intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

PHÂN TÍCH SO SÁNH VỀ HIỆU QUẢ CỦA CÁC NGÀNH SẢN XUẤT Ở HÀ NỘI VÀ HỒ CHÍ MINH

Chia sẻ: Le Thuy Duong | Ngày: | Loại File: PDF | Số trang:40

230
lượt xem
52
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài viết này ước lượng hiệu quả kỹ thuật của 32 ngành sản xuất ở Hà nội và thành phố Hồ Chí Minh (Tp.HCM) thông qua sử dụng số liệu hỗn hợp. Bài viết sử dụng phương pháp tiếp cận tham số, thường là hàm sản xuất biên ngẫu nhiên (SFPF), và phương pháp tiếp cận phi tham số, thường là phân tích bao dữ liệu (DEA) với số liệu ở cấp ngành cho các ngành sản xuất ở Hà nội và Tp.HCM trong giai đoạn 2000-2002. Kết quả ước lượng từ phương pháp SFPF (hoặc DEA) cho thấy điểm...

Chủ đề:
Lưu

Nội dung Text: PHÂN TÍCH SO SÁNH VỀ HIỆU QUẢ CỦA CÁC NGÀNH SẢN XUẤT Ở HÀ NỘI VÀ HỒ CHÍ MINH

  1. PHÂN TÍCH SO SÁNH VỀ HIỆU QUẢ CỦA CÁC NGÀNH SẢN XUẤT Ở HÀ NỘI VÀ HỒ CHÍ MINH ……….., tháng … năm …….
  2. PHÂN TÍCH SO SÁNH VỀ HIỆU QUẢ CỦA CÁC NGÀNH SẢN XUẤT Ở HÀ NỘI VÀ THÀNH PHỐ HỒ CHÍ MINH* PGS.TS.Nguyễn Khắc Minh Khoa Kinh tế học, Đại học Kinh tế quốc dân Tóm tắt Bài viết này ước lượng hiệu quả kỹ thuật của 32 ngành sản xuất ở Hà nội và thành phố Hồ Chí Minh (Tp.HCM) thông qua sử dụng số liệu hỗn hợp. Bài viết sử dụng phương pháp tiếp cận tham số, thường là hàm sản xuất biên ngẫu nhiên (SFPF), và phương pháp tiếp cận phi tham số, thường là phân tích bao dữ liệu (DEA) với số liệu ở cấp ngành cho các ngành sản xuất ở Hà nội và Tp.HCM trong giai đoạn 2000-2002. Kết quả ước lượng từ phương pháp SFPF (hoặc DEA) cho thấy điểm hiệu quả trung bình của các ngành sản xuất ở Tp.HCM trong các năm 2000, 2001 và 2002 tương ứng là 63,3% (63,28%), 65,1% (57,2%), và 70% (61%). Các con số tương ứng cho Hà nội là 70,7% (58,03%), 59,6% (56,92%), và 62,2% (60%). Các kết quả này cho thấy ước lượng bằng hai phương pháp cho hai thành phố mang lại kết quả khá giống nhau. Dựa trên kết quả của cách tiếp cận SFPF và DEA (sử dụng mô hình tối ưu đầu vào) với 32 ngành ở hai thành phố, chúng ta có thể kết luận rằng, nếu coi các ngành này có cùng một đường biên sản xuất thì với mức độ hoạt động như hiện nay, các ngành này có thể giảm khoảng 30% đến 40% mức đầu vào hiện tại để sản xuất mức đầu ra hiện nay. Rất nhiều ngành sản xuất ở Hà nội và Tp.HCM có hiệu quả kỹ thuật thấp và điều này có thể do một số ngành có tốc độ tăng trưởng nhanh vì chi phí cơ hội của chúng lớn và thị trường lao động có sự dịch chuyển. Một số nguyên nhân khác có thể dẫn đến sự phi hiệu quả của các ngành này như nhân công không thích ứng được với công nghệ mới, hoặc sự khác biệt về chiến lược của một công ty trong ngành làm cho lợi thế cạnh tranh ngành có sự thay đổi lớn. Những nguyên nhân này có thể gợi ý những chính sách phù hợp đối với các nhà hoạch định. Từ khoá: Ngành sản xuất ở Việt nam, hiệu quả kỹ thuật, hàm sản xuất biên ngẫu nhiên (SFPF), tiếp cận tham số, phân tích bao dữ liệu (DEA), và tiếp cận phi tham số. Tác giả xin chân thành cảm ơn Diễn đàn Phát triển Việt nam - Dự án liên kết nghiên cứu giữa Viện Quốc gia * Sau đại học về Nghiên cứu Chính sách (GRIPS), Nhật Bản và trường ĐH Kinh tế Quốc dân, Việt nam - vì sự hỗ trợ đối với nghiên cứu này. Tất cả những quan điểm bày tỏ trong bài viết là của tác giả, và chúng không đại diện cho quan điểm của GRIPS, ĐH KTQD, VDF, hay bất kỳ tổ chức nào được đề cập trong bài viết. Mọi vấn đề liên quan, xin gửi tới nkm99@hotmail.com.
  3. 1. GIỚI THIỆU Các ngành sản xuất ở Việt nam, đặc biệt ở Hà nội và Tp.HCM, có vai trò quan trọng hàng đầu đối với nền kinh tế quốc dân. Thập kỷ vừa qua đã chứng kiến sự cải thiện đáng kể trong hoạt động của các ngành này. Sau cơn khủng hoảng do tác động từ sự sụp đổ của Liên Xô (cũ), các ngành này đã hồi phục và tăng trưởng với tốc độ trung bình 10%/năm, và chúng đóng góp đáng kể vào tăng trưởng của tổng sản phẩm quốc nội (GDP). Các ngành này cũng lọt vào danh sách những ngành xuất khẩu hàng đầu. Bên cạnh đó, chúng còn góp phần làm giảm bớt thất nghiệp, tận dụng lợi thế cạnh tranh của những ngành sử dụng nhiều lao động. Mặc dù hoạt động của các doanh nghiệp trong các ngành này đã cải thiện nhiều, nhưng nói chung, hiệu quả vẫn còn ở mức thấp. Trong số các tỉnh, thành phố của cả nước, Hà nội và Tp.HCM có điều kiện thuận lợi nhất để cải thiện hoạt động của các doanh nghiệp trong ngành sản xuất. Tuy vậy, mức hiệu quả kỹ thuật trung bình của các doanh nghiệp (được thể hiện bằng khả năng tiết kiệm tối đa đầu vào để sản xuất một mức đầu ra cho trước, hoặc tối đa đầu ra với mức đầu vào cho trước) lại rất thấp. Bảng 1 thể hiện một số chỉ số quan trọng của các ngành sản xuất ở Hà nội và Tp.HCM. Như có thể thấy, so với tổng thể cả nước, các ngành sản xuất ở hai thành phố này chiếm tỷ trọng lớn với các chỉ số về số lượng doanh nghiệp, số việc làm, nguồn vốn, tài sản cố định và đầu tư dài hạn, doanh thu thuần, doanh thu từ các hoạt động kinh doanh, và lợi nhuận trước thuế. Bảng 1 cũng cho thấy các chỉ số của Tp.HCM lớn hơn rất nhiều so với các chỉ số tương ứng của Hà nội. Bảng 1: Các ngành sản xuất ở Hà nội và Tp.HCM Đơn vị: % Lợi Số lượng TS cố định và Doanh thu từ Số lao Doanh thu nhuận doanh đầu tư dài các h.động Vốn động thuần trước nghiệp hạn kinh doanh thuế 100 100 100 100 100 100 100 Cả nước Hà nội 2000 11,09 12,68 23,36 14,43 18,45 18,45 5,52 2001 12,40 12,77 20,07 14,43 19,10 18,77 6,16 2002 15,04 13,03 20,49 13,33 17,80 17,76 4,31 Tp.HCM 2000 20,39 22,30 17,89 18,54 25,08 25,08 14,45 2001 22,35 22,64 18,52 18,95 24,89 25,44 13,61 2002 23,06 23,15 20,29 17,98 30,44 30,43 17,15 Chú thích: Số liệu này được tính vào ngày 31/12 các năm Nguồn: Tổng cục Thống kê (2001, 2002, 2003) Mặc dù có nhiều lợi thế so với các tỉnh, thành phố khác, nhưng Hà nội và Tp.HCM cũng phải đối mặt với nhiều khó khăn mà có thể tác động tiêu cực đến hiệu quả của các ngành sản xuất, ví dụ như cơ sở hạ tầng nghèo nàn, thiếu thông tin, và nhân công có trình độ tay nghề thấp. Vì thế, một số câu hỏi rất đáng quan tâm đã được đưa ra, ví dụ là mức hiệu quả sản xuất của các ngành sản xuất ở hai thành phố này như thế nào, và làm thế nào để so sánh chúng. Bên cạnh đó, chúng ta cũng cần tìm hiểu xem các nhân tố tác động đến hiệu quả hoạt động đó, ví dụ như quy mô ngành, tỷ lệ vốn/lao động. Những câu hỏi nêu ra không chỉ hữu ích cho mục đích nghiên cứu, mà nó còn gợi mở những chính sách phù hợp cho các nhà hoạch định. 2
