intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn tốt nghiệp : Đề tài " Điện động lực học lượng tử "

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:45

146
lượt xem
47
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong quang học cổ điển, ánh sáng đƣợc truyền đi theo mọi phƣơng và sự giao thoa của chúng tuân theo nguyên lý Fermat. Tƣơng tự, trong Điện động lực học lƣợng tử (QED- quantum electrodynamics), ánh sáng (hay bất kì một hạt nào nhƣ một electron hoặc một proton) có thể truyền đi theo phƣơng bất kì bởi các gƣơng hoặc thấu kính. Ngƣời quan sát (ở một vị trí đặc biệt) nhận thấy một cách đơn giản kết quả toán học của mọi hàm sóng tăng cƣờng, nhƣ là một tổng các tích phân đƣờng. Giải thích theo...

Chủ đề:
Lưu

Nội dung Text: Luận văn tốt nghiệp : Đề tài " Điện động lực học lượng tử "

  1. z  Luận văn tốt nghiệp Đề tài " Điện động lực học lượng tử "
  2. Điện động lực học lượng tử 1 MỤC LỤC MỞ ĐẦU .................................................................................................................................... 2 1. Phƣơng trình Dirac ..................................................................................................................3 2. Các nghiệm của phƣơng trình Dirac .....................................................................................6 3. Hiệp biến song tuyến tính .................................................................................................... 12 4. Photon .................................................................................................................................... 15 5. Các qui tắc Feynman cho Điện động lực học lƣợng tử ................................................... 18 6. Ví dụ ....................................................................................................................................... 22 7. Thủ thuật Casimir và Định lý vết ....................................................................................... 27 8. Tiết diện va chạm và thời gian sống .................................................................................. 31 9. Sự tái chuẩn hóa .................................................................................................................... 38 KẾT LUẬN .............................................................................................................................. 4 4 TÀI LIỆU THAM KHẢO ..................................................................................................... 4 5 Năm học 2009-2010 Hà Nam Thanh
  3. Điện động lực học lượng tử 2 MỞ ĐẦU Trong quang học cổ điển, ánh sáng đƣợc truyền đi theo mọi phƣơng và sự giao thoa của chúng tuân theo nguyên lý Fermat. Tƣơng tự, trong Điện động lực học lƣợng tử (QED- quantum electrodynamics ), ánh sáng (hay bất kì một hạt nào nhƣ một electron hoặc một proton) có thể truyền đi theo phƣơng bất kì bởi các gƣơng hoặc thấu kính. Ngƣời quan sát (ở một vị trí đặc biệt ) nhận thấy một cách đơn giản kết quả toán học của mọi hàm sóng tăng cƣờng, nhƣ là một tổng các tích phân đƣờng. Giải thích theo cách khác, các quĩ đạo đƣợc quan niệm là phi vật chất , các cấu trúc toán học là tƣơng đƣơng với chúng, trong giới hạn có thể . Tƣơng tự nhƣ quĩ đạo của cơ học lƣợng tử phi tƣơng đối tính, các