Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit
lượt xem 20
download
Tài liệu tham khảo dành cho giáo viên, học sinh trung học phổ thông đang trong giai đoạn ôn thi đại học chuyên môn toán học.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit
- www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit KIẾN THỨC CẦN NHỚ Hàm số mũ I. • y=ax; TXĐ D=R • Bảng biến thiên a>1 01 00; m, n∈R ta có: an 1 1 − − = a n − m ;( n =a m ; a0=1; a 1= ); anam =an+m; m a a a n an a m = m; nm nm n nn ( a ) =a ; (ab) =a b ; a n = n am . b b 2. Công thức logarit: logab=c⇔ac=b (00) Với 0
- www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit x1 loga x 2 = logax1−logax2; loga(x1x2)=logax1+logax2 ; α logax =α ax; a log a x = x ; log log b x 1 1 log aα x = log a x ;(logaax=x); logax= ;(logab= ) α log b a log b a alogbx=xlogba. logba.logax=logbx; IV. Phương trình và bất phương trình mũ−logarit 1. Phương trình mũ−logarit a. Phương trình mũ: Đưa về cùng cơ số +0 0 + 00), để đưa về một phương trình đại số.. x Lưu ý những cặp số nghịch đảo như: (2 ± 3 ), (7 ±4 3 ),… Nếu trong một phương trình có chứa {a2x;b2x;axbx} ta có thể chia hai vế cho b2x(hoặc a2x) rồi đặt t=(a/b)x (hoặc t=(b/a)x. Phương pháp logarit hóa: af(x)=bg(x)⇔(x).logca=g(x).logcb,với a,b>0; 0 0] . +logaf(x)= logag(x)⇔ f ( x ) > 0 +logaf(x)=g(x)⇔ f ( x) = a g( x) f ( x) = g ( x) Đặt ẩn phụ. 2. Bất phương trình mũ−logarit a. Bất phương trình mũ: a > 0 a > 0 af(x)>ag(x) ⇔ af(x)≥ ag(x) ⇔ ; . ( a − 1) [ f ( x ) − g ( x ) ] > 0 ( a − 1) [ f ( x ) − g ( x ) ] ≥ 0 Đặt biệt: af(x)>ag(x)⇔ * Nếu a>1 thì: f(x)>g(x); a ≥a ⇔ f(x)≥g(x). f(x) g(x) ⇔ f(x)< g(x); * Nếu 0logag(x)⇔ f ( x ) > 0, g ( x ) > 0 logaf(x)≥logag(x)⇔ f ( x ) > 0, g ( x ) > 0 ; . ( a − 1) [ f ( x ) − g ( x ) > 0] ( a − 1) [ f ( x ) − g ( x ) ≥ 0] Đặt biệt: f ( x) > g ( x) ⇔ + Nếu a>1 thì: logaf(x)>logag(x) ; g( x) > 0 f ( x) < g( x) ⇔ + Nếu 0 0 * * * www.VNMATH.com 2 Thái Thanh Tùng
- www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH−BẤT PHƯƠNG TRÌNH−HỆ PHƯƠNG TRÌNH MŨ-LOGARIT I. Biến đổi thành tích ( ) − 1 . ( 22 x − 4 ) = 0 . 2 2 2 +x −x −x − 4.2 x − 22 x + 4 = 0 ⇔ 2 x x Ví dụ 1: Giải phương trình: 2 Nhận xét: Mặc dù cùng cơ số 2 nhưng không thể biến đổi để đặt được ẩn phụ do đó ta phải phân tích thành ( ) − 1 . ( 22 x − 4 ) = 0 . Đây là phương trình tích đã biết cách giải. 2 −x x tích: 2 ( ) Ví dụ 2: Giải phương trình: 2 ( log 9 x ) = log3 x.log 3 2 2x + 1 − 1 . Nhận xét: Tương tự như trên ta phải biến đổi phương trình thành tích: ( ) log 3 