  4. Để phân tích hiệu quả sản xuất của các công ty ở Đài Loan và các công ty nhánh của chúng đang hoạt động trên đất Trung Quốc, Lin và cộng sự (1977) đã sử dụng hàm sản xuất Cobb- Douglas để ước lượng mức hiệu quả sản xuất của các doanh nghiệp này. Kết quả cho thấy, các công ty mẹ ở Đài Loan có hiệu quả sản xuất cao hơn và có mức khác biệt trong sản xuất nhỏ hơn so với các công ty nhánh hoạt động ở Trung Quốc. Färe và cộng sự (1994) đã phân tích năng suất của 17 nước trong khối OECD trong giai đoạn 1979-1988. Họ sử dụng phương pháp tiếp cận phi tham số để tính chỉ số Malmquist, và sau đó phân rã nó thành phần thay đổi kỹ thuật và phần thay đổi hiệu quả. Cho đến nay, vẫn chưa có một phân tích về hiệu quả sản xuất của các ngành ở Hà nội và Tp.HCM. Chính vì lý do đó mà cũng không có một câu trả lời thực sự chính xác cho câu hỏi các ngành sản xuất ở thành phố nào hoạt động hiệu quả hơn, tại sao, và nhân tố nào tác động đến sự phi hiệu quả của các ngành đó. Vì vậy, bài viết này nhằm mục tiêu ước lượng hiệu quả kỹ thuật của các ngành sản xuất của hai thành phố này để xem xét sự khác biệt trong hiệu quả hoạt động của chúng. Cụ thể, chúng tôi sẽ so sánh hiệu quả kỹ thuật cuả các ngành ở hai thành phố bằng cách sử dụng hai phương pháp đã được nêu tên. Bài viết bao gồm các phần sau đây. Chúng tôi bắt đầu bằng việc mô tả các ngành sản xuất ở Hà nội và Tp.HCM như đã trình bày trong phần đầu của bài viết. Tiếp theo, cơ sở lý thuyết và những sơ lược về các nghiên cứu đã áp dụng các phương pháp này được trình bày trong phần 2. Phần 3 mô tả bộ số liệu được sử dụng trong bài viết. Kết quả ước lượng theo hai phương pháp được trình bày trong phần 4, và phần 5 sẽ nêu ra một số kết luận của nghiên cứu này. 2. CƠ SỞ LÝ THUYẾT 2.1. Mô hình hàm sản xuất biên ngẫu nhiên (SFPF) Để so sánh hiệu quả sản xuất của các ngành sản xuất ở hai thành phố, chúng ta cần xác định mức sản xuất tối đa của một ngành điển hình để làm cơ sở so sánh. Tuy nhiên, một hàm sản xuất được ước lượng chẳng qua cũng chỉ mô tả được mối quan hệ thông thường giữa đầu vào và đầu ra, và nó không phản ánh được mức sản lượng tối đa với một lượng đầu vào cho trước. Trong hầu hết các trường hợp, hàm sản xuất được sử dụng để tính toán mức sản xuất tối đa trong điều kiện đầu vào cho trước. Farrell (1957) đề xuất các tiếp cận phi tham số để ước lượng ba loại hiệu quả sản xuất, đó là hiệu quả kỹ thuật, hiệu quả phân bổ, và hiệu quả giá cả. Với giả định một hàm sản xuất dạng Cobb-Douglas, Aigner và cộng sự (1968) đã sử dụng phương pháp tiếp cận tham số để xác định sự đóng góp của từng nhân tố đầu vào trong quá trình sản xuất. Tuy vậy, một điều hết sức quan trọng là phải xác định được cách phân phối của nhiễu (sai số) trong cách tiếp cận này. Một trong những hạn chế của cách tiếp cận biên là giả định rằng các ngành đều sử dụng một loại công nghệ và cùng đường biên sản xuất. Vì thế, sự khác biệt trong sản xuất của các ngành chủ yếu là do vấn đề con người trong quản lý hoặc do sự khác biệt về công nghệ. Aigner và cộng sự (1977) và Meeusen và cộng sự (1977) đã lập luận rằng, có thể có một số nhân tố phi kỹ thuật mang tính ngẫu nhiên tác động đến mức sản lượng, ví dụ chính sách của chính quyền trung ương và địa phương, và yếu tố thời tiết. Do vậy, cần phải có hai bộ phận của nhiễu ngẫu nhiên, đó là một bộ phận đại diện cho phân phối ngẫu nhiên đối xứng nhưng không quan sát được (v), và bộ phận kia là nhiễu ngẫu nhiên do sự phi hiệu quả kỹ thuật (u). Trong cách tiếp cận sản xuất biên ngẫu nhiên, Aigner và cộng sự (1977) và Stevenson (1980) giả định rằng u tuân theo quy luật phân phối chuẩn cụt, trong khi v tuân theo quy luật phân phối chuẩn đối 3
  5. xứng. Trong bài viết của Meeusen và cộng sự (1977), u được coi là tuân theo phân phối mũ. Afriat (1972) coi nhiễu được phân phối dưới dạng beta hai tham số, trong khi Richmond (1974) lại áp dụng phân phối gamma một tham số. Greene (1990) gợi ý áp dụng phân phối gamma hai tham số cho u. Như vậy, có rất nhiều giả định về nhiễu ngẫu nhiên. Lee (1983) đề xuất cách kiểm định sự phù hợp của nhiễu ngẫu nhiên bằng phương pháp số nhân Lagrange. Tác giả xem xét các kiểm định về phân phối bán chuẩn của các nhiễu ngẫu nhiên như đã được thực hiện trong nghiên cứu của Stevenson (1980). Để kiểm định thống kê với các phân phối bán chuẩn hoặc chuẩn cụt, ông đã sử dụng cách kiểm định điểm hiệu quả như Rao (1973) đã làm. Bauer (1990) cho rằng, cách tiếp cận tham số có thể phân tích được hiệu quả, nhưng nó có một số hạn chế nhất định, ví dụ như cần phải biết dạng hàm số. Yêu cầu này khiến việc ước lượng hiệu quả bị chệch dù rằng SFPF có thể phân rã phần chênh lệch với đường biên sản xuất thành hai bộ phận là hiệu quả kỹ thuật và nhiễu ngẫu nhiên. Dù có những hạn chế đó nhưng SFPF vẫn được sử dụng rộng rãi vì các tính chất thống kê có các hệ số được ước lượng có thể kiểm định được. Mô hình 1. Để tiến hành nghiên cứu và so sánh hiệu quả của các ngành sản xuất ở Hà nội và Tp.HCM, chúng tôi chọn cách tiếp cận hàm sản xuất biên ngẫu nhiên. Một số các nhân tố không quan sát được có tác động đến sản lượng của các ngành này, ví dụ như những thay đổi về chính sách ở hai thành phố, cũng sẽ được xem xét cụ thể. Giả sử rằng nhiễu ngẫu nhiên có phân phối bán chuẩn (Mô hình 1), hàm sản xuất chung của các ngành này có thể được viết như sau. y = f ( x, β ).eε (1) trong đó ε i = vi − ui với các điều kiện: (i) vi ∼ N(0,σ2v), (ii) ui ∼ iid N+(0,σ2u), tức là phân phối bán chuẩn không âm, và (iii) ui và vi độc lập với nhau. Hàm mật độ của u ≥ 0 được mô tả như sau: ⎛ u2 ⎞ 1 f (u ) = exp ⎜ − 2 ⎟ (2) ⎝ 2σ u ⎠ σ 2π Hàm mật độ của v là: ⎛ v2 ⎞ 1 f (v ) = exp ⎜ − 2 ⎟ (3) ⎝ 2σ v ⎠ σ 2π Hàm mật độ biên của ε được ước lượng bằng cách loại u ra khỏi f(u,ε), và ta được: ∞ ⎛ ελ ⎞ ⎤ ⎛ ε2 ⎞ 2 ⎛ ε ⎞ ⎛ ελ ⎞ ⎡ 1 f (ε ) = ∫ f ( u , ε )du = 1 − Φ ⎜ ⎟ ⎥ exp ⎜ − 2 ⎟ = φ ⎜ ⎟Φ⎜− ⎟ (4) ⎢ ⎝ σ ⎠⎦ ⎝ 2σ ⎠ σ ⎝ σ ⎠ ⎝ σ⎠ σ 2π ⎣ 0 trong đó σ = (σ u2 + σ v2 )1/ 2 , λ = σ u / σ v , Φ(.): hàm phân phối tích luỹ chuẩn chuẩn hoá, và φ(.) là hàm mật độ. 4