cấu trúc khác nhau đóng góp vào sự phát triển của Trƣờng lƣợng tử mô tả rõ sự tất yếu hoàn thiện các phƣơng trình chuyển động cổ điển. Do đó theo hình thức luận QED, ánh sáng có thể truyền nhanh hơn hoặc chậm hơn c, nhƣng sẽ truyền với vận tốc trung bình c . Trong QED, lý thuyết nhiễu loạn lƣợng tử miêu tả các hạt tích điện tƣơng tác thông qua trao đổi các quang tử. Biên độ của các tƣơng tác này có thể tính đƣợc bằng lý thuyết nhiễu loạn; các công thức hoàn chỉnh có một cách biểu diễn hình tƣợng đáng lƣu ý nhƣ là các biểu đồ Feynman. QED là lý thuyết mà các biểu đồ Feynman đƣợc áp dụng đầu tiên. Các biểu đồ này đƣợc phát minh ra trên cơ sở của Lagrangian trong cơ học. Dùng biểu đồ Feynman, có thể biểu diễn mọi quĩ đạo khả dĩ từ điểm đầu cho đến điểm cuối . Mỗi quĩ đạo đƣợc gắn với một biên độ xác suất , và biên độ thực mà ta quan sát là tổng của các biên độ trên các quĩ đạo khả dĩ. Các quĩ đạo với pha không đổi đóng góp nhiều nhất (do sự giao thoa với các sóng ngƣợc pha) — kết quả này cũng giống nhƣ sự giao thoa sóng của hai nguồn phát sóng đứng yên trong cơ học . Mô hình cũ của điện động lực học lƣợng tử chỉ bao gồm trao đổi quang tử riêng lẻ, nhƣng Sin-Itiro Tomonaga, Julian Schwinger và Richard Feynman nhận ra rằng tình huống lại phức tạp hơn rất nhiều vì tán xạ điện tử -điện tử có thể bao gồm trao đổi một vài quang tử. Một điện tích điểm trần trụi không tồn tại trong bức tranh của họ. Điện tích luôn tạo ra một đám các cặp hạt-phản hạt ảo ở xung quanh nó, do đó, mô men từ hiệu dụng của nó thay đổi và thế năng Coulomb cũng bị biến đổi tại các khoảng cách ngắn. Các tính toán từ mô hình này đã tái tạo lại các dữ liệu thực nghiệm của Kusch và Lamb với một độ chính xác ngạc nhiên và mô hình điện động lực học lƣợng tử mới đƣợc coi là một lý thuyết chính xác nhất đã từng có. Tomonaga, Schwinger và Feynman cùng nhận giải Nobel vật lý năm 1965 . Phát triển này của điện động lực học lƣợng tử lại có một tầm quan trọng vĩ đại nhất cho cả việc miêu tả các hi ện tƣợng vật lý năng lƣợng cao. Năm học 2009-2010 Hà Nam Thanh
  4. Điện động lực học lượng tử 3 1. Phương trình Dirac Mẫu ―ABC‖ tuy là một lý thuyết trƣờng lƣợng tử hoàn toàn phù hợp nhƣng nó không mô tả đƣợc thế giới thực vì các hạt A,B,C có spin bằng 0 , trong khi đó các quark và lepton mang spin 1/2 , và các trung tử mang spin bằng 1 . Việc tính đến spin có thể là khá phức tạp về mặt số học; đó là lý do tại sao ta đƣa ra phép tính Feynman trong ngữ cảnh của một lý thuyết ―đồ chơi‖ hoàn toàn không có những rắc rối trên. Trong cơ học lƣợng tử phi tương đối tính các hạt đƣợc mô tả bởi phƣơng trình Schrödinger , còn trong cơ học lƣợng tử tương đối tính các hạt có spin bằng 0 đƣợc mô tả bằng phƣơng trình Klein – Gordon , các hạt có spin 1/2 bởi phƣơng trình Dirac và các hạt có spin 1 bởi phƣơng trình Proca . Tuy nhiên một khi các qui tắc Feynman đã đƣợc thiết lập thì phƣơng trình trƣờng cơ bản mất dần hiệu lực về căn bản. Nhƣng với các hạt có spin 1/2 , kí hiệu của qui tắc Feynman đã giả định về sự tƣơng tự với phƣơng trình Dirac. Thế nên trong ba phần tiếp theo, ta sẽ nghiên cứu lý thuyết Dirac trong theo đúng nghĩa của nó. Ta đã thiết lập đƣợc phƣơng trình Schrödinger bằng việc bắt đầu với hệ thức năng xung lƣợng cổ điển áp dụng cách mô tả lƣợng tử : và để toán tử thu đƣợc tác dụng lên hàm sóng  cho kết quả : (Phƣơng trình Schrödinger) P hƣơng trình Klein – Gordon có thể thu đƣợc bằng chính phƣơng pháp này, bắt đầu với mối liên hệ năng – xung lƣợng tương đối tính Hoặc (từ nay ta sẽ bỏ qua thế năng, và ta chỉ xử lý các hạt tự do ). Đáng ngạc nhiên là cách mô tả lƣợng tử (7.2) không đòi hỏi sự biến đổi tƣơng đối tính; theo kí hiệu vectơ bốn chiều : Năm học 2009-2010 Hà Nam Thanh