x − 2 log 3 2 x + 1 − 1 .log 3 x = 0 . Đây là phương trình tích đã biết cách giải. Tổng quát: Trong nhiều trường hợp cùng cơ số nhưng không thể biến đổi để đặt ẩn phụ đ ược thì ta bi ến đổi thành tích. II. Đặt ẩn phụ-hệ số vẫn chứa ẩn Ví dụ 1: Giải phương trình: 9 x + 2( x − 2)3x + 2 x − 5 = 0 . Đặt t = 3x (*), khi đó ta có: t 2 + 2 ( x − 2 ) t + 2 x − 5 = 0 ⇒ t = −1, t = 5 − 2 x . Thay vào (*) ta tìm được x. Lưu ý: Phương pháp này chỉ sử dụng khi ∆ là số chính phương. Ví dụ 2: Giải phương trình: log 3 ( x + 1) + ( x − 5 ) log 3 ( x + 1) − 2 x + 6 = 0 . Đặt t = log3(x+1), ta có: 2 t 2 + ( x − 5 ) t − 2 x + 6 = 0 ⇒ t = 2, t = 3 − x ⇒ x = 8 và x = 2. III. Phương pháp hàm số Các tính chất: Tính chất 1: Nếu hàm f tăng (hoặc giảm) trên khoảng ( a;b) thì phương trình f(x)=k (k∈R) có không quá một nghiệm trong khoảng (a;b). Tính chất 2: Nếu hàm f tăng (hoặc giảm) trên khoảng (a;b) thì ∀u, v ∈(a,b) ta có f (u ) = f ( v ) ⇔ u = v . Tính chất 3: Nếu hàm f tăng và g là hàm hằng hoặc giảm trong khoảng ( a;b) thì phương trình f(x)=g(x) có nhiều nhất một nghiệm thuộc khoảng (a;b). Định lý Lagrange: Cho hàm số F(x) liên tục trên đoạn [a;b] và tồn tại F'(x) trên khoảng (a;b) thì ∃c ∈ ( a; b ) : F ( b) − F ( a ) F ' ( c) = . Khi áp dụng giải phương trình nếu có F(b) – F(a) = 0 thì b−a ∃c ∈ ( a; b ) : F ' ( c ) = 0 ⇔ F ' ( x ) = 0 có nghiệm thuộc (a;b). Định lý Rôn: Nếu hàm số y=f(x) lồi hoặc lõm trên miền D thì phương trình f(x)=0 sẽ không có quá hai nghiệm thuộc D. Ví dụ 1: Giải phương trình: x + 2.3log2 x = 3 . Hướng dẫn: x + 2.3log2 x = 3 ⇔ 2.3log 2 x = 3 − x , vế trái là hàm đồng biến, vế phải là hàm nghịch biến nên phương trình có nghiệm duy nhất x=1. Ví dụ 2: Giải phương trình: 6 x + 2 x = 5 x + 3x . Phương trình tương đương 6 x − 5 x = 3x − 2 x , giả sử phương trình có nghiêm α. Khi đó: 6 α − 5 α = 3α − 2 α . Xét hàm số f ( t ) = ( t + 1) − t α , với t > 0. Ta nhận thấy f(5) = f(2) nên theo định lý lagrange tồn tại c ∈ ( 2;5 ) α α −1 sao cho: f ( c ) = 0 ⇔ α ( c + 1) − cα −1 = 0 ⇔ α = 0, α = 1 , thử lại ta thấy x = 0, x = 1 là nghiệm của ' phương trình. www.VNMATH.com 3 Thái Thanh Tùng
- www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit 2 −x + 2 x −1 = ( x − 1) 2 . Viết lại phương trình dưới dạng Ví dụ 3: Giải phương trình: −2 x + x 2 − x , xét hàm số f ( t ) = 2 + t là hàm đồng biến trên R ( ??? ). Vậy phương trình t 2 2 x −1 + x − 1 = 2 x −x được viết dưới dạng: f ( x − 1) = f ( x − x ) ⇔ x − 1 = x − x ⇔ x = 1 . 