  6. Lưu ý rằng, λ được sử dụng để thể hiện sự đóng góp tương đối của u và v đối với ε. Nó được sử dụng để giải thích kết quả ước lượng. Khi λ tiến đến 0 thì hoặc σv2 → ∞ hoặc σu2→ 0, và phần sai số cân xứng sẽ chiếm ưu thế hơn so với sai số một bên trong việc xác định ε. Khi λ tiến đến ∞ thì hoặc σu2 → ∞ hoặc σv2→ 0, và ta có kết quả ngược lại. Trong trường hợp trước, ta nên dùng một hàm sản xuất bình phương nhỏ nhất mà không có hiệu quả kỹ thuật, trong khi ta nên dùng hàm sản xuất biên xác định cho trường hợp sau. Với Mô hình (1) đã nêu, chúng tôi thấy rằng cần phải kiểm định giả thuyết H0 cho rằng các tác động phi hiệu quả kỹ thuật không được thể hiện trong mô hình này, tức là λ = 0. Kiểm định sẽ dựa trên phương pháp ước lượng tối đa hợp lý của λ. Hàm mật độ biên f (ε ) được phân phối cân xứng với giá trị trung bình và phương sai tương ứng là: E(ε) = -E(u) và Var(ε) (5) Có thể thấy 1 − E (u ) là mức ước lượng bình quân điểm hiệu quả kỹ thuật của tất cả các ngành. Hơn nữa, nó có thể được ước lượng từ phương trình sau: ⎛σ 2 ⎞ E [ exp(−u )] = 2 ⎡1 − Φ (σ u ) ⎤ exp ⎜ u ⎟ (6) ⎣ ⎦ ⎝2⎠ Rõ ràng phương trình này sử dụng để tính [1 − E (u ) ] thuận lợi hơn vì (1-u) chỉ bao hàm phần đầu của khai triển exp(-u). Bên cạnh đó, E(exp(-u)) phù hợp với định nghĩa về hiệu quả kỹ thuật. Sử dụng phương trình (4), hàm loga của ước lượng hợp lý tối đa của ngành i là: ⎛ ελ⎞ I ln L = const − I ln σ + ∑ ln Φ ⎜ − i ⎟ − 2 ∑ε 2 (7) ⎝ σ ⎠ 2σ i i i Thông qua hàm loga hợp lý tối đa trong phương trình (7), chúng ta có thể ước lượng hợp lý tối đa cho các tham số. Những ước lượng này sẽ không đổi khi i → ∞. Bước tiếp theo là ước lượng hiệu quả kỹ thuật cho từng ngành. Chúng ta đã ước lượng được ε i = vi − ui , và đương nhiên là có kết quả của ui. εi >0 ngụ ý rằng ui có thể không lớn, tức là ngành này tương đối hiệu quả, trong khi εi
  7. ⎡ φ (− µ*i / σ * ) ⎤ ⎡ φ (−ε i λ / σ ) ⎛ ε λ ⎞⎤ E (ui | ε i ) = µ*i + σ * ⎢ ⎥ = σ* ⎢ − ⎜ i ⎟⎥ (9) ⎣1 − Φ (− µ*i / σ * ) ⎦ ⎣1 − Φ (−ε i λ / σ ) ⎝ σ ⎠ ⎦ và ⎧ ⎛ σ u2 ⎞ ⎪−ε i ⎜ ⎟ if ε i ≤ 0 M (ui | ε i ) = ⎨ ⎝ σ 2 ⎠ (10) ⎪0 if ε i > 0 ⎩ nên ước lượng về hiệu quả kỹ thuật (TE) của mỗi ngành có thể được xác định từ: TEi = exp(−ui ) ˆ (11) trong đó ui = hoặc E(ui|εi) hoặc M(ui|εi). ˆ Battese và Coelli (1988) đề xuất cách ước lượng khác cho TEi như sau: ⎡ 1 − Φ (σ * − µ * / σ * ) ⎤ ⎧ 1 2⎫ TE i = E {exp [ ( − u i ) | ε i ]} = ⎢ ⎥ exp ⎨-µ*i + σ * ⎬ (12) ⎣ 1 − Φ (− µ* / σ * ) ⎦ 2 ⎩ ⎭ Mô hình 2. Pitt và cộng sự (1981) và Kalirajan (1990) đã giải thích về sự phi hiệu quả. Họ cho rằng, phần phi hiệu quả được xác định bằng chênh lệch giữa đường biên của mô hình sử dụng để ước lượng phần phi hiệu quả với đường biên của công nghệ sản xuất được áp dụng chung các ngành. Phát triển ý tưởng này, Battese and Coelli (1995) đã nâng cấp mô hình phân tích các nhân tố tác động đến phi hiệu quả bằng cách tiếp cận hàm sản xuất biên ngẫu nhiên với số liệu hỗn hợp. Tác động phi hiệu quả kỹ thuật không âm được xác định là một hàm của các biến số theo thời gian. Với phân phối chuẩn cụt có phương sai không đổi như đã biết, giá trị trung bình của các nhân tố tác động đến sự phi hiệu quả có quan hệ tuyến tính với các biến số quan sát được. Mô hình này cho ta ước lượng đồng thời sự thay đổi về kỹ thuật trong biên ngẫu nhiên và sự phi hiệu quả kỹ thuật theo thời gian. Trong bài viết này, việc phát hiện ra mối quan hệ giữa vấn đề sở hữu và hiệu quả kỹ thuật buộc ta phải xác định mô hình SFPF cụ thể cùng với mô hình xác định các nhân tố tác động đến hiệu quả với các biến số giải thích khác. Tất cả tham số của các mô hình này sẽ được ước lượng đồng thời. Nguyên nhân của hiệu quả kỹ thuật, bao gồm tỷ lệ vốn/lao động, tỷ lệ hàng tồn kho/sản lượng, tỷ lệ nợ/vốn, doanh thu, và nhiều nhân tố khác trong ngành sản xuất cũng sẽ được xem xét cụ thể. Mô hình do Battese và Coelli (1995) đề xuất đã giả định rằng yit = f ( xit , β ).evit −uit (13) u =z.δ + w (14) trong đó z.δ là tích của hai véctơ z và δ. u là nhiễu ngẫu nhiên không âm, và có phân phối độc lập. z là véctơ đại diện cho ngành, và thể hiện các nhân tố tác động đến phi hiệu quả kỹ thuật. δ là véctơ của các tham số không quan sát được, và w là véctơ của các nhiễu không âm. 6
  8. Trong phần ước lượng của bài viết, mô hình xác định sự phi hiệu quả được áp dụng như dưới đây. uit = δ 0 + δ1 z1t + δ 2 z2t + δ 3 z3t + δ 4 z4t + wit (15) trong đó z1 là loga tự nhiên của tỷ lệ vốn/lao động, z2 là loga tự nhiên của tỷ lệ hàng tồn kho/tổng sản lượng, z3 là tỷ lệ nợ/vốn z4 là doanh thu của ngành, và wit là các biến ngẫu nhiên được xác định bằng phần cụt của phân phối chuẩn với trung bình bằng 0 và phương sai σw2. Với cách tiếp cận tham số, ta cần giả định một hàm sản xuất cụ thể và mang tính đặc trưng cho hoạt động sản xuất của một ngành. Trong bài viết này, các hàm sản xuất Cobb-Douglas và CES (hàm sản xuất có độ co giãn thay thế không đổi) được sử dụng. Kiểm định hợp lý tối đa sẽ lý giải xem hàm Cobb-Douglas và hàm CES cho ta kết quả khác nhau hay không. Trong trường hợp hàm Cobb-Douglas dạng loga tuyến tính, ta có: LnVAi = LnA+β1LnLi + β2LnKi+vi-ui (16) trong đó VAi = giá trị gia tăng của ngành thứ i trong 1 năm, đo bằng triệu đồng. Li = số lao động trong một năm của ngành thứ i, đo bằng số người. Ki = vốn ròng trong một năm của ngành thứ i, đo bằng triệu đồng, và vi và ui là các nhiễu. Với hàm CES dạng loga, theo cách của Kmenta (1976), ta có: h ρδ (1 − δ ) (LnLi-LnKi)2+ vi-ui LnVAi= LnA+hδLnLi+h(1- δ)LnKi+ (17) 2 Trong đó A,δ, µ, và h tương ứng đại diện cho tham số hiệu quả (hiệu quả sản xuất toàn bộ), tham số phân phối (thể hiện sự phân phối lao động và vốn), tham số thay thế, và mức độ thuần nhất. Độ co giãn thay thế (σ) được xác định theo công thức: 1 σ= 1+ ρ Bên cạnh đó, chúng tôi chọn hàm sản xuất với hai hoặc ba đầu vào. Ví dụ, hàm Cobb-Douglas được chọn ở trên sẽ được kiểm định xem hai hay ba đầu vào là thích hợp với số liệu có trước. Nghĩa là, chúng tôi chọn một trong các hàm sản xuất sau: LnVAi= LnA+β1LnLi+ +β2LnKi+vi-ui (18) LnVAi= LnA+β1LnLi+ +β2LnKi+β3LnIi+vi-ui (19) Trong đó I = giá trị đầu vào trung gian, được đo bằng triệu đồng. 2.2. Phương pháp phân tích bao dữ liệu (DEA) Mặc dù phương pháp tham số được sử dụng phổ biến, nhưng các phương pháp phi tham số cũng đang được sử dụng ngày càng nhiều khi chúng ta không xác định được dạng công nghệ 7
