong việc đó là: n1  n2  ...  nm . B iểu diễn dưới dạng tập hợp: 1. Nếu X , Y là hai tập hợp hữu hạn, không giao nhau thì: X Y  X  Y Nếu X 1, X 2 ,..., X n là n tập hữu hạn, từng đôi một không giao nhau thì: X1  X 2  ...  X n  X1  X 2  ...  X n 2. Nếu X , Y là hai tập hữu hạn và X  Y thì: X Y\X Y  X Đinh Thị Ngát – D 1 Toán Tin B 5
  6. Khóa luận tốt nghiệp Trường Đại học Hoa Lư 1.2.2.Quy tắc nhân G iả sử để hoàn thành một nhiệm vụ H cần thực hiện hai công việc nhỏ là H1 và H 2 , trong đó: H1 có thể làm bằng n1 cách, H 2 có thể làm bằng n2 cách, sau khi đã hoàn thành công việc H1 . K hi đó để thực hiện công việc H sẽ có n1.n2 cách. Quy tắc nhân dạng tổng quát: G iả sử để hoàn thành một nhiệm vụ H cần thực hiện k công việc nhỏ là H1 , H 2 ,…, H k trong đó: H1 có thể làm bằng n1 cách. H 2 có thể làm bằng n2 cách, sau khi đã hoàn thành công việc H1 . … H k có thể làm bằng nk cách, sau khi đã hoàn thành công việc H k 1 . Khi đó để thực hiện công việc H sẽ có n1.n2 ...nk cách. B iểu diễn dưới dạng tập hợp: N ếu A1, A2 ,..., An là n tập hợp hữu hạn  n  1 , khi đó số phần tử của tích đề các các tập hợp này b ằng tích của số các phần tử mọi tập thành phần. Đ ể liên hệ với quy tắc nhân hãy nhớ là việc chọn một phần tử của tích đề các A1  A2  ...  An được tiến hành bằng cách chọn lần lượt một phần tử của A1 , một phần tử của A2 ,…, một phần tử của An . Theo quy tắc nhân ta nhận được đẳng thức: A1  A2  ...  An  A1 . A2 ... An . 1.3. Giai thừa và hoán vị 1. Giai thừa Đ ịnh nghĩa: Giai thừa n , kí hiệu là n ! là tích của n số tự nhiên liên tiếp từ 1 đến n . Đinh Thị Ngát – D 1 Toán Tin B 6
  7. Khóa luận tốt nghiệp Trường Đại học Hoa Lư n!  1.2.3. n  1 . n  , n  , n >1. Q uy ước : 0!= 1. 1!= 1. 2. Hoán vị Đ ịnh nghĩa: cho tập hợp A , gồm n phần tử (n  1) . Một cách sắp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. K í hiệu: Pn là số các hoán vị của n phần tử. Pn  n !  1.2  n  1 .n 1.4. Chỉnh hợp Đ ịnh nghĩa: Cho tập hợp A gồm n p hần tử (n  1) . Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho. k K í hiệu: An là số các chỉnh hợp chập k của n phần tử. n! k = n. n  1 n  k  1 (với 1  k  n ). Công thức: An = ( n  k )! Chú ý: Một chỉnh hợp n chập n được gọi là m ột hoán vị của n p hần tử. n An  Pn  n! . 1.5. Tổ hợp Đ ịnh nghĩa: G iả sử tập A có n phần tử ( n  1 ). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đ ã cho (1  k  n ). k K í hiệu: C n (1  k  n ) là số các tổ hợp chập k của n phần tử. n! k Công thức: C n = k !(n  k )! 0 Chú ý: C n = 0. n k k (0  k  n). Cn  Cn Đinh Thị Ngát – D 1 Toán Tin B 7