  5. Điện động lực học lượng tử 4 Với Tức là : Thay (1.5) vào (1 .4) và để đạo hàm tác động lên hàm sóng , ta thu đƣợc : Hay : (Phƣơng trình Klein – Gordon ) Schrödinger rõ ràng đã khám phá ra phƣơng trình này trƣớc cả phƣơng trình phi tƣơng đối tính mang tên ông; nó thậm chí còn bị phủ nhận về căn bản vì bị cho là không tƣơng thích với ý nghĩa thống kê của hàm sóng  [tức (2) là xác suất tìm thấy hạt ở điểm (x,y,z)]. Nguồn gốc của sự khó khăn này là do phƣơng trình Klein – Gordon là phƣơng trình bậc hai theo thời gian t ( phƣơng trình Schrödinger là phƣơng trình bậc nhất theo t). Vì thế Dirac bắt đầu tìm kiếm một phƣơng trình phù hợp với công thức năng – xung lƣợng tƣơng đối tính bậc nhất theo thời gian. Nhƣng năm 1934 Pauli và Weisskopf đã chỉ ra rằng ý nghĩa thống kê tự nó đã có vấn đề trong lý thuyết lƣợng tử tƣơng đối tính, và hoàn trả phƣơng trình Klein – Gordon trở lại đúng vị trí tuyệ t vời của nó, trong khi vẫn duy trì phƣơng trình Dirac cho các hạt có spi n 1/2. Chiến lƣợc cơ bản của Dirac là ―đặt thừa số‖ cho hệ thức năng – xung lƣợng (1 .4). Việc này sẽ trở nên dễ dàng nếu ta chỉ có p0 (tức nếu p = 0) : Ta đƣợc hai phƣơng trình bậc nhất : hoặc  22 P hƣơng trình nào trong số hai phƣơng trình này đều đảm bảo rằng p p  - m c =0. Nhƣng sẽ là một vấn đề khác khi ba thành phần còn lại của p đƣợc tính đến, trong trƣờng hợp đó ta sẽ đi tìm biểu thức dƣới dạng : Năm học 2009-2010 Hà Nam Thanh
  6. Điện động lực học lượng tử 5  với  và  là tám hệ số cần đƣợc xác định. Khai triển vế phải của (7.12), ta đƣợc : k  Để không có số hạng nào phụ thuộc tuyến tính vào pk, ta chọn  =  , sau cùng ta k cần tìm hệ số  sao cho : k tức là Ta thấy rằng có thể chọn  = 1,  =  =  = 1, nhƣng dƣờng nhƣ không có cách 0 1 2 3 nào tránh khỏi ―các số hạng chéo‖. Ở điểm này, Dirac đã có một ý tƣởng sáng giá: nếu  là các ma trận thay vì các con số thì sẽ nhƣ thế nào ? Khi các ma trận là không giao hoán, ta có thể tìm thấy một tập hợp sao cho : với Hay ngắn gọn hơn là:  với g là ma trận Minkowski, và dấu móc nhọn thể hiện một phản giao hoán tử. Ta có thể tự giải quyết vấn đề này một cách bình thƣờng. Điều này có thể thực hiện đƣợc, mặc dù ma trận nhỏ nhất là 4  4. Có một số tập hợp tƣơng đƣơng các ―ma trận gamma‖; ta sẽ sử dụng qui ƣớc chuẩn ― Bjorken và Drell ‖ : Trong đó  (i = 1,2,3) là các ma trận Pauli đã chỉ ra, 1 biểu thị cho ma trận đơn vị cấp 2 i  2, 0 biểu thị cho ma trận cấp 2  2 của các số 0. Năm học 2009-2010 Hà Nam Thanh