  9. hoặc dạng hàm sản xuất. Điểm nổi bật của phương pháp DEA là nó có thể giải quyết các ràng buộc trong việc xác định dạng sản xuất và vô số các phương thức phân phối của phần dư. Hơn nữa, ước lượng biên sản xuất dựa trên kết quả hiện có sẽ cho ta một đường biên gần với thực tế hơn. Phương pháp này có thể áp dụng ở cấp độ doanh nghiệp với nhiều đầu ra. Tuy nhiên, phương pháp DEA cũng có những hạn chế của nó. Thứ nhất, kết quả ước lượng (cho phần phi hiệu quả) hoàn thuộc phụ thuộc vào đặc điểm thống kê của các quan sát. Vì vậy, kiểm định thống kê không thể áp dụng được trong phương pháp này. Thứ hai, như đã được Sengupta (2002) nêu ra, DEA chỉ xem xét phía cung mà không xem xét phía cầu và những đặc trưng của thị trường. Cuối cùng là độ nhạy. Timmer (1971) lập luận rằng DEA rất nhạy cảm với các quan sát cực trị. Tức là khi một doanh nghiệp (hoặc một ngành) hoạt động hiệu quả hơn nhiều so với những doanh nghiệp khác, DEA có thể ước lượng quá cao phần phi hiệu quả của nó. Dù có những hạn chế đó, DEA đang ngày được sử dụng rộng rãi. Ý tưởng đầu tiên được Afriat (1972) đề xuất bằng cách dựa vào hàm sản xuất cổ điển (hàm đòi hỏi sự tương thích, dạng hàm sản xuất, và ngoại sinh) nhưng không cần bất kỳ giả định nào về dạng hàm. Phương pháp này được sử dụng với số liệu chuỗi thời gian, và được áp dụng trong nhiều nghiên cứu đánh giá hiệu quả kỹ thuật. Theo một cách khác, Farell (1957) phân rã hiệu quả thành hai loại, đó là hiệu quả kỹ thuật và hiệu quả phân bổ. Färe và cộng sự (1985) giới thiệu phương pháp phi tham số để ước lượng hiệu quả giữa các doanh nghiệp với việc mở rộng mô hình của Farell thông qua nới lỏng các rằng buộc chặt về hiệu suất không đổi theo quy mô và sự hoán đổi mạnh mẽ giữa các đầu vào – những giả định vốn là điểm yếu trong phương pháp của Farell. Färe và cộng sự (1985) minh chứng rằng việc sử dụng có hiệu quả đầu vào chưa chắc đã nói lên rằng một doanh nghiệp sẽ đạt mức sản lượng hiệu quả. Hiệu quả kỹ thuật, hiệu quả phân bổ và nhiều thuật ngữ khác về sản lượng có thể được xem xét tương ứng với những thuật ngữ hiệu quả của đầu vào và ngược lại vì hiệu quả của đầu vào hay sản lượng đều phản ánh các khía cạnh khác nhau của quá trình sản xuất. Do vậy, việc xác định loại hiệu quả cũng quan trọng và cần phải được quan tâm. Hình 1: Minh hoạ về hiệu quả kỹ thuật Hiệu quả kỹ thuật được coi là khả năng của một ngành trong việc sản xuất tối đa đầu ra trong điều kiện đầu vào cho trước. Hình 1 minh hoạ định nghĩa này. Trong hình này, chúng ta có các điểm A, B, C, D và E tương ứng với mỗi mức đầu vào và đầu ra nhất định. Đường ABC 8
  10. mô tả đường biên của quá trình sản xuất. Các quan sát A, B, và C nằm trên đường biên, trong khi các quan sát D và E nằm dưới đường biên. Đường thẳng tiếp xúc với đường biên này qua điểm B thể hiện công nghệ sản xuất hiệu quả không đổi theo quy mô. Trong ví dụ này, quan sát B mô tả hiệu quả kỹ thuật tương đối; cụ thể, điểm B thể hiện rằng ngành đạt được cả hiệu quả kỹ thuật thuần tuý (purely technical efficiency) và hiệu quả quy mô (scale efficiency) vì nó nằm trên cả đường biên và thể hiện hiệu quả không đổi theo quy mô. Khi một ngành có thể không đạt hiệu quả kỹ thuật thì khả năng có thể xảy ra là nó đang phải đối mặt với sự phi hiệu quả về quy mô (scale inefficiency). Điều này cũng có thể nhận thấy trong Hình 1. Các quan sát A và C đạt hiệu quả kỹ thuật thuần tuý vì chúng nằm trên đường biên, nhưng chúng lại không đạt được hiệu quả quy mô. Quan sát D thể hiện sự không hiệu quả cả về mặt kỹ thuật và quy mô vì nó nằm dưới đường biên. Về mặt lý thuyết, với cùng mức đầu vào, chúng ta có thể tăng mức đầu ra cho điểm D bằng cách di chuyển nó đến điểm B hoặc C như trong hình vẽ. Quan sát E thể hiện sự phi hiệu quả kỹ thuật thuần tuý vì nó nằm dưới đường biên, nhưng nó lại đạt hiệu quả quy mô vì nó được sản xuất ở mức đầu vào x2 - mức đầu vào đạt hiệu quả về quy mô (cùng mức sản lượng với quan sát B). Để phân tách các ước lượng cho hiệu quả kỹ thuật và hiệu quả quy mô, chúng tôi áp dụng cách đo lường hiệu quả kỹ thuật tối ưu đầu vào cho số liệu của các ngành sản xuất ở Hà nội và Tp.HCM. Việc đo lường này sẽ thoả mãn ba dạng hiệu quả quy mô, đó là hiệu quả không đổi theo quy mô (CRS), hiệu quả không tăng theo quy mô (NRS), và hiệu quả biến đổi theo quy mô (VRS). Trong phần ước lượng, chúng tôi tính toán hiệu quả kỹ thuật bằng cách sử dụng phương pháp DEA. Chúng tôi giả sử có g = 1,2,…, G vùng (trong nghiên cứu này chỉ có hai vùng, đó là 1 đại diện cho Tp.HCM, và 2 đại diện cho Hà nội) sử dụng k = 1,2,…, P đầu vào cho mỗi vùng. Những đầu vào này được sử dụng để sản xuất m = 1,2,…, M đầu ra cho mỗi ngành. Có i = 1,2,…, N ngành. Trong bộ số liệu, mỗi quan sát tương ứng với đầu vào và đầu ra đều lớn hơn 0. Gọi Yg là ma trận (M×N) đầu ra của các ngành sản xuất ở Tp.HCMC (hoặc Hà nội), trong đó ym, g đại diện cho đầu ra thứ m của ngành thứ j thuộc vùng thứ g. Gọi Xg là ma trận (P×N) đầu j vào, trong đó xkj , g đại diện cho đầu vào thứ k của ngành thứ j thuộc vùng thứ g, và gọi z là véctơ trọng số cấp N, trong đó mỗi trọng số được ký hiệu tương ứng là zig với i = 1, 2,…, N, và g = 1,2. Cách đo lường hiệu quả kỹ thuật tối ưu đầu vào với công nghệ CRS cho ngành sản xuất thứ j tại Tp.HCM hoặc Hà nội được xác định thông qua bài toán quy hoạch sau: γ cj , g ' = min γ , z γ g ' (20) với các điều kiện 2 N ym, g ' ≤ ∑∑ zig ym, g j = 1, 2,..., N , m = 1, 2,....M ; g ' = 1, 2. j i g =1 i =1 2 N ∑∑ z ≤γ j = 1, 2,...N , k = 1, 2,....P; g ' = 1, 2 g i,g g' xkj,, g ' x ik g =1 i =1 z j ≥ 0 với mọi j. 9