  8. Khóa luận tốt nghiệp Trường Đại học Hoa Lư k 1 k 1 k C n + C n = C n 1 ( 1  k  n ). 1.6. Chỉnh hợp có lặp, hoán vị có lặp và tổ hợp có lặp 1.6.1. Chỉnh hợp có lặp Đ ịnh nghĩa: Cho n vật a , b, c,, l . Một chỉnh hợp chập p có lặp lại gọi tắt là chỉnh hợp lặp của n vật đó là một dãy thứ tự gồm p phần tử trong đó mỗi phần tử có thể lặp lại nhiều lần. C hú ý:  Số các chỉnh hợp lặp chập p của n phần tử là n p .  N hư vậy chỉnh hợp có lặp lại là khi giữa các phần tử yếu tố thứ tự là cốt lõi, còn yếu tố khác biệt không quan trọng. 1.6.2. Hoán vị lặp Cho một tập hợp gồm n vật, trong đó có a vật loại A giống nhau, b vật loại B giống nhau,…, l vật loại L giống nhau. Với n  a  b    l , khi đó số n! P n = a !b!...l !  cách hoán vị thực sự khác nhau là: 1.6.3. Tổ hợp lặp Cho n vật a, b, , l . Một tổ hợp chập p có lặp lại gọi tắt là tổ hợp lặp của n vật đó là một nhóm (không thứ tự) gồm p vật, trong đó mỗi vật có thể lặp lại nhiều lần. p K í hiệu: C n là số tổ hợp có lặp chập n của p phần tử. Chú ý: p n 1 p  Số tổ hợp có lặp lại n chập p là C n = C n p 1 = C n p 1 .  Tổ hợp có lặp lại khi một phần tử có thể xuất hiện nhiều lần và thứ tự của các phần tử không cần để ý. Đinh Thị Ngát – D 1 Toán Tin B 8
  9. Khóa luận tốt nghiệp Trường Đại học Hoa Lư 1.7. Nhị thức Newton 1.7.1. Nhị thức Newton n n (a b)   C k a n k b k được gọi là công thức nhị thức Newton. n k 0 H ệ quả: n nn (1 x)  C 0  C1 x  C 2 x 2  ...  (1) C n x n . n n n C hú ý: n (a 1) là n  1 . - Số các số hạng của sự khai triển - Tổng các số mũ của a và b trong mỗi số hạng của sự khai triển bằng số mũ n. - Số hạng tổng quát Tk 1 của khai triển là Tk 1  Cn a n  k b k k (k  0,1,..., n) . - Các hệ số nhị thức cách đều hai đầu của sự khai triển thì b ằng nhau do Cn  Cn  k ( 0  k  n ). k n 1.7.2. Tam giác Pascal Các hệ số của khai triển Newton của nhị thức (a  b)n có thể đ ược sắp xếp thành tam giác sau đây (gọi là tam giác Pascal). n0 1 n 1 1 1 n2 1 2 1 1 3 3 1 n3 n4 1 4 6 4 1 1 5 10 10 5 1 n5 … … k 1 k 1 k C n + C n = C n 1 (1  k  n) được gọi là hệ thức Pascal. Như vậy Đinh Thị Ngát – D 1 Toán Tin B 9
  10. Khóa luận tốt nghiệp Trường Đại học Hoa Lư Chương II: Các dạng bài toán đại số tổ hợp Chương một đã trình bày lý thuyết cơ b ản của toán tổ hợp. Dựa trên cơ sở lý thuyết đó trong chương này khóa luận sẽ tập trung trình bày các dạng bài toán đại số tổ hợp. Ở mỗi dạng khóa luận đã đưa ra những phương pháp, những chú ý khi làm các bài tập và khóa luận cũng đưa ra hệ thống các b ài tập đặc trưng cho từng dạng. 2.1. Bài toán tính toán, chứng minh đẳng thức, bất đẳng thức Trong phần này tùy thuộc vào các bài toán cụ thể m à ta lựa chọn các phương pháp thích hợp như:  Sử dụng các công thức, các quan hệ giữa các đại lượng tổ hợp.  Sử dụng các đánh giá về bất đẳng thức.  Sử dụng quy nạp toán học.  Sử dụng tính đ ơn điệu của hàm số. 2n  n 1  , với n  , n >2. 2 B ài 1: CMR: nn  (1.2...n)    2 Giải: 2 (1.2...n) = 1.n   2  n  1    k  n  k  1  n.1 . Ta có    Mà  k  n  k  1   n , với n, k  , n  k  0 .   Áp d ụng cho k  1, 2, , n , ta có: 1.n  n, 2.(n  1)  n, ... n.1  n .  1.n   2  n  1    k  n  k  1    n.1  n n . (1)     Đinh Thị Ngát – D 1 Toán Tin B 10