2 2 Ví dụ 4: Giải phương trình: 3x + 2 x = 3 x + 2 . Dễ dàng ta tìm được nghiệm: x = 0 và x = 1. Ta cần chứng minh không còn nghiệm nào khác. Xét hàm số f ( x ) = 3x + 2 x − 3x − 2 ⇒ f '' ( x ) = 3x ln 2 3 + 2 x ln 2 2 > 0 ⇒ Đồ thị của hàm số này lõm, suy ra phương trình không có quá hai nghiệm. x y e = 2007 − y −1 2 Ví dụ 5: Chứng minh hệ phương trình có đúng hai nghiệm thỏa mãn x > 0, y > 0. x e y = 2007 − x2 − 1 x HD: Dùng tính chất 2 để chỉ ra x = y khi đó xét hàm số f ( x ) = e + − 2007 . x x2 − 1 Nếu x < −1 thì f ( x ) < e − 2007 < 0 suy ra hệ phương trình vô nghiệm. −1 Nếu x > 1 dùng định lý Rôn và chỉ ra với x0 = 2 thì f(2) < 0 để suy ra điều phải chứng minh. b a 2a + 1 ≤ 2b + 1 (ĐH Khối D−2007) Ví dụ 6: Cho a ≥ b > 0 . Chứng minh rằng ÷ ÷ 2a 2b 1 1 ln 2 a + a ln 2b + b ÷ ÷ 2 . Xét hàm số 1 1 HD: BĐT 2 ⇔ b ln 2 a + a ≤ a ln 2b + b ⇔ ≤ ÷ ÷ a b 2 2 1 ln 2 x + x ÷ 2 với x > 0 f ( x) = x Suy ra f’(x) < 0 với mọi x > 0, nên hàm số nghịch biến vậy với a ≥ b > 0 ta có f (a ) ≤ f ( b ) (Đpcm). IV. Một số bài toán (đặc biệt là các bài logarrit) ta thường phải đưa về phương trình – hệ phương trình – bất phương trình mũ rồi sử dụng các phương pháp trên. 1.Dạng 1: Khác cơ số: Ví dụ: Giải phương trình log 7 x = log3 ( x + 2) . Đặt t = log 7 x ⇒ x = 7t Khi đó phương trình trở thành: t t 7 1 + 2. . t = log 3 ( 7t + 2) ⇔ 3t =7t + 2 ⇔ 1 = 3÷ 3÷ 2.Dạng 2: Khác cơ số và biểu thức trong dấu log phức tạp ( x2 − 2 x − 3 ) . Ví dụ 1: Giải phương trình log 4 6 ( x 2 − 2 x − 2) = 2 log 5 Đặt t = x2 – 2x – 3 ta có log 6 ( t + 1) = log5 t . ( ) log x Ví dụ 2: Giải phương trình log 2 x + 3 6 = log 6 x . Đặt t = log 6 x , phương trình tương đương t 3 6t + 3t = 2t ⇔ 3t + ÷ = 1 . 2 log b ( x +c ) 3. Dạng 3: ( Điều kiện: b = a + c ) =x a Ví dụ 1: Giải phương trình 4log7 ( x +3) = x . Đặt t = log 7 ( x + 3) ⇒ 7t = x + 3 , phương trình tương t t đương 4t = 7t − 3 ⇔ + 3. = 1 . 4 1 ÷ ÷ 7 7 Ví dụ 2: Giải phương trình 2 log3 ( x + 5 ) = x + 4 . Đặt t = x+4 phương trình tương đương 2 log3 ( t +1) = t Ví dụ 3: Giải phương trình 4log3 ( x +1) − ( x − 1) 2log3 ( x +1) − x = 0 . ( dx +e ) +α +β , với d = ac + α , e = bc + β 4. Dạng 4: s ax + =c log s b x www.VNMATH.com 4 Thái Thanh Tùng