  11. Giá trị quy mô γ đại diện cho tỷ lệ giảm các đầu vào mà 0 ≤ γg ≤ 1, và γ cj là giá trị nhỏ nhất của γ nên γ cj , g x j , g đại diện cho véctơ đầu vào hiệu quả kỹ thuật của ngành thứ j thuộc vùng thứ g. Hiệu quả kỹ thuật tối đa đạt được khi γ cj , g = 1. Nói cách khác, nếu DEA cho ta kết quả γ cj , g = 1 thì ngành xem xét đang hoạt động ở mức thực hành tốt nhất (the best-practice) và nó không thể đạt mức hoạt động lớn hơn, trong điều kiện các đầu vào cho trước. Nếu γ cj , g < 1 , chúng ta có thể kết luận là ngành đang hoạt động dưới mức thực hành tốt nhất. Như đã nêu trên, phương pháp DEA xây dựng duy nhất một đường biên thực hành tốt nhất cho mỗi ngành. Đường biên thực hành tốt nhất của ngành j được xây dựng dựa trên véctơ zg, và giá trị của mỗi nhân tố trong véctơ đó được xác định thông qua việc giải bài toán quy hoạch đã nêu. Nhân tố thứ i của vectơ này thể hiện phần đóng góp của ngành thứ i đối với đường biên thực hành tốt nhất của ngành i. Một điều có thể thấy là đường biên thực hành tốt nhất của một ngành được xây dựng trên cơ sở nhiều ngành khác nhau. Chỉ có ngành có đường biên thực hành tốt nhất mới thể hiện được tiêu thức chuẩn mực cho các ngành khác vì theo định nghĩa thì những ngành không đạt đến đường biên tốt nhất vẫn có thể cải thiện hoạt động của mình. Vì vậy, các ngành không đạt đến đường biên thực hành tốt nhất không được tính đến trong tiêu thức chuẩn mực của ngành i, tức là hầu hết các nhân tố của véctơ z bằng 0. Những nhân tố khác 0 (tức là zgi> 0) thể hiện cấu thành của mức thực hành tốt nhất. Việc đo lường hiệu quả kỹ thuật thường liên quan đến hiệu quả kỹ thuật toàn bộ (overall technical efficiency). Phần dư của phi hiệu quả kỹ thuật toàn bộ sẽ thể hiện tất cả các nguyên nhân dẫn đến phi hiệu quả, bao gồm các nhân tố quan sát được và không quan sát được. Ước lượng phi hiệu quả toàn bộ sẽ tương ứng với phần phi hiệu quả do các nguyên nhân khách quan như quy mô ngành, khả năng quản lý yếu, hoặc các nhân tố không quan sát được như sai số của ước lượng. Để phân tách sự phi hiệu quả do tác động của quy mô ngành ra khỏi sự phi hiệu quả toàn bộ, và xác định quy mô tối ưu cho các ngành sản xuất ở Hà nội và Tp.HCM, hai phương pháp DEA bổ trợ được sử dụng như sau. Hiệu quả kỹ thuật với hiệu suất không tăng theo quy mô (NRS) của ngành thứ j thuộc vùng g được xác định bằng bài toán quy hoạch sau đây. γ njg ' = min γ , z γ g ' (21) với các điều kiện 2 N ym, g ' ≤ ∑∑ zig ym, g j = 1, 2,...N , m = 1, 2,....M ; g ' = 1, 2. j i g =1 i =1 2 N ∑∑ z ≤γ j = 1, 2,...N , m = 1, 2,....M ; g ' = 1, 2 g i, g g' xm, g ' j x im g =1 i =1 2 N ∑ ∑h z ≤1 gg ii g =1 i =1 z g ≥ 0 với mọi j và g. j Bên cạnh đó, hiệu quả kỹ thuật với hiệu suất biến đổi theo quy mô (VRS) của ngành thứ j tại Hà nội và Tp.HCM sẽ được tính như sau: γ vjg ' = min γ , z γ g ' (22) 10
  12. với các điều kiện: 2 N ym, g ' ≤ ∑∑ zig ym, g j = 1, 2,..., N , m = 1, 2,....M ; g ' = 1, 2. j i g =1 i =1 2 N ∑∑ z =γ j = 1, 2,..., N , m = 1, 2,....M ; g ' = 1, 2 . g i, g g' xm, g ' j x im g =1 i =1 2 N ∑ ∑h z ≤ 1. gg ii g =1 i =1 z g ≥ 0 với mọi j và g. j Với ba kết quả ước lượng cho các loại hiệu quả kỹ thuật nêu trên, hiệu quả quy mô của ngành thứ j trong mô hình tối ưu đầu vào được tính bằng cách chia hiệu quả kỹ thuật toàn bộ cho hiệu quả kỹ thuật với hiệu suất biến đổi theo quy mô. Nếu không tính đến sự khác biệt về yếu tố môi trường (tức là chính sách của chính quyền trung ương và địa phương, cũng như các nhân tố không quan sát được) và những sai số khi đo lường đầu vào và đầu ra thì phi hiệu quả kỹ thuật thuần tuý phản ánh sự khác biệt của mỗi ngành so với đường biên thực hành tốt nhất. Vì thế, khi xây dựng đường biên thực hành tốt nhất, chúng ta phải tính đến các nhân tố có liên quan đến quản lý nhằm xây dựng được đường biên thực hành tốt nhất có tính chất đại diện tốt hơn. Kết quả của phương pháp DEA bao gồm các ước lượng về hiệu quả quy mô, hiệu quả kỹ thuật thuần tuý và hiệu quả kỹ thuật toàn bộ của mỗi ngành và một đường biên thực hành tốt nhất. Đường biên thực hành này cho ta thấy được các nhân tố có liên quan và phần đóng góp của chúng trong việc tạo dựng đường biên tốt nhất này. 3. NGUỒN SỐ LIỆU VÀ CÁC BIẾN SỐ CỦA MÔ HÌNH 3.1. Nguồn số liệu Nghiên cứu này dựa trên số liệu của Điều tra Doanh nghiệp 2000-2002 do Tổng cục Thống kê Việt nam (GSO) tiến hành, trong đó những thông tin quan trọng về hoạt động của một doanh nghiệp được thu thập đầy đủ, đó là loại hình doanh nghiệp, các hoạt động sản xuất và kinh doanh, số lao động, tiền lương, tài sản và nguồn vốn, doanh thu, trách nhiệm đóng góp với nhà nước, trang thiết bị sử dụng cho các hoạt động kinh doanh và sản xuất, và chi phí đầu tư. Điều tra này bao gồm hơn 90.000 doanh nghiệp, trong đó hơn 7.000 doanh nghiệp (trong năm 2002) được hỏi các thông tin rất chi tiết về hoạt động sản xuất và kinh doanh có liên quan đến đầu vào, ví dụ như thông tin về vật liệu thô, nhiên liệu, thiết bị và phụ tùng, và chi phí nhân công. Có tương ứng khoảng 1.000 và 800 doanh nghiệp trong tổng số 7.000 doanh nghệp này có địa bàn hoạt động ở Tp.HCM và Hà nội. Số liệu thống kê thể hiện rõ hoạt động của các doanh nghiệp nhà nước – loại hình doanh nghiệp nhận được nhiều sự ưu đãi của nhà nước, ví dụ như việc hỗ trợ vốn hàng năm từ ngân sách, trợ giá, ưu tiên tiếp cận các dịch vụ ngân hàng với lượng vốn lớn và lãi suất thấp. Hơn 82.5% tổng vốn ưu đãi của nhà nước dành cho các doanh nghiệp loại này. Để so sánh hiệu quả sản xuất của các ngành sản xuất ở Hà nội và Tp.HCM, ngoài việc sử dụng số liệu của Tổng cục Thống kê, bài viết này còn sử dụng số liệu điều tra do Khoa Kinh tế học, ĐH Kinh tế quốc dân, tiến hành. Nói một cách cụ thể, chúng tôi sử dụng các số liệu 11