  11. Khóa luận tốt nghiệp Trường Đại học Hoa Lư Áp dụng bất đẳng thức Cauchy 2 2  k  n  k 1    n 1  . k (n  k  1)      2 2   Áp dụng cho k  1, 2, , n ta có: 2  n 1  , 1.n    2 2  n 1  , 2.( n  1)    2 … 2  n 1  . n.1    2 2n  n 1  . (2)  1.n   2  n  1    k  n  k  1   n.1       2 2n  n 1  , với n  , n  2 . 2 n Từ (1), (2)  n  (1.2...n)    2 n n Bài 2: CMR: n !>   (với n  ). e Giải: 1 * n  1 thì 1! > (đúng). e k k * G iả sử bất đẳng thức đúng với n  k , tức là : k! >   (với k  ). e Ta chứng minh bất đẳng thức đúng với n  k  1 . k k 1 k k 1  k  k e  k  1!   k  1 k !   k  1   =       k 1  e  e  Đinh Thị Ngát – D 1 Toán Tin B 11
  12. Khóa luận tốt nghiệp Trường Đại học Hoa Lư k k 1  k  e  1)  k 1  ( do  >    k 1  e n n V ậy n !>   với n  . e Bài 3: Chứng minh C2n  k C2n  k  (C2n ) 2 (với 0  k  n ; n, k  n n n ). Giải: Đ ặt ui  C n niC nn i  i  0, 1, 2, , n  . 2 2 Ta chứng minh ( ui ) là dãy giảm. Thật vậy i  1 thì: u i  ui 1  C n niC n ni  C n ni 1C 2 ni 1 n 2 2 2  2n  i   n  i  1   2n  i  1  n  i    2i  1 .n  0 (đúng)   u k  u k 1  ...  u 0 2   C nn  k C nn  k  C n nC n n  C nn 22 2 2 2 n 1  2n  2  n Bài 4: Cho 2  n  * . CMR:  Ci   (1)  n   n 1  i 0 Giải: 1 2 0 1 2 2 Với n  2 thì bất đẳng thức có dạng: C2 C2    2  2 (luôn đúng).  2 1     Với n  2 Do C0  Cn  1 . n n Đinh Thị Ngát – D 1 Toán Tin B 12
  13. Khóa luận tốt nghiệp Trường Đại học Hoa Lư n 1 n n 1 i 2 2  (1)   Cn   ,  n 1    i 1 2n  2 n 1 i  n 1  Cn  . n 1 i 1 Á p dụng bất đẳng thức Cosi ta có : n Ci  2 n 1  n 1 2 2n  2 n 1 C  Cn  ...  Cn n 1  Ci  n i 0 .   n n 1 n 1 n 1 i 1 n 1  2n  2  n ( 2  n  * ). V ậy  Ci    n n 1    i 0 n  2 D ấu ‘=’ xảy ra  C1  C2  ...  Cn 1   n n n n  3 Bài tập tự giải 2 2 2 5 Bài 1: CMR : Pk An 1 An  3 An  5  n.k ! An  5 . Bài 2: CMR: n !  2n 1 (3  n  ) . n  1 Bài 3: 2  n  . Chứng minh: 2   1   3 .  n Bài 4: (Đề thi tuyển sinh ĐH-CĐ khối B, 2008) n 1  1 1 1 *  k  k 1   k (n, k  , k  n) . CMR: n  2  Cn1 Cn 1  Cn   Bài 5: CMR: (n  1)(n  2)...2n, n  chia hết cho tích số 1.3...(2n  1) . 2.2. Bài toán tính tổng Các bài toán tổng tổ hợp rất đa dạng và nhiều cách giải. Khóa luận chia ra làm 4 phương pháp tính: Sử dụng công thức, sử dụng đạo hàm, sử dụng tích phân, sử dụng công thức nhị thức Newton. Đinh Thị Ngát – D 1 Toán Tin B 13