  7. Điện động lực học lượng tử 6 Nhƣ một phƣơng trình ma trận cấp 4  4, hệ thức năng – xung lƣợng tƣơng đối tính cho ra thừa số : Bây giờ ta thu đƣợc phƣơng trình Dirac khi tách ra một số hạng (vấn đề không phải là số nào , mà đây là một cách chọn theo qui ƣớc ): Thực hiện sự thay thế thông thƣờng p  i   (phƣơng trình 7.5) , và cho kết quả tác dụng lên hàm sóng  : ( P hƣơng trình Dirac) Lƣu ý rằng  là một ma trận cấp 4  4 : Ta gọi đó là ― lƣỡng Spinor‖ hay ― Spin Dirac ‖ (Mặc dù nó gồm 4 thành phần nhƣng đó không phải là vectơ 4 chiều. Trong phần 3 ta sẽ chỉ ra nó thay đổi nhƣ thế nào khi ta thay đổi hệ quán tính; nó sẽ không phải là một phép biến đổi Lorenzt thông thƣờng). 2. Các nghiệm của phương trình Dirac Bây giờ ta sẽ đi tìm các nghiệm đơn giản c ủa phƣơng trình Dirac. Trƣớc hết giả sử rằng  độc lập đối với vị trí : Cùng với (7.5), phƣơng trình này mô tả một trạng thái có xung lƣợng lƣợng bằng không( p = 0 ). Phƣơng trình Dirac giản ƣớc thành : Hoặc : Năm học 2009-2010 Hà Nam Thanh
  8. Điện động lực học lượng tử 7 Trong đó mang hai thành phần phía trên, và mang hai thành phần phía dƣới. Do đó Và các nghiệm là : Ta xem thừa số nhƣ là sự phụ thuộc thời gian đặc trƣng của một trạng thái lƣợng tử với năng lƣợng E. Đối với một hạt đứng thì E = mc2, do đó A trong trƣờng hợp p = 0 chính xác là cái mà ta mong đợi. Nhƣng với B thì sao ? Dƣờng nhƣ nó mô tả một trạng thái với năng lƣợng âm (E = -mc2 ). Đây là một thất bại lớn và là điều đầu tiên mà Dirac cố tránh bằng cách giả thiết về một ―biển vô hạn‖ không nhìn thấy đƣợc của các hạt có năng lƣợng âm, nó lấp đầy các trạng thái không mong muốn. Thay vì làm thế , bây giờ ta giải thích các nghiệm ―năng lƣợng âm‖ bằng cách đƣa ra các phản hạt với năng lƣợng dƣơng. Theo đó, ví dụ nhƣ A mô tả các electron thì B sẽ mô tả các positron. Mỗi hàm sóng là mộ t spinor hai thành phần, đúng với hệ có spin 1/2. Tóm lại, phƣơng trình Dirac với p = 0 thừa nhận bốn nghiệm độc lập (bỏ qua các thừa số chuẩn hóa ) Năm học 2009-2010 Hà Nam Thanh
  9. Điện động lực học lượng tử 8 lần lƣợt mô tả một electron với spin hƣớng lên, một electron hƣớng xuống, một positron với spin hƣớng lên và một positron với spin hƣớng xuống. Tiếp theo ta đi tìm nghiệm sóng phẳng dƣới dạng : hoặc theo kí hiệu gọn hơn : (với a là hằng số chuẩn hóa, tuy không phù hợp với mục đích biểu diễn của ta nhƣng cần thiết sau này đ ể giữ cho đơn vị phù hợp). Ta hi vọng tìm thấy một lƣỡng spin u(p) sao cho (x) thỏa mãn phƣơng trình Dirac ( lúc này p  (E/c,p ) chỉ đơn giản là một tập hợp của bốn tham số tùy ý, nhƣng vì chúng biểu diễn cho năng lƣợng và xung lƣợng nên đơn giản nhất là ta gán cho chúng các kí tự thích hợp ngay từ khi bắt đầu). Do sự phụ thuộc vào x xác đ ịnh bởi số mũ Thay biểu thức này vào phƣơng trình Dirac (7.20), ta có : hoặc P hƣơng trình này đƣợc biết đến nhƣ là ―phƣơng trình Dirac trong không gian xung lƣợng ‖. Lƣu ý rằng đó là một phƣơng trình thuần túy đại số và không có đạo hàm. Nếu u thỏa mãn phƣơng trình ( 2.12 ) thì  (ở phƣơng trình 2.10) thỏa mãn phƣơng trình Dirac (1 .20). Ta có : Do đó : Năm học 2009-2010 Hà Nam Thanh
  10. Điện động lực học lượng tử 9 Trong đó chỉ số dƣới A biểu thị cho hai thành phần phía trên và B biểu thị cho hai thành phần phía dƣới. Để thỏa mãn phƣơng trình (2.12 ), ta phải có Thay uB vào uA ta đƣợc : Nhƣng do Nên với 1 là ma trận đơn vị cấp 2  2. Vậy Và do đó Tức là để thỏa mãn phƣơng trình Dirac, E và p (ở phƣơng trình 2.10 ) phải tuân theo hệ thức năng – xung lƣợng tƣơng đối tính. P hƣơng trình theo E ở ( 2.20 ) cho ta hai nghiệm: Nghiệm dƣơng ứng với các trạng thái hạt, nghiệm âm ứng với các trạng thái của phản hạt. Quay lại phƣơng trình ( 2.15 ) và sử dụng ( 2.17 ), vấn đề trở nên đơn giản khi xây dựng bốn nghiệm độc lập của phƣơng trình Dirac ( bỏ qua các thừa số chuẩn hóa) Năm học 2009-2010 Hà Nam Thanh