- www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit Phương pháp: Đặt ay + b = log s (dx + e) rồi chuyển về hệ hai phương trình, lấy phương trình hai trừ phương trình một ta được: s ax +b + acx = s ay +b + acy . Xét f ( t ) = s at +b + act . Ví dụ: Giải phương trình 7 x −1 = 6 log 7 (6 x − 5) + 1 . Đặt y − 1 = log 7 ( 6 x − 5 ) . Khi đó chuyển thành hệ 7 x −1 = 6 ( y − 1) + 1 x −1 7 = 6 y − 5 ⇒ 7 x −1 + 6 x = 7 y −1 + 6 y . Xét hàm số f ( t ) = 7t −1 + 6t suy ra x=y, Khi ⇔ y −1 y − 1 = log 7 ( 6 x − 5 ) 7 = 6 x − 5 đó: 7 x −1 − 6 x + 5 = 0 . Xét hàm số g ( x ) = 7 x −1 − 6 x + 5 Áp dụng định lý Rôn và nhẩm nghiệm ta được 2 nghiệm của phương trình là: x = 1, x = 2. 5. Dạng 5: Đặt ẩn phụ chuyển thành hệ phương trình. 2x 8 18 +x = x −1 1− x Ví dụ: Giải phương trình x −1 2 +1 2 + 2 2 + 2 + 2 8 1 18 + 1− x = x −1 1− x , đặt u = 2 x −1 + 1, v = 21− x + 1.u, v > 0 . HD: Viết phương trình dưới dạng x −1 2 +1 2 + 2 2 + 2 + 2 8 1 18 += Nhận xét: u.v = u + v. Từ đó ta có hệ: u v u + v u.v = u + v Bài tập Bài 1: Giải các phương trình sau: a. ( 2 + 3 ) + ( 2 − 3 ) − 4 = 0 x x ( ) +( ) x x 2− 3 2+ 3 =4 b. c. ( 7 + 4 3 ) − 3 ( 2 − 3 ) + 2 = 0 x x d. ( 3 + 5 ) + 16 ( 3 − 5 ) = 2 x +3 x x ( )( ) x x 2 −1 + 2 + 1 − 2 2 = 0 (ĐH_Khối B 2007) ĐS: x=1, x=−1. e. f. 3.8x+4.12x−18x−2.27x=0. (ĐH_Khối A 2006) ĐS: x=1. 2 2 g. 2 x + x − 4.2 x − x − 22 x + 4 = 0 (ĐH_Khối D 2006) ĐS: x=0, x=1. ĐS: x=−1, x=2. 2 2 k. 2 x − x − 22+ x − x = 3 (ĐH_Khối D 2003) i. 3.16 x + 2.8 x = 5.32 x 1 1 1 j. 2.4 x + 6 x = 9 x Bài 2: Giải các hệ phương trình sau: 5 x + y = 125 4 x + y = 128 a. 3 x −2 y −3 b. 2 4( x − y ) −1 = 1 =1 5 2 x + 2 y = 12 c. x + y = 5 log 2 ( x 2 + y 2 ) = 1 + log 2 ( xy ) (ĐH_Khối A 2009) ĐS: (2;2), (−2;−2) d. 2 2 3x − xy + y = 81 x −1 + 2 − y =1 (ĐH_Khối B 2005) ĐS: (1;1), (2;2). e. 3log 9 ( 9 x ) − log 3 y = 3 2 3 1 log 1 ( y − x ) − log 4 y = 1 (ĐH_Khối A 2004) ĐS: (3;4) f. 4 x 2 + y 2 = 25 www.VNMATH.com 5 Thái Thanh Tùng
- www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit 23 x = 5 y 2 − 4 y (ĐH_Khối D 2002) ĐS: (0;1), (2;4). g. 4 x + 2 x +1 =y x 2 +2 Bài 3: Giải và biện luận phương trình: a . ( m − 2 ) .2 x + m.2− x + m = 0 . b . m.3x + m.3− x = 8 . Bài 4: Cho phương trình log 3 x + log 3 x + 1 − 2m − 1 = 0 (m là tham số). (ĐH_Khối A 2002) 2 2 a. Giải phương trình khi m=2. b. Tìm m để phương trình có ít nhất một nghiệm thuộc đoạn 1; 3 . 3 ĐS: a. x = 3± 3 , b. 0 ≤ m ≤ 2 ( ) 16 x −1 − m. 2 x + 1 > 0 Bài 5: Cho bất phương trình 4 a. Giải bất phương trình khi m= . 9 b. Định m để bất phương trình thỏa ∀x ∈ R . Bài 6: Giải các phương trình sau: a. log5 x = log5 ( x + 6 ) − log5 ( x + 2 ) b. log5 x + log 25 x = log 0,2 3 ( ) x+3 2 d. lg( x 2 + 2 x − 3) + lg c. log x 2 x − 5 x + 4 = 2 =0 x −1 e. log2x−1(2x2+x−1)+logx+1(2x−1)2=4 (ĐH Khối A_2008) ĐS: x=2; x=5/4. f. log 2 ( x + 1) − 6 log 2 x + 1 + 2 = 0 (ĐH_Khối D 2008) ĐS: x=1, x=3. 