  13. điều tra cho 32 ngành sản xuất ở hai thành phố này. Vì thế, khác biệt trong đo lường hiệu quả của các ngành ở hai thành phố này là điều có thể xảy ra. 3.2. Mô tả các biến số Với mục tiêu phân tích hiệu quả, đầu ra của mô hình chỉ có một biến số, đó là giá trị gia tăng; còn đầu vào bao gồm ba biến số, đó là lao động, vốn và đầu vào trung gian. Những biến số đầu vào và đầu ra được mô tả cụ thể như sau. Đầu ra là giá trị gia tăng (VA) của các ngành và được tính bằng đơn vị triệu đồng. Lao động (L) được đo bằng số người và nó thể hiện tổng số lao động của ngành trong một năm. Lượng vốn ròng (K) được tính bằng đơn vị triệu đồng. Bên cạnh lao động và vốn, các biến số đầu vào khác được thể hiện bằng tổng mức đầu vào trung gian, và giá trị của chúng tính theo đơn vị triệu đồng và tính cho từng năm. 3.3. Mô tả số liệu Giá trị trung bình, độ lệch chuẩn, giá trị lớn nhất và nhỏ nhất của các biến số đầu vào và đầu ra được thể hiện trong Bảng 2. Có thể thấy một điều là, tính trung bình, giá trị gia tăng (VA) của 32 ngành sản xuất ở Tp.HCM lớn hơn nhiều so với các ngành tương ứng ở Hà nội. Ví dụ, trong năm 2000, VA trung bình là 207.108 triệu đồng cho các ngành ở Tp.HCM, gấp khoảng 4 lần so với các ngành ở Hà nội. Những ngành sản xuất ở Tp.HCM còn có số lao động lớn hơn so với các ngành ở Hà nội. Bảng 2 cũng cho biết số lượng lao động bình quân của các ngành ở Tp.HCM là 5.477 người vào năm 2000 (6.112 người vào năm 2001, và 7.123 người vào năm 2002), cao hơn so với các ngành ở Hà nội với số lượng lao động bình quân là 1.920 người vào năm 2000, 1.630 người vào năm 2001, và 1.815 người vào năm 2002. Bảng 2: Thống kê về 32 ngành sản xuất ở Tp.HCM và Hà nội HCMC Hanoi Năm Biến số Q.sát Độ lệch Nhỏ Độ lệch Nhỏ TB Lớn nhất TB Lớn nhất chuẩn nhất chuẩn nhất 2000 GTGT (VA) 82.619 32 207.108 39 1.208 2.188.914 52.647 756 395.522 Lao động 4.216 32 5.477 17.499 34 99.929 1.920 99 21.445 (L) Vốn (K) 471.190 32 507.890 858.751 1.451 4.513.002 171.851 5.023 2.656.579 Đầu vào 151.967 32 476.051 685.809 6.689 2.707.060 105.739 2.089 762.290 trung gian K/L 32 206 177 20 848 134 175 3 999 VA/L 32 86 71 14 319 47 38 2 169 Year Variable Obs. Mean Std. Dev Min Max Mean Std. Dev Min Max 2001 GTGT (VA) 32 243.368 410.347 2.136 2.202.081 49.074 81.796 2.628 439.448 Lao động 18.976 4.413 32 6.112 51 108.931 1.630 38 25.196 (L) 12
  14. Vốn (K) 32 606.851 878.888 2.354 4.333.229 141.010 206.815 8.964 951.470 Đầu vào 774.525 149.165 32 577.093 5.606 2.854.221 105.080 4.512 787.520 trung gian K/L 32 176 121 23 552 172 169 31 678 VA/L 32 71 47 16 205 73 107 15 555 Year Variable Obs. Mean Std. Dev Min Max Mean Std. Dev Min Max 2002 GTGT (VA) 32 314.693 618.612 4.816 3.475.743 61.209 109.349 1.071 608.067 Lao động 5.302 32 7123 22.092 56 126.841 1.815 48 30.496 (L) Vốn (K) 32 719.371 1.015.238 3148 5.213.387 153.272 239.584 3.713 1.197.608 Đầu vào 1.082.926 183.058 32 766.150 19.251 4.710.971 130.602 1.825 915.792 trung gian K/L 32 193 127 25 577 161 156 2 609 VA/L 32 80 53 16 229 67 91 6 510 Chú thích: Các con số đã được làm tròn Nguồn: Tính toán của tác giả dựa trên số liệu Xét theo tỷ lệ vốn/lao động (K/L), các ngành của Tp.HCM chiếm ưu thế hơn so với các ngành tại Hà nội. Điều này cũng tương tự khi xét tỷ lệ giá trị gia tăng/lao động (VA/L). 4. KẾT QUẢ ƯỚC LƯỢNG Để ước lượng biên sản xuất cho các ngành ở Hà nội và Tp.HCM, chúng tôi sử dụng cả hai hàm sản xuất Cobb-Douglas và CES từ phương trình (16) đến (19) trong bài viết này. Hơn nữa, do chúng tôi giả định rằng có một số nhân tố ngẫu nhiên không quan sát được có tác động đến hiệu quả sản xuất của các ngành này nên cách tiếp cận hàm sản xuất biên ngẫu nhiên cũng sẽ được sử dụng. Các ước lượng tối đa hợp lý của các tham số trong cách tiếp cận hàm sản xuất biên ngẫu nhiên được xác định bằng cách sử dụng bộ số liệu đã nêu và chương trình máy tính FRONTIER, phiên bản 4.1 do Coelli (1996) xây dựng. Kết quả ước lượng từ mô hình biên và phi hiệu quả (hay tương ứng là Mô hình 1 và Mô hình 2) sẽ được xem xét cụ thể hơn khi giải thích hiệu quả sản xuất cũng như các nhân tố tác động đến hiệu quả sản xuất của các ngành sản xuất ở Hà nội và Tp.HCM. 4.1. Kiểm định giả thuyết Các kiểm định giả thuyết đối với các tham số trong mô hình biên và mô hình phi hiệu quả có thể được thực hiện bằng cách sử dụng kiểm định hợp lý tổng quát λ sau đây: λ = −2[ L( H 0 ) − L( H1 )] trong đó L(H0) là giá trị loga hợp lý trong mô hình biên nghiêm ngặt, và nó được coi là giả thuyết gốc H0; và L(H1) là giá trị loga hợp lý của mô hình biên tổng quát, và được coi là giả thuyết đối H1. Kiểm định thống kê này có phân phối xấp xỉ Chi-bình phương (hoặc Chi-bình phương hỗn hợp) với bậc tự do bằng chênh lệch giữa các tham số tương ứng trong giả thuyết gốc và giả thuyết đối. 13
  15. Chúng ta cần tiến hành ba kiểm định, đó là kiểm định sự phù hợp của mô hình, kiểm định sự phù hợp của dạng hàm sản xuất, và kiểm định sự phù hợp của đầu vào mô hình với bộ số liệu đã cho. 4.1.1. Kiểm định về phân phối của nhiễu (Chuẩn cụt hay bán chuẩn) Chúng ta sẽ tiến hành kiểm định về sự phù hợp của mô hình. Kết quả ước lượng bằng các giả định phân phối và thống kê có liên quan được liệt kê trong Bảng 3 dưới đây. Việc quyết định có chấp nhận giả thuyết gốc hay không phụ thuộc vào giá trị của kiểm định thống kê λ và giá trị bác bỏ với mức ý nghĩa 5%. Bảng 3a: Kiểm định giả thuyết tỷ lệ loga hợp lý tổng quát cho sự phù hợp của hàm phân phối nhiễu Tp.HCM Hà nội λ λc λ λc Quyết Quyết Mô tả định định Chuẩn cụt H1 : µ ≠ 0 Bán chuẩn Hàm Cobb-Douglas Chấp Chấp 1,462 3,84 0,408 3,84 H0 : µ = 0 nhận H0 nhận H0 Bán chuẩn CES Chấp Chấp 1,36 3,84 0,486 3,84 H0 : µ = 0 nhận H0 nhận H0 trong đó: λ = giá trị kiểm định thống kê, và λc= giá trị bác bỏ Nguồn: Tính toán của tác giả Giá trị loga hợp lý đối với hàm sản xuất Cobb-Douglas có hai đầu vào và phân phối chuẩn cụt và bán chuẩn của nhiễu được liệt kê trong Bảng 3a. Giá trị của kiểm định thống kê λ cho Tp.HCM và Hà nội (tương ứng là 1,46 và 0,408) không vượt quá giá trị bác bỏ χ2(1) = 3,84. Nghĩa là, chúng ta không bác bỏ giả thuyết gốc, và vì thế mà phân phối bán chuẩn của nhiễu là sự lựa chọn phù hợp cho bộ số liệu này. Dòng cuối cùng của Bảng 3a cho thấy giá trị thống kê của λ cho Tp.HCM và Hà nội (tương ứng là 1,36 và 0,486) nhỏ hơn so với giá trị bác bỏ χ2(1) = 3,84 nên chúng ta chấp nhận giả thuyết gốc là H0: µ = 0, tức là phân phối bán chuẩn đối với nhiễu là phù hợp với số liệu của bài viết này. 4.1.2. Kiểm định giả thuyết về sự phù hợp của dạng hàm (hàm Cobb-Douglas hay CES với hai đầu vào) Đối với dạng hàm biên, kiểm định giả thuyết gốc (cho rằng hàm sản xuất Cobb-Douglas là phù hợp) sẽ rất hữu ích. Giả thuyết này ngụ ý rằng phải kiểm định xem β3 = 0 hay không. Kết quả kiểm định được liệt kê trong Bảng 3b. Khác với trường hợp trên, việc quyết định chấp nhận hay bác bỏ giả thuyết gốc phụ thuộc vào việc giá trị của λ nhỏ hơn hay lớn hơn giá trị bác bỏ λc với mức ý nghĩa 5%. Như đã thấy trong Bảng 3b, không có kiểm định thống kê λ nào vượt quá giá trị bác bỏ λc=χ2(1) = 3,84. Do vậy, chúng ta chấp nhận giả thuyết rằng hàm sản xuất CES cũng cho kết quả tương tự hàm Cobb-Douglas. 14