  11. Điện động lực học lượng tử 10 đặt thì đặt thì đặt thì đặt thì Với (1) và (2) ta phải dùng dấu cộng ở phƣơng trình ( 2.21 ), nếu không uB sẽ bất định khi p  0, đây là điều dễ hiểu với hàm sóng các hạt. Với (3) và (4) ta buộc phải dùng dấu trừ, đó là các trạng thái của phản hạt . Thông thƣờng ta chuẩn hóa các spinor này theo cách sao cho Với dấu cộng kí hiệu cho liên hợp chuyển vị (hay ―liên hợp Hermit ‖) Do đó Vậy bốn nghiệm là : (với ) Năm học 2009-2010 Hà Nam Thanh
  12. Điện động lực học lượng tử 11 (với ) Và hằng số chuẩn hóa là Có thể đoán nhận đƣợc u(1) mô tả một electron với spin hƣớng lên, u(2) với spin xuống và cứ nhƣ thế , nhƣng không phải nhƣ vậy. Với các hạt Dirac, các ma trận spin là: với và có thể dễ dàng kiểm tra rằng u(1), chẳng hạn, không phải là một trạng thái riêng của  z. Tuy nhiên, nếu ta hƣớng trục z theo chiều chuyển động thì (trƣờng hợp này px = p y = 0) thì u(1), u(2) ,u(3) và u(4) là các spinor riêng của Sz; u(1) và u(3) là spin hƣớng lên, u(2) và u(4) là các spin hƣớng xuống. Nhƣ đã nói ở phần trƣớc thì E và p (trong biểu thức 2.10 ) là các tham số toán học tƣơng ứng năng lƣợng và xung lƣợng trong vật lí, và điều này hoàn toàn đúng cho các trạng thái của electron, u(1) và u(2). Tuy nhiên, E ở u(3) và u(4) không thể biểu thị cho năng lƣợng của positron; tất cả các hạt tự do, nhƣ electron và positron, đều mang năng lƣợng dƣơng. Nghiệm năng lƣợng âm phải đƣợc giải thích lại nhƣ các trạng thái phản hạt với năng lƣợng dƣơng. Để biểu diễn các nghiệm này dƣới dạng năng lƣợng và xung lƣợng của positron, chúng ta đảo các dấu của E và p : [cho nghiệm (3) và (4)] Chú ý rằng chúng giống với các nghiệm cũ trong phƣơng trình Dirac; ta chỉ đơn giản là chấp nhận một qui ƣớc khác về dấu cho các tham số, để phù hợp hơn với ý nghĩa vật lí của chúng. Ngƣời ta thƣờng sử dụng kí tự  cho các trạng thái của positron, đƣợc biểu diễn dƣới dạng năng lƣợng và xung lƣợng : Năm học 2009-2010 Hà Nam Thanh
  13. Điện động lực học lượng tử 12 ) (với Từ đó ta sẽ không đề cập đến u(3) và u(4) nữa; các nghiệm ta sẽ dùng là u(1), u(2) (biểu diễn hai trạng thái spin của một electron với năng lƣợng E và xung lƣợng p) và (1), (2) (biểu diễn hai trạng thái spin của positron với năng lƣợng E và xung lƣợng p). Lƣu ý rằng trong khi u thỏa mãn phƣơng trình Dirac ( 2.13 ) trong không gian xung lƣợng dƣới dạng Thì  tuân theo phƣơng trình với dấu của p ngƣợc lại : Một cách ngẫu nhiên, sóng phẳng là các nghiệm đặc biệt của phƣơng trình Dirac. Chúng mô tả các hạt với các năng lƣợng và xung lƣợng đặc trƣng, và trong một thí nghiệm đơn giản chúng là các tham số mà ta có thể đo và điều chỉnh đƣợc. 3. Hiệp biến song tuyến tính Ta đã đề cập đến trong phần 1 rằng các thành phần của một spinor Dirac không biến đổi nhƣ một vectơ bốn chiều khi ta chuyển từ hệ quán tính sang một hệ khác. Vậy chúng chuyển đổi nhƣ thế nào ? Ta sẽ không nói cụ thể ở đây mà chỉ trích dẫn ra kết quả: Nếu ta đến một hệ đang dịch chuyển với tốc độ v theo phƣơng x thì qui tắc biến đổi sẽ là Năm học 2009-2010 Hà Nam Thanh