  14. Khóa luận tốt nghiệp Trường Đại học Hoa Lư 2.2.1 Sử dụng công thức Trong phần này ta sử dụng các công thức và các phép biến đổi linh hoạt trên nó đ ể tính tổng tổ hợp như: CT1: Ck  Cn  k . n n CT2 : Ck  Ck 1  Cn 1 . k1  n n CT3: k.Ck  n.Ck 1, (CT3.1) n 1 n k(k-1)Ck  n(n  1).Ck  2 , (CT3.2) n 2 n …. m m Tổng quát:  (k  i)Cn   (n  i)Ck (m 1) (với 0  m  k  1). k n (m 1) i o i o 1 1 Ck 1 , Ck  CT4: n 1 n k 1 n 1 1 1 Ck  2 , Ck  n2 n (k  1)(k  2) (n  1)(n  2) … 1 1 Ck  m Ck  Tổng quát: nm n (k  1)(k  2)...(k  m) (n  1)...(n  m) (với 1  m  ). 2012 n C1110 . Tổng quát: Tính S   Cim .  Bài 1: Tính So  i i 1110 i m Giải: Theo CT1 ta có: 2012 Ci 1110  C1110  C1  C1112  ...  C902 i 0 2  So  1111 2012 i 1110  C1111  C1  C1112 ...  C902 0 2 1111 2012  C1 2 902 1112  C1112 ...  C 2012 (Theo CT2) Đinh Thị Ngát – D 1 Toán Tin B 14
  15. Khóa luận tốt nghiệp Trường Đại học Hoa Lư  ....  C902  C1111 . 2013 2013 Tổng quát: n n  Cii m m  S Ci  im im  C0  C1 1  ...Cn  m n m m  C0 1  C1 1  ...C n  m n m m  C1  2  C m  2  ...C n  m 2 n m  ...  C n 1  Cm11 .  m n n n  Cim  Cm11 . V ậy S  n im 2012 n iC1110 . Tổng quát: S   iCim .  Bài 2: Tính i i 1110 i m Giải: Theo CT3.1 ta có : 2012 iC1110  1110C1110  1111C1111  ...  2012C1110 1110 1110  i 2012 i 1110  (1111  1)C1110  (1112  1)C1110  ...  (2013  1)C1110 1110 1111 2012  (1111C1110  ...  2013C1110 )  (C1110  ...  C1110 ) 1110 2012 1110 2012  1111(C1111  C1  ...  C902 )  (C1111  ...  C902 ) 0 0 1111 2013 2012  1111C902  C902 2014 2013 2014! 2013!  1111  902!1112! 902!1111! Đinh Thị Ngát – D 1 Toán Tin B 15
  16. Khóa luận tốt nghiệp Trường Đại học Hoa Lư 1111.2014 2013! (  1) 1112 902!.1111! 2236442 1111  C2013 . 1112 n  iCim . Tổng quát: S  i m S  mCm  (m  1)Cm 1  ...  nCn m m m  (m  1  1)Cm  (m  2  1)Cm 1  ...(n  1  1)C m m m n   m  1 Cm 1  (m  1)Cm 1 ...  (m  1)Cm1   (C0  ...  Cn  m ) 1 m 1 m2 n m n   (m  1)(C0 1  C1  2  ...  Cn 1 )  (Cm 1  C1 1  ...Cn  m ) nm 0 n m m m nm n m  (m  1)(C0  2  C1  2  ...  Cn 1 )  Cn 1 m m  (m  1)Cn  m  Cn 1 m n 2 n (n  2)! (n  1)!  (m  1)  (n  m)!(m  2)! (n  m)!(m  1)!  (m  1)(n  2)  (n  1)!   1 m2  (n  m)!(m  1)!  m.n  m  n m 1  Cn 1 . m2 2012 n i(i  1)C1110 . Tổng quát tính S   i(i  1)Cim .  Bài 3: Tính S  i i 1110 im Giải: Á p dụng CT3.2 ta có: 2012 (i  2  2)(i  1)C1110  S i i 1110 2012 2012 (i  2)(i  1)C1110  2 (i  1)C1110    i i i1110 i 1110 Đinh Thị Ngát – D 1 Toán Tin B 16
  17. Khóa luận tốt nghiệp Trường Đại học Hoa Lư 2012 2012 1111.1112.C1112  2 1111.C1111    i 2 i 1 i 1110 i 1110 2014 2013 1111.1112.C1112  2 1111.C1111    i i i 1112 i 1111 2014 2013 i 1112  2.1111  Ci 1111 i  1111.1112  Ci i 1112 i 1111  1111.1112.C1113  2.1111.C1112 2015 2014  1111.2238454  1112   C2014 1113   2486922394 1112  C2014 . 1113 Tổng quát: n n  i(i  1)Cim   (i  2  2)(i  1)Cim S i m im n n m m   (i  1)(i  2)Ci  2  (i  1)Ci im i m n n m2 m   (m  2)(m  1)Ci  2  2  (m  1)Ci 11 im im n n Ci  2  2(m  1) m m Ci 1 1    (m  2)(m  1) 2 im im n2 n 1 m 2  2(m  1)  Ci 1m  (m  2)(m  1)  Ci i m 2 i m 1 3 2  (m  2)(m  1)Cm3  2(m  1)Cm 2 n n (m  1)(m.n  2n  m) m  2  Cn  2 . m3 n k   (i  j)Cim . Bài 4: (Mở rộng bài 1 ) Tính S  i  m j 0 Đinh Thị Ngát – D 1 Toán Tin B 17