  16. Bảng 3b: Kiểm định giả thuyết tỷ lệ loga hợp lý tổng quát cho sự phù hợp của hàm sản xuất (Cobb-Douglas hay CES) Tp.HCM Hà nội λ λc λ λc Quyết Mô tả Quyết định định CES (bán chuẩn) Cobb-Douglas Chấp nhận Chấp nhận (bán chuẩn) 0,046 3,84 0,162 3,84 H0 H0 H0: β3=0 trong đó λ = giá trị kiểm định thống kê, và λc= giá trị bác bỏ Nguồn: Tính toán của tác giả. 4.1.3. Kiểm định giả thuyết hàm sản xuất biên Cobb-Douglas với hai hoặc ba đầu vào Một trong những câu hỏi mà bài viết này cần trả lời là ba đầu vào có thể áp dụng cho mô hình phi hiệu quả hay không. Vì thế, kiểm định giả thuyết là β3 = 0. Bảng 3c cho thấy kết quả ước lượng của kiểm định trên trong việc lựa chọn hàm sảm xuất biên Cobb-Douglas với hai hoặc ba đầu vào. Thủ tục tiến hành tương tự như trên. Bảng 3c: Kiểm định giả thuyết tỷ lệ loga hợp lý tổng quát (cho việc lựa chọn số lượng đầu vào) Tp.HCM Hà nội λ λc λ λc Quyết Quyết Mô tả định định Cobb-Douglas (bán chuẩn) hai đầu vào Cobb-Douglas (bán chuẩn) Bác bỏ Bác bỏ ba đầu vào 15,437 3,84 105,246 3,84 H0 H0 H0: β3=0 trong đó λ = giá trị kiểm định thống kê, và λc= giá trị bác bỏ Nguồn: Tính toán của tác giả. Bảng 3c cho thấy, kiểm định thống kê λ cho cả hai thành phố đều lớn hơn nhiều giá trị bác bỏ λc = χ2(1) = 3.84, tức là chúng ta bác bỏ giả thuyết gốc cho rằng chỉ có hai đầu vào trong mô hình hàm sản xuất đã chọn. Nói cách khác, hàm sản xuất với ba đầu vào là phù hợp. Nói tóm lại, hàm sản xuất biên Cobb-Douglas với ba đầu vào và nhiễu của hàm có phân phối bán chuẩn là mô hình phù hợp để thực hiện các mục tiêu của bài viết này. 4.2. Ước lượng hàm sản xuất Như đã nêu trên, hàm sản xuất biên ngẫu nhiên Cobb-Douglas với ba đầu vào là mô hình phù hợp cho bài viết này. Tuy nhiên, việc xem xét hàm sản xuất biên ngẫu nhiên dạng CES cũng rất thú vị vì chúng ta có thể so sánh kết quả giữa hai dạng hàm này. 15
  17. Theo kết quả ước lượng trong Bảng 4a dưới đây thì hầu hết các kết quả ước lượng hàm sản xuất biên ngẫu nhiên dạng CES cho ta các thông số giống như hàm Cobb-Douglas với ba đầu vào. Hơn nữa, các hệ số của (ln L − ln K ) cho cả hai thành phố đều không có ý nghĩa thống kê. 2 Điều này chứng minh rằng hàm sản xuất biên ngẫu nhiên dạng CES có thể nới lỏng và chuyển hoá thành hàm Cobb-Douglas khi nghiên cứu về các ngành sản xuất ở hai thành phố Hà nội và HCM. Bảng 4a: Kết quả ước lượng cho hàm sản xuất biên ngẫu nhiên dạng CES Biến phụ thuộc: lnVA HCMC Hanoi 3,6130 4,1615 Constant Constant (1,6789) (3,7513)** 0,4278 0,4165 LnL LnL (0,5794) (1,3676) 0,3904 0,3261 LnK LnK (0,5118) (1,0276 0,01781 0,01432 (LnL-LnK)2 (LnL-LnK)2 (0,2348) (0,3984)** 0,3992 0,8137 σ2 σ2 (3,1519)** (2,9723)** 2,66 λ λ 2,07 0,1656 0,08684 η η (1,8816) (0,9545) Log-likelihood value -54,83 Log-likelihood value -92,19 Number of Observations 96 Number of Observations 96 Chú thích: Giá trị trong ngoặc thể hiện giá trị của kiểm định t. Giá trị được đánh dấu ** ngụ ý rằng các hệ số thực sự khác 0 với mức ý nghĩa 1%. Nguồn: Tính toán của tác giả. Bảng 4b: Một số hệ số từ ước lượng cho hàm CES Tp.HCM Hà nội Hệ số hiệu quả (A) 37,06323 64,107 Hệ số phân phối ( δ ) 0,5228 0,5608 Hệ số thay thế ( ρ ) 0,1744 0,1564 Co giãn thay thế (η) 0,8515 0,8648 0,8181 0,7426 Độ thuần nhất ( h ) Nguồn: Tính toán của tác giả. Bản thân hàm sản xuất CES cũng có thể cho nhiều thông tin có ý nghĩa. Từ kết quả ước lượng ở Bảng 4a, ta tính được một số hệ số quan trọng như đã liệt kê ở Bảng 4b. Có thể thấy rằng, các ngành sản xuát ở Tp.HCM có độ thuần nhất lớn hơn so với các ngành ở Hà nội. Với hàm sản xuất Cobb-Douglas ba đầu vào, Bảng 5 cho thấy, với các ngành ở Tp.HCM, độ co giãn của sản lượng đối với lao động (0,2236) nhỏ hơn độ co giãn của sản lượng đối với vốn (0,2404). Các ngành sản xuất ở Hà nội có mức độ sử dụng vốn thấp hơn nên độ co giãn của sản lượng đối với vốn thấp hơn độ co giãn của sản lượng đối với lao động (tương ứng là 16
  18. 0,083 và 0,192), và nó ngụ ý rằng, trong quá trình sản xuất, các ngành sản xuất ở Hà nội vẫn dựa vào lao động nhiều hơn là vốn. Bảng 5: Kết quả ước lượng hàm sản xuất biên Cobb-Douglas với ba đầu vào Biến phụ thuộc: InVA Tp.HCM Hà nội Bán chuẩn Bán chuẩn Biế n Tham số Mô hình 2 Biến Tham số Mô hình 2 (Mô hình 1) (Mô hình 1) β0 β0 0,1976 0,7946 0,4964 0,484 Constant Constant (3,281)** (2,032)* (0,923) (1,081) β1 β1 0,2237 0,0261 0,1922 0,148 Ln(L) Ln(L) (3,241)** (0,336)* (3,353)* (2,231)** β2 β2 0,2404 0,789 0,0803 0,375 Ln(K) Ln(K) (2,836)** (8,034)** (1,197) (5,393)** β3 β3 0,4362 0,0979 0,729 0,439 Ln(M) Ln(M) (5,717)** (1,284) (11,544)** (6,993)** 0,2875 0,2736 Ln(Z1) Ln(Z1) (2,348)** (1,376) 0,777 0,840 Ln(Z2) Ln(Z2) (4,887)** (5,374)** 0,310 -0,464 Ln(Z3) Ln(Z3) (1,84)* (-1,834)* 0,422 -0,223 Ln(Z4) Ln(Z4) (0,756) (-0,259) 0,3782 0,119 0,5027 0,245 σ2 σ2 (3,174)** (3,626)** (3,328)** (4,001)** µ µ λ=σu/σv λ=σu/σv 0,340483 1,057613 Log -39,416 -30,189 log -49,648 -47,56 likelihood likelihood value value Number of 96 96 96 96 Number of observations observations Chú thích: Giá trị trong ngoặc là giá trị kiểm định t . Giá trị có đánh dấu (**) hoặc (*) thể hiện rằng hệ số thực sự khác 0 với mức ý nghĩa tương ứng 5% hoặc 10%. trong đó: σ 2 = σ 2 v + σ 2u λ = σu /σv Ln(Z1)- loga tự nhiên của tỷ lệ vốn/lao động, Ln(Z2)-loga tự nhiên của tỷ lệ hàng tồn kho/sản lượng, Ln(Z3 )-tỷ lệ nợ/vốn, và Ln(Z4)-doanh thu ngành. Nguồn: Tính toán của tác giả Như có thể thấy trong Bảng 5 (với Mô hình 1), các ngành sản xuất ở Hà nội dựa nhiều vào lao động trong quá trình sản xuất. Với các ngành ở Tp.HCM, tỷ lệ sử dụng vốn cao hơn nên độ co giãn của sản lượng đối với vốn cũng cao hơn (ở mức 0,2404) độ co giãn của sản lượng đối với 17