  14. Điện động lực học lượng tử 13 với S là ma trận cấp 4  4 với và . Giả sừ ta muốn xây dựng một đại lƣợng vô hƣớng không có một spinor  . Ta thử biểu thức Nhƣng đó lại không phải là một vô hƣớng, ta có thể kiểm tra bằng cách áp dụng qui tắc biến đổi đã có : Thật vậy: Dĩ nhiên, tổng các bình phƣơng của các yếu tố của vectơ bốn chiều là bất biến, ta cần các dấu trừ ― - ‖ cho các thành phần không gian. Với một phép thử-và-lỗi nhỏ ta sẽ khám phá ra rằng trong trƣờng hợp các spinor, ta cần các dấu trừ cho thành phần thứ 3 và thứ 4 . Do đó ta sẽ đƣa ra phép hiệp biến vectơ bốn chiều để giữ nguyên các kí hiệu về dấu, bây giờ ta sẽ trình bày hàm liên hiệp: Ta thừa nhận đại lƣợng là bất biến tƣơng đối tính. Với S  S =  , và do đó : +0 0 Ta đã phân biệt đƣợc vô hƣớng và giả vô hƣớng theo các tính chất của chúng theo các phép biến đổi chẳn lẽ , P: (x,y,z)  (-x,-y,-z) . Các giả vô hƣớng thay đổi dấu, còn các vô hƣớng thì không. Vậy là vô hƣớng hay giả vô hƣớng? Trƣớc hết ta cần biết spinor. Dirac biến đổi nhƣ thế nào theo P. Một lần nữa, ta sẽ không thiết lập nó mà chỉ trích dẫn kết quả : Năm học 2009-2010 Hà Nam Thanh
  15. Điện động lực học lượng tử 14 Theo đó Vì thế ( ) là bất biến theo phép biến đổi chẵn- lẽ, nó là một vô hƣớng. Nhƣng ta cũng có thể đồng thời thực hiện một giả vô hƣớng không có  : với Theo phép biến đổi chẵn lẽ [lƣu ý là ( 0)2 = 1]. 0 ở ngƣợc phía với 5 nhƣng ta có thể đảo vị trí của chúng bằng cách lƣu ý rằng nó phản giao hoán với 1, 2 và 3 (phƣơng trình 7.15) và tự giao hoán với ( 3 0 = - 0 3 , 2 0 = - 0  2 , 1 0 = - 0 1 , 0  0 =  0 0 ) chính nó do đó Tƣơng tự,  cũng phản giao hoán với các ma trận  khác: 5 Trong bất kì trƣờng hợp nào thì do đó nó là một giả vô hƣớng. Nhƣ vậy, có 16 tích có dạng i*j (lấy một thành phần của  * và một thành phần của  ) khi i, j chạy từ 1 đến 4. Mƣời sáu tích này có thể cộng lại với nhau theo những tổ hợp tuyến tính khác nhau để xây dựng nên các đại lƣợng với các tính chất dịch chuyển dễ nhận thấy, nhƣ là : = vô hƣớng (1 thành phần) = giả vô hƣớng (1 thành phần) = vectơ (4 thành phần) = giả vectơ (4 thành phần) = tenxơ phản xứng (6 thành phần) Năm học 2009-2010 Hà Nam Thanh
  16. Điện động lực học lượng tử 15 Với Nó cho ta 16 số hạng, đây là tất cả những gì ta hi vọng có thể làm đƣợc theo cách này. Ta không thể thiết lập một tensor đối xứng song tuyến tính trong  * và  , và nếu ta chỉ là một đơn cử (nghĩ theo cách khác đó chính là: 1,  5 đang tìm một vectơ thì    , ,  và  cấu thành một cơ sở của không gian của mọi ma trận cấp 4  4, bất kì 5 một ma trận 4  4 nào đều có thể viết dƣới dạng phụ thuộc tuyến tính của 16 số hạng này. Đặc biệt nếu gặp phải tích của năm ma trận chẳng hạn, thì ta có thể chắc chắn rằng nó có thể đƣợc rút gọn t hành tích của không nhiều hơn hai thành phần). Bây giờ ta chú ý đến các kí hiệu ở (7.68) . Đặc tính tensor của các hiệp biến song tuyến tính, và thậm chí là tính chất của chúng theo toán tử chẳn lẽ đƣợc chỉ ra dễ dàng : giống nhƣ một vectơ  bốn chiều, và nó thực sự là một vectơ bốn chiều. Nhƣng  tự nó không hẳn là một vectơ bốn chiều, nó là một tập hợp của 4 ma trận cố định (1 .17), chúng không đổi khi ta dịch chuyển qua một hệ quán tính khác, sự thay đổi là của  . 4. Photon Trong điện động lực cổ điển đ iện trƣờng và từ trƣờng (E và B) đƣợc thiết lập bởi mật độ điện tích  và mật độ dòng J, đƣợc xác định bởi các phƣơng trình Maxwell : Trong kí hiệu tƣơng đối tính, E và B lập thành một tensor phản xứng bậc hai, ―tensor cƣờng độ trƣờng‖ F ( tức là F01 = Ex, F12 = - Bz, vv…), trong khi đó  và J cấu thành một vectơ 4 chiều : Hệ các phƣơng trình Maxwell không thuần nhất [(i) và (iv)] bây giờ có thể đƣợc viết gọn lại: Năm học 2009-2010 Hà Nam Thanh