  18. Khóa luận tốt nghiệp Trường Đại học Hoa Lư G iải: n k   i  (k  1)  (k  1)(i  j)Cim S im j1 n k n k  (i  k  1)(i  j)Cim  (k  1)   (i  j)Cim   i m j1 i m j1 n k nk m m    (i  j)Ci  (k  1)   (i  j)Ci i  m j1 i  m j1 n k n k  (m  j)Cim  k11  (k  1)    (m  j)Cim  k   k k i  m j1 i  m j1 k 1 n k n Ci  k 1  (k  1)  (m  j)  Cim  k m  (m  j)   k 1 k im im j1 j1 k 1 n  k 1 n k k m  k 1  (k  1)  (m  j)  Ci  k m   (m  j)  Ci i  m  k 1 i m k j1 j1 k 1 k mk 2  k 1   (m  j)Cn  k  2  (k  1)  (m  j)Cm k 1 n j1 j1 k 1 k (n  k  2)! (n  k  1)!  (m  j)  (k  1)  (m  j)  (m  k  2)!(n  m)! (m  k  1)!(n  m)! j1 j1  n  k  2 k 1  k (n  k  1)!  j)   (m  j)  (k  1)  (m   m  k  2 j1  (m  k  1)!(n  m)! j1    n  k  2 k 1  k  k 1 j)  Cm k 1 .   (m  j)  (k  1) (m  n  m  k  2 j1  j1   Ck Ck n n n  Tổng quát tính S  m n   k 1 Bài 5: Tính S0  k 0 k 0  (k  i) i 1 Giải: Á p dụng CT4 ta có: Đinh Thị Ngát – D 1 Toán Tin B 18
  19. Khóa luận tốt nghiệp Trường Đại học Hoa Lư Ck n n n 1  k  1 n  1  Cn 1 k1 S0   k 0 k 0 1 n 1 k 10  Cn 1  n  1 Cn 1  n  1 k 0 1 n 1 1   2 n 1 n 1 2n 1  1  . n 1 Tổng quát: Ck n n 1 Ck  m n   S  n m m m k 0 k 0  (k  i)  (n  i) i 1 i 1 n m m 1 1 1 Ck  m  Ck  m    n n m m  (n  i) k  0  (n  i) k  0 i 1 i 1 1 1 2m  n  2m 1  m m  (n  i)  (n  i) i 1 i 1 1 (2m  n  2m 1 ) .  m  (n  i) i 1 Bài tập tự giải n n  i(i  1) và S2   i(i  1)(i  2) . Bài 1: Tính tổng S1  i 1 i 1 2011 2011 k k  C2012C2012 k Bài 2: Tính tổng S  và tổng quát b ài toán. k 0 Đinh Thị Ngát – D 1 Toán Tin B 19
  20. Khóa luận tốt nghiệp Trường Đại học Hoa Lư C2 C3 Cp Cn Ck n Bài 3: Tính S0  C1  2 n  3 n  ....  p n  ...  n n   k n  n Cn 1 Cn 1 k 1 Cn 1 C1 2 p k Cn n n 2.2.2. Sử dụng khai triển nhị thức Newton Sử dụng các khai triển nhị thức thích hợp sẽ cho ta lời giải ngắn gọn cho các bài toán tính tổng tổ hợp. Chú ý: Ta thường sử dụng các khai triển: n 1  x n   Cn  1k x k k k 0 n kk 1  x n   Cn x k 0 n n k k k  a  x n  a Cn x k 0 ... m n k2 Bài 1: Tính   1 Cn k với m, k , n  N , m    . 2 k 0 G iải: nk n Ta có 1  x    Cn xk . k 1 Chọ n x  i , ta có: p 1 n C 0  C 2  ... 1m C 2m   i  C1  C 3  ...   1 2 C p  n k k 1  i  i   n  Cn  n n n  n n     k 1 (với p là số lẻ lớn nhất nhỏ hơn n). Theo đ ịnh lý Moivre ta có: p 1  p n n n   S  i  C1  Cn  Cn  ...   1 2 Cn  . 3 5  i sin 2  cos  n   4 4     Đinh Thị Ngát – D 1 Toán Tin B 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2