  19. lao động (ở mức 0,2237). Với các ngành tương ứng ở Hà nội, mức độ sử dụng vốn thấp hơn ngụ ý rằng độ co giãn của sản lượng đối với vốn (ở mức 0,083) thấp hơn độ co giãn của sản lượng đối với lao động (ở mức 0,1922). Một điểm quan trọng cần lưu ý là độ co giãn của sản lượng đối với các đầu vào trung gian của Tp.HCM (ở mức 0,4362) và Hà nội (ở mức 0,729) cao hơn độ co giãn của sản lượng đối với lao động (ở mức 0,2404 cho Tp.HCM, và 0,192 cho Hà nội), và vốn (ở mức 0,2404 cho Tp.HCM, và 0,0803 cho Hà nội). Điều này có thể khẳng định rằng, tất cả các ngành sản xuất của hai thành phố được nghiên cứu trong bài viết này đã có hoạt động sản xuất kinh doanh dựa nhiều vào đầu vào trung gian trong giai đoạn 2000-2002. Hiệu quả quy mô được tính bằng cách cộng tất cả ba độ co giãn của sản lượng đối với các đầu vào nêu trên. Lợi suất kinh tế trung bình theo quy mô của các ngành ở Tp.HCM đạt ở mức thấp hơn các ngành ở Hà nội trong cả hai mô hình ước lượng (0,9003 so với 1,0015 trong Mô hình 1, và 0,913 so với 0,962 trong Mô hình 2). Những kết quả này có thể gợi ý một số vấn đề sau. (i) Các ngành sản xuất ở cả Tp.HCM và Hà nội đều có hiệu suất theo quy mô khá cao, và (ii) Lợi suất kinh tế theo quy mô của các ngành ở Hà nội cao hơn so với các ngành ở Tp.HCM cho biết rằng rất nhiều ngành có thể cải thiện mức lợi nhuận của mình. Xét đến tiêu thức năng suất, từ kết quả ước lượng ta thấy rằng, theo thời gian, hai chỉ số thể hiện hiệu quả sản xuất ở Hà nội và Tp.HCM đều có giá trị lớn hơn. Một trong hai chỉ số đó là σ 2 vì σ 2 đại diện cho tổng phương sai của sản lượng, và nó bao gồm hai nhân tố là sai số ngẫu nhiênσu2 và nhân tố hiệu quả kỹ thuật σv2. Bảng 5 cho thấy σ 2 của các ngành ở Tp.HCM (0,3782 trong Mô hình 1, và 0,119 trong Mô hình 2) thấp hơn σ 2 của các ngành ở Hà nội (với 0,527 trong Mô hình 1, và 0,245 trong Mô hình 2). Tuy nhiên, theo định nghĩa của chỉ số này, giá trị σ 2 lớn không có nghĩa là phương thức sản xuất không có hiệu quả vì chỉ số này bao hàm hai nhân tố đại diện cho các mặt khác nhau của quá trình sản xuất. Vì thế, chúng ta dùng một chỉ số khác, đó là λ = σu/σv, để phân tích phi hiệu quả trong cách tiếp cận SFPF. Giá trị λ lớn thể hiện rằng phần lớn sự không hiệu quả trong sản xuất là do phi hiệu quả kỹ thuật, σu2. Mặt khác, giá trị λ nhỏ ngụ ý rằng hiệu quả sản xuất cao hơn. Kết quả ước lượng theo Mô hình 2 cũng được liệt kê trong Bảng 5. Các ngành sản xuất ở Tp.HCM có λ nhỏ hơn so với các ngành ở Hà nội (0,3408 so với 1,0576). Điều này không có gì ngạc nhiên vì các ngành ở Tp.HCM có hiệu quả sản xuất cao hơn các ngành ở Hà nội (ví dụ 66%so với 64% trong năm 2002). Nói cụ thể, tại Tp.HCM, khoảng 75% tổng phương sai sản xuất là do các nhiễu không quan sát được, và 25% còn lại là do nhiễu phi hiệu quả kỹ thuật (λ = 0.254), trong khi ở Hà nội, con số tương ứng là 49% và 51%. Phân phối hiệu quả sản xuất của các ngành sản xuất ở Hà nội và Tp.HCM được trình bày trong Bảng 6a dưới đây cho thấy mức hiệu quả nhỏ nhất của ở Tp.HCM trong các năm 2000, 2001 và 2002 tương ứng là 25,73%, 29,35%, và 33,05%, trong khi mức hiệu quả lớn nhất tương ứng là 91,62%, 92,39%, và 93,08%. Các kết quả này cho thấy có sự cải thiện về hiệu quả sản xuất ở những ngành này tại Tp.HCM trong giai đoạn nghiên cứu. Phân phối hiệu quả kỹ thuật của các ngành ở Hà nội được đặc trưng bởi sự giảm sút của mức hiệu quả kỹ thuật nhỏ nhất. Mức hiệu quả kỹ thuật nhỏ nhất của các ngành này giảm từ 25,52% năm 2000 xuống 24,81% năm 2001 và xuống 22,89% năm 2002. Mức hiệu quả kỹ thuật cao nhất (tương 18
  20. ứng là 92,81% năm 2000, 92,5% năm 2001 và 92,27% năm 2002) cho thấy rằng các ngành này còn nhiều cơ hội tăng hiệu quả sản xuất. Bảng 6a: Phân phối hiệu quả sản xuất của các ngành ở hai thành phố Tp.HCM Hà nội Year 2000 2001 2002 2000 2001 2002 Mean 0,611614 0,638095 0,663624 0,659715 0,650265 0,640675 Median 0,618368 0,647330 0,674775 0,684211 0,674397 0,664373 Max 0,916246 0,923891 0,930883 0,928104 0,925455 0,922715 Min 0,257358 0,293508 0,330539 0,255215 0,241960 0,228921 Std. Dev. 0,200068 0,190072 0,179821 0,178273 0,181529 0,184732 Skewness 0,007231 -0,027221 -0,059169 -0,510907 -0,487626 -0,463817 Kurtosis 1,716208 1,730119 1,745834 2,598693 2,559298 2,520118 Jarque-Bera 2,197774 2,154081 2,115914 1,606868 1,527112 1,454387 Probability 0,333242 0,340602 0,347164 0,447789 0,466006 0,483263 Observations 32 32 32 32 32 32 Nguồn: Tính toán của tác giả Kết quả ước lượng hiệu quả kỹ thuật của các ngành ở hai thành phố cho thấy xu hướng thay đổi giống nhau của chúng. Điều khác biệt duy nhất là điểm hiệu quả của các ngành ở Tp.HCM tăng lên, trong khi các ngành ở Hà nội lại có điểm hiệu quả giảm trong giai đoạn này. Một điều cũng đáng lưu tâm là điểm hiệu quả kỹ thuật trung bình của Hà nội trong hai năm 2000 và 2001 lớn hơn so với Tp.HCM, nhưng lại thấp hơn trong năm 2002. Bảng 6b thể hiện tần suất phân phối ước lượng hiệu quả kỹ thuật của các ngành sản xuất ở Hà nội và Tp.HCM và nó cho thấy nhận định hoàn toàn khác. Trong giai đoạn nghiên cứu, tất cả các chỉ số hiệu quả có phương sai lớn hơn. Dù điểm hiệu quả bình quân của các ngành ở hai thành phố khá sát nhau, nhưng số lượng ngành có hiệu quả thấp nhất (mức hiệu quả từ 20% đến 40%) ở Tp.HCM lại nhiều hơn ở Hà nội vào năm đầu tiên. Tuy nhiên, tình trạng này lại khác hẳn trong những năm tiếp theo và chỉ còn 1 ngành có mức hiệu quả thấp như vậy. Vào năm 2002, trong khi ở Hà nội số lượng ngành nằm trong ngưỡng hiệu quả này vẫn không hề thay đổi trong suốt giai đoạn (cụ thể là 3 ngành). Số lượng ngành đạt hiệu quả cao nhất ở Tp.HCM tăng 1%/năm và số ngành đạt mức hiệu quả từ 40% đến 60% tăng từ 8 lên 12. Trong khi đó, số ngành có mức hiệu quả trong cùng ngưỡng là Hà nội giảm từ 9 xuống 7. Điều này thể hiện rằng các ngành ở Tp.HCM đã có những nỗ lực vượt bậc trong việc tăng mức hiệu quả kỹ thuật so với các ngành ở Hà nội. Bảng 6b:Tần suất phân phối của các ước lượng hiệu quả từ phương pháp biên ngẫu nhiên cho các ngành ở hai thành phố Tp.HCM Hà nội 2000 Mean Std. Dev. Obs. 2000 Mean Std. Dev. Obs. [20%, 40%) 0,351578 0,046918 7 [20%, 40%) 0,301690 0,066953 3 [40%, 60%) 0,496888 0,058867 8 [40%, 60%) 0,522219 0,040783 8 [60%,80%) 0,688657 0,068065 9 [60%,80%) 0,691807 0,063690 12 [80%, 100%) 0,867199 0,040854 8 [80%, 100%) 0,858486 0,045079 9 All 0,611614 0,200068 32 All 0,659715 0,178273 32 2001 Mean Std. Dev. Obs. 2001 Mean Std. Dev. Obs. [20%, 40%) 0,362581 0,046778 4 [20%, 40%) 0,288104 0,066557 3 19
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2