  17. Điện động lực học lượng tử 16 Từ sự phản xứng của tenxơ F (F = - F) , ta thấy rằng J là không phân kì. Hoặc theo kí hiệu vectơ 3 chiều,  .J = -  / t ; đây là một phƣơng trình liên tục diễn tả sự bảo toàn của điện tích trong trƣờng. Giống nhƣ với các phƣơng trình Maxwell thuần nhất, (iii) tƣơng đƣơng với cách phát biểu rằng B có thể đƣợc viết dƣới dạng tích hữu hƣớng của thế vectơ A : Khi đó (ii) trở thành cũng tƣơng đƣơng với phát biểu rằng E  1/ c   A / t  có thể đƣợc viết nhƣ là một gradient của thế vô hƣớng V : Theo kí hiệu tƣơng đối tính, phƣơng trình ( 4.3 ) và (4.5 ) trở thành : với Dƣới dạng thế vectơ 4 chiều, các phƣơng trình Maxwell không thuần nhất (4.4 ) cho : Trong điện động lực cổ điển, các trƣờng là các thực thể vật lí, các thế là các công thức toán học hữu ích đơn giản. Do biểu thức của thế năng luôn tự phù hợp với hệ các phƣơng trình Maxwell : với các biểu thức ( 4.3 ) và (4.4 ), (ii) và (iii) luôn đƣợc thỏa mãn, nên V và A ta đã định nghĩa nhƣ trên là có thể hợp lý. Nhƣng ở phƣơng trình ( 4.8 ) sự không thích hợp của biểu thức thế năng là ở chỗ V và A không đƣợc xác định một cách đơn nhất. Thực vậy, từ phƣơng trình ( 4.6 ) ta thấy rằng các thế mới (với  là hàm bất kì của vị trí và thời gian) cũng không xác định đơn nhất vì   A    A     A   A . Sự thay đổi các thế mà không ảnh hƣởng đến t rƣờng đƣợc gọi là phép biến đổi định cỡ. Ta có thể khai thác sự định cỡ tự do này để buộc các điều kiện bổ sung cho thế : Năm học 2009-2010 Hà Nam Thanh
  18. Điện động lực học lượng tử 17 Đó chính là điều kiện định cỡ Lorentz, với điều kiện này phƣơng trình Maxwell ( 7.80) đƣợc đơn giản hóa hơn nữa: T rong đó đƣợc gọi là toán tử D’Alember. Tuy nhiên, điều kiện Lorentz không xác định đơn nhất A. Các phép biến đổi định cỡ khác có khả năng hơn, nó không làm nhiễu loạn phƣơng trình ( 4.10 ) và chỉ ra rằng hàm định cỡ  thỏa mãn phƣơng tr ình sóng: Nhƣng nó không chỉ rõ cách để loại bỏ phần không rõ ràng còn lại trong A, nên ta có thể hoặc là (1) chấp nhận sự bất định, nghĩa là chấp nhận một số bậc tự do không rõ ràng, hoặc (2) buộc một điều kiện bổ sung, nó phá vỡ tính hiệ p biến Lorentz của lý thuyết này. Cả hai phƣơng pháp này đều đƣợc sử dụng trong việc hình thành đi ện động lực học lƣợng tử mà ta sẽ tiếp tục nghiên cứu. Trong không gian tự do , nơi mà J = 0 , ta chọn Điều kiện định cỡ Lorentz lúc này là Cách chọn này (phép định cỡ n Coulomb) là khá đơn giản, nhƣng bằng cách chọn một thành phần (A0) với cho phƣơng pháp đặc biệt ta bị giới hạn ở một hệ quán tính cụ thể (hoặc nó buộc ta thực hiện một phép biến đổi chuẩn trong trong mối tƣơng quan với mọi phép biến đổi Lorentz duy trì điều kiện chuẩn Coulomb). Trong điện động lực lƣợng tử A trở thành hàm sóng của photon. Photon tự do thỏa mãn phƣơng trình ( 4.11 ) với J = 0 ta thấy rõ đó cũng chính là phƣơng trình Klein – Go rdon cho hạt không khối lƣợng. Nhƣ trƣờng hợp phƣơng trình Dirac, ta tìm các nghiệm sóng phẳng với xung lƣợng p = (E/c,p ):  trong đó  là véctơ phân cực – đặc trƣng cho spin của photon – và a là thừa số chuẩn hóa. Thay biểu thức (7.88) vào phƣơng trình (7.87), ta thu đƣợc điều kiện trên p  : do đó đó phải là hạt không khối lƣợng. Thêm vào đó,   có bốn thành phần, nhƣng chúng không hoàn toàn độc lập. Điều kiện Lorentz ( 4.10 ) đòi hỏi rằng Năm học 2009-2010 Hà Nam Thanh
  19. Điện động lực học lượng tử 18 Hơn nữa, theo phép định cỡ Coulomb ta có: tức là véctơ phân cực ba chiều thẳng góc với phƣơng lan truyền, ta nói một photon tự do bị phân cực ngang. Vì thế phép định cỡ Coulomb còn đƣợc biết nhƣ là phép đĩnh cỡ ngang. Nhƣ vậy, có hai véctơ ba chiều độc lập tuyến tính vuông góc với p; ví dụ, nếu p hƣớng theo trục z thì ta có thể chọn Do đó thay vì phải có bốn nghiệm độc lập với mỗi xung lƣợng đã cho( quá nhiều đối với hạt có spin bằng 1), thì ta chỉ c òn lại hai. Nhƣ vây, liệu có phải photon có ba trạng thái spin hay không ? Câu trả lời là không : các hạt có khối lƣợng với spin s thì có 2s + 1 cách định hƣớng spin khác nhau, nhƣng một hạt không khối lƣợng thì chỉ có hai cách, không tính spin của nó ( ngoại trừ s = 0 thì chỉ có một cách). Dọc theo phƣơng dịch chuyển chúng chỉ có thể có ms= + s hoặc ms= - s , nói cách khác, độ xoắn của nó chỉ có thể là + 1 hoặc -1. 5. Các qui tắc Feynman cho Điện động lực lượng tử Trong phần 2 ta đã tìm thấy rằng các elect ron và positron tự do có xung lƣợng p = (E/c,p ) với năng lƣợng E = (m2c4 + p 2c2 )1/2 đƣợc mô tả bởi hàm sóng với s =1,2 cho hai trạng thái spin. Các spinor u (s) và (s) thỏa mãn các phƣơng trình Dirac trong không gian xung lƣợng : và các liên hiệp của chúng, thỏa mãn : Chúng trực giao chuẩn hóa và đủ, theo nghĩa là Năm học 2009-2010 Hà Nam Thanh
  20. Điện động lực học lượng tử 19 Một tập tƣờng minh thông thƣờng (u(1),u (2),u (3),u (4) ) đƣợc đƣa ra trong các phƣơng trình (2.24 ) và (4.28 ). Thông thƣờng, ta sẽ tí nh trung bình các spin của electron và positron, và trong trƣờng hợp đó, vấn đề không còn là spin hƣớng lên hay hƣớng xuống nữa; những gì ta thật sự cần là tính đủ của chúng. Với một số bài tập trong đó spin đã đƣợc xác định thì ta phải dùng các spinor thích hợp cho trƣờng hợp này. Trong khi, một photon tự do có xung lƣợng p = (E/c,p) với năng lƣợng E = pc đƣợc mô tả bởi hàm sóng trong đó s = 1,2 cho hai trạng thái của spin ( hoặc sự phân cực) của photon. Véctơ phân  s  thỏa mãn điều kiện Lorentz trong không gian xung lƣợng : cực Chúng trực giao, theo nghĩa là và chuẩn hóa Theo phép định cỡ Coulomb và véctơ phân cực ba chiều tuân theo hệ thức đủ Một cặp tƣờng minh thông thƣờng (  (1),  (2) ) đƣợc đƣa ra ở biểu thức ( 4.20 ). Để tính biên độ M liên hệ với sơ đồ Feynman cụ thể , ta tiến hành nhƣ sau : 1. Kí hiệu : gán cho các xung lƣợng bốn chiều đi vào và đi ra là p1, p2, …, pn, các spin tƣơng ứng là s1, s2,…, sn; các nội xung lƣợng bốn chiều là q1, q2,…, qn . Đặt các dấu mũi tên cho các tuyến nhƣ sau : mũi tên ở các ngoại tuyến Fermion chỉ ra nó là một electron hay một positron; các mũi tên ở các nội tuyến Fermion đƣợc gán sao cho ―hƣớng của dòng‖ qua sơ đồ đƣợc bảo toàn (tức là mọi đỉnh phải có một mũi tên đi vào và một mũi tên đi ra ). Các mũi tên ở các ngoại tuyến photon hƣớng ra phía trƣớc, với các nội tuyến photon thì sự lựa chọn là tùy ý ( xem hình 1). Năm học 2009-2010 Hà Nam Thanh
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2