2 1 g. log 2 ( 4 + 15.2 + 27 ) + 2 log 2 =0 x x (ĐH_Khối D 2007) ĐS: x=log23. 4.2 − 3 x Bài 7: Giải bất phương trình: a. 2 log3 (4 x − 3) + log 1 ( 2 x + 3) ≤ 2 (ĐH Khối A_2007) ĐS: 3/4 ≤ x ≤ 3. 3 x2 + x ÷< 0 b. log 0,7 log 6 (ĐH_Khối B 2008) ĐS: −4< x < −3, x > 8. x+4 c. log 5 ( 4 + 144 ) − 4 log 5 2 < 1 + log 5 ( 2 + 1) x−2 x (ĐH_Khối B 2006) ĐS: 2 < x < 4. x − 3x + 2 2 )( (ĐH_Khối D 2008) ĐS: 2 − 2;1 U 2; 2 + 2 . ≥0 d. log 1 x 2 −−−−−−−−−−−−−−−−−−−−−−− www.VNMATH.com 6 Thái Thanh Tùng
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề luyện thi đại học: Phương trình - bất phương trình - hệ phương trình đại số
5 p | 4124 | 1701
-
Luyện thi ĐH 2011: Phương trình - Bất phương trình - Hệ phương trình vô tỷ
13 p | 3540 | 1618
-
Giải phương trình, bất phương trình, hệ phương trình bằng phương pháp hàm số
18 p | 3438 | 1305
-
Phuơng trình, bất phuơng trình Logarit, hệ phương trình, hệ bất phương trình mũ, logarit
4 p | 3405 | 1185
-
Chuyên đề toán " Phương trình - bất phương trình - hệ phương trình đại số "
5 p | 1572 | 665
-
Công thức phương trình, bất phương trình, hệ phương trình vô thức
13 p | 2450 | 420
-
Chuyên đề: Phương trình, bất phương trình vô tỉ, hệ phương trình và hệ bất phương trình
15 p | 962 | 303
-
ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC - GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH
2 p | 669 | 107
-
XÁC ĐỊNH THAM SỐ ĐỂ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH CÓ NGHIỆM
11 p | 1250 | 103
-
Sử dụng đạo hàm để giải các phương trình, bất phương trình, hệ phương trình chứa tham số
3 p | 733 | 82
-
Tuyển tập phương trình - bất phương trình - hệ phương trình (Nguyễn Lê Phước Thịnh)
12 p | 290 | 45
-
PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ VÀ LÔGARIT TRONG KỲ THI VÀO ĐẠI HỌC
4 p | 173 | 38
-
Tuyển tập bài tập phương trình, bất phương trình, hệ phương trình, mũ, logarit
2 p | 190 | 36
-
Luyện thi Đại học môn Toán: Phương trình, bất phương trình, hệ phương trình - Thầy Đặng Việt Hùng
16 p | 99 | 21
-
Phương trình, bất phương trình và hệ phương trình - Hồ Văn Diên
3 p | 212 | 13
-
Sáng kiến kinh nghiệm: Một số dạng toán về phương trình, bất phương trình, hệ phương trình vô tỷ và phương pháp giải
17 p | 81 | 6
-
SKKN: Ứng dụng của véc tơ và tọa độ để giải một số phương trình, bất phương trình, hệ phương trình
14 p | 45 | 4
-
Chuyên đề 3: Phương trình, bất phương trình, hệ phương trình mũ và Logarit - GV. Nguyễn Bá Trung
11 p | 131 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn