Sáng kiến kinh nghiệm: Hướng dẫn học sinh giải toán có lời văn ở lớp 4, 5 với dạng bài toán: Tìm hai số khi biết tổng và tỉ số của hai số đó
lượt xem 112
download
Mời các bạn cùng tham khảo sáng kiến kinh nghiệm "Hướng dẫn học sinh giải toán có lời văn ở lớp 4, 5 với dạng bài toán: Tìm hai số khi biết tổng và tỉ số của hai số đó" dưới đây để nắm bắt được việc đổi mới phương pháp dạy toán có lời văn ở Tiểu học nói chung và ở lớp 4, 5 nói riêng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm: Hướng dẫn học sinh giải toán có lời văn ở lớp 4, 5 với dạng bài toán: Tìm hai số khi biết tổng và tỉ số của hai số đó
- HƯỚNG DẪN HỌC SINH GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 4, 5 VỚI DẠNG BÀI TOÁN: “TÌM HAI SỐ KHI BIẾT TỔNG VÀ TỈ SỐ CỦA HAI SỐ ĐÓ” I. ĐẶT VẤN ĐỀ: Toán học có vị trí rất quan trọng trong cuộc sống thực tiễn đó cũng là công cụ cần thiết cho các môn học khác, giúp học sinh nhận thức thế giới xung quanh, hoạt động có hiệu quả trong thực tiễn. Khả năng giáo dục nhiều mặt của môn toán rất to lớn, như phát triển tư duy lôgic, phát triển trí tuệ, rèn luyện phương pháp suy nghĩ, phương pháp suy luận, phương pháp giải quyết vấn đề một cách có cơ sở, khoa học toàn diện và chính xác. Nhờ đó phát triển trí thông minh, tư duy độc lập sáng tạo, linh hoạt... góp phần giáo dục lòng kiên nhẫn, tinh thần vượt khó. Hiện nay toàn ngành giáo dục nói chung và giáo dục tiểu học nói riêng đang thực hiện yêu cầu đổi mới phương pháp dạy học theo định hướng phát huy tính tính cực học tập của học sinh làm cho giờ dạy trên lớp diễn ra "nhẹ nhàng, tự nhiên, hiệu quả". Để đạt được yêu cầu đó giáo viên phải có phương pháp và hình thức dạy học phù hợp với đặc điểm tâm sinh lí của lứa tuổi tiểu học và trình độ nhận thức của học sinh, nâng cao hiệu quả giảng dạy, qua đó đáp ứng với công cuộc đổi mới của đất nước nói chung và của bậc giáo dục tiểu học nói riêng. Trong chương trình môn toán tiểu học, giải toán có lời văn giữ một vai trò quan trọng. Thông qua việc giải toán các em thấy được nhiều khái niệm toán học như: các số, các phép tính, các đại lượng, các yếu tố hình học...đều gắn với cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được mối quan hệ biện chứng giữa các sự kiện, giữa cái đã cho và cái cần tìm. Qua việc giải toán rèn luyện cho học sinh năng lực tư duy và những đức tính của con người mới: tinh thần vượt khó, đức tính cẩn thận, làm việc có kế hoạch, thói quen phán đoán có căn cứ, thói quen tự 1
- kiểm tra kết quả công việc mình làm, biết độc lập suy nghĩ, sáng tạo, giúp học sinh vận dụng các kiến thức, rèn luyện kỹ năng tính toán, kĩ năng giao tiếp. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm cũng những thiếu sót của các em về kiến thức, kĩ năng để giúp học sinh phát huy những mặt đạt được và khắc phục những mặt còn tồn tại. Chính vì vậy việc đổi mới phương pháp dạy toán “có lời văn” ở Tiểu học nói chung và ở lớp 4, 5 nói riêng là một việc làm rất cần thiết đối với mỗi giáo viên tiểu học. Đó cũng chính là lí do để người viết lựa chọn và nghiên cứu về đề tài này. Giới hạn: Hướng dẫn học sinh giải toán có lời văn ở lớp 4,5 với dạng bài toán: “ Tìm hai số khi biết tổng và tỉ số của hai số đó”. 1. Cơ sở lí luận: Toán có lời văn giữ một vị trí quan trọng trong chương trình toán 4: Góp phần hệ thống hoá, củng cố kiến thức về số tự nhiên, phân số, yếu tố hình học và 4 phép tính (+, , x, : ) với các số đã học làm cơ sở để học tiếp lớp 5 và đặt nền móng cho quá trình đào tạo tiếp theo ở các cấp học cao hơn. Hình thành kỹ năng tính toán, giúp học sinh nhận biết được mối quan hệ về số lượng, hình dạng không gian. Hình thành phát triển hứng thú học tập và năng lực phẩm chất trí tuệ của học sinh, góp phần phát triển trí thông minh, óc suy nghĩ độc lập, linh hoạt sáng tạo. Kế thừa giải toán ở lớp 1, lớp 2, lớp 3 mở rộng, phát triển nội dung giải toán phù hợp với sự phát triển nhận thức của học sinh lớp 4, 5. Nội dung giải toán được sắp xếp hợp lý đan xen với nội dung hình học (diện tích, chu vi hình vuông, hình chữ nhật...) và các đơn vị đo lường, nhằm đáp ứng với mục tiêu của chương trình toán 4, 5. 2
- Ngoài ra nội dung các bài toán ở lớp 4,5 đã chú ý đến tính thực tiễn, gắn liền với đời sống, gần gũi với trẻ, tăng cường tính giáo dục cho học sinh. * Mục tiêu của giải toán có lời văn ở lớp 4, 5 là: a. Học sinh biết giải các bài toán hợp không quá 4 bước tính liên quan đến các dạng toán điển hình. b. Biết trình bày bài giải đầy đủ gồm các câu lời giải (mỗi phép tính đều có lời văn) và đáp số theo đúng yêu cầu của bài toán. c. Đối với học sinh khá giỏi phải tìm được nhiều cách giải một bài toán (nếu có). * Các yêu cầu cơ bản để giải bài toán có lời văn. a. Yêu cầu 1: Học sinh phải tham gia vào các hoạt động học tập một cách tích cực, hứng thú, tự nhiên và tự tin. Trách nhiệm của học sinh là phát hiện, chiếm lĩnh và vận dụng. b. Yêu cầu 2: Giáo viên phải lập kế hoạch, tổ chức hướng dẫn nhẹ nhàng, hợp tác giúp học sinh phát triển năng lực cá nhân của mình. Tạo mối quan hệ tương tác ảnh hưởng nhau, và hỗ trợ nhau. c. Yêu cầu 3: Tạo điều kiện để học sinh hứng thú, tự tin trong học tập. Ở sáng kiến này, người viết không tham vọng có thể nghiên cứu về tất cả các dạng toán có lời văn ở lớp 4, 5, mà chỉ xin trình bày những nghiên cứu của mình về dạng toán "Tìm hai số khi biết tổng và tỉ số của hai số đó". Tuy nhiên các dạng toán có lời văn nói chung, dạng toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" nói riêng không bao giờ tách riêng thành một mạch kiến thức mà luôn đan xen, lồng ghép vào các dạng toán khác, tạo mối quan hệ mật thiết. Vì thế để làm tốt một dạng toán đói hỏi 3
- người nghiên cứu, người học phải nắm tốt các dạng khác, ngược lại nếu nắm chắc một dạng toán thì đó cũng là nền tảng để có thể học tốt những dạng toán khác. Dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” thường được giải bằng phương pháp chia tỉ lệ, vì vậy để học sinh giải tốt dạng toán này giáo cần chú ý giúp học sinh nắm chắc kiến thức ở phần phân số. 2. Cơ sở thực tiễn. a. Các bước điều tra cơ bản. * Thuận lợi: Năm học 20132014 tôi được nhà trường phân công chủ nhiệm lớp 5C có 35 em học sinh trong đó nữ là 16 em. Các em chủ yếu sống tập trung trên địa bàn thị trấn Mạo Khê – Huyện Đông Triều. Đa số học sinh thích học môn toán. Học sinh có đầy đủ phương tiện học tập. Nhà trường trang bị tương đối đầy đủ đồ dùng cho dạy học toán. * Khó khăn: Môn toán là môn học khó, học sinh dễ chán. Trình độ nhận thức học sinh không đồng đều. Một số học sinh còn chậm, nhút nhát, kĩ năng tóm tắt bài toán còn hạn chế, chưa có thói quen đọc và tìm hiểu kĩ bài toán dẫn tới thường nhầm lẫn giữa các dạng toán, lựa chọn phép tính còn sai, chưa bám sát vào yêu cầu bài toán để tìm lời giải thích hợp với các phép tính. Kĩ năng tính nhẩm với các phép tính (hàng ngang) và kĩ năng thực hành diễn đạt bằng lời chưa tốt. Một số em tiếp thu bài một cách thụ động, ghi nhớ bài còn máy móc. 4
- b. Kết quả khảo sát đầu năm. Qua khảo sát chất lượng đầu năm vào thời điểm tháng 10/2013 (năm học 2013 2014) riêng về giải bài toán có lời văn: Tổng số là 35 học sinh của lớp 5C do tôi chủ nhiệm là như sau: Chọn và thực hiện Tóm tắt bài toán Lời giải và đáp số đúng phép tính Đạt Chưa đạt Đúng Sai Đúng Sai 8 em 27 em 12 em 23 em 12 em 23 em = 22,9 % = 77,1 % = 34,3 % = 65.7 % = 34,3 % = 65,7 % Qua kết quả khảo sát cho thấy kĩ năng giải các bài toán có lời văn của các em còn rất nhiều hạn chế. Chính vì thực trạng này đặt ra cho mỗi người giáo viên là dạy giải toán có lời văn như thế nào để nâng cao chất lượng môn học. II. NỘI DUNG NGHIÊN CỨU: 1. Biện pháp thực hiện a. Đối với giáo viên: * Tự học tập, nghiên cứu: 5
- Đổi mới phương pháp dạy học nói chung và đổi mới phương pháp dạy giải toán nói riêng là nhằm tìm ra được phương pháp dạy phù hợp cho từng nội dung của từng môn, từng bài nhằm đạt được chất lượng cao nhất trong giảng dạy. Vì vậy mỗi giáo viên cần thường xuyên thăm lớp dự giờ của đồng nghiệp, qua đó học tập và xây dựng, thống nhất đổi mới phương pháp giảng dạy phù hợp đối với mỗi môn học để tìm ra con đường chuyển tải kiến thức tới học sinh bằng cách nhanh nhất, ngắn gọn nhất. * Công tác chuẩn bị. Trước khi dạy bất cứ một loại bài nào, tôi đều gặp gỡ trao đổi cùng đồng nghiệp và các giáo viên trong tổ để thống nhất về phương pháp cũng như trao đổi về kinh nghiệm dạy dạng toán đó. Qua đó tôi đi đến nhận định là cần đầu tư thời gian và nghiên cứu kĩ các bài tập của mỗi dạng toán, từ bài giảng đến bài luyện, từ bài trong sách giáo khoa đến bài trong vở bài tập để đưa ra phương pháp giảng dạy phù hợp, ngắn gọn, học sinh dễ tiếp thu, giáo viên nói ít và chọn được thêm bài để nâng cao kiến thức đối với đối tượng học sinh khá, giỏi. Đồng thời cũng lường trước được những tình huống học sinh hay vướng mắc trong khi thực hành giải toán. Tất cả sự chuẩn bị của giáo viên đều được thể hiện cụ thể trên bài soạn với đủ các bước, đủ các yêu cầu và thể hiện được công việc của thầy và trò trong giờ giải toán. * Thực hiện đúng quy trình giải một bài toán có lời văn và Phương pháp giải bài toán "Tìm hai số khi biết tổng và tỉ số của hai số đó": Bước 1: Đọc kỹ đề bài (vì đọc kỹ đề bài học sinh mới tập trung suy nghĩ về ý nghĩa nội dung của bài toán và đặc biệt chú ý đến yêu cầu của bài toán. Bước 2: Phân tích, tóm tắt bài toán ( dùng câu hỏi gợi mở giúp học sinh hiểu: Bài toán cho biết gì? Hỏi gì?) 6
- Bước 3: Tìm cách giải bài toán (thiết lập trình tự giải, lựa chọn phép tính thích hợp). Bước 4: Trình bày bài giải (trình bày lời giải (nói viết) phép tính tương ứng, đáp số, kiểm tra lời giải (giải xong bài toán cần thử lại kết quả đáp số tìm được có trả lời đúng câu hỏi của bài toán, có phù hợp với các điều kiện của bài toán không?), trong một số trường hợp nên thử xem có cách giải khác gọn hơn, hay hơn không * Tổ chức các hoạt động ngoài giờ chính khóa: Ngoài việc thực hiện tốt các giờ dạy trên lớp sao cho các em nắm vững các phương pháp giải toán, người giáo viên cần bồi dưỡng cho các em tình yêu toán học bằng các hoạt động ngoại khóa như: Sân chơi Những người yêu toán; Cuộc thi Tìm hiểu về các nhà Toán học trên thế giới; Cuộc thi Giải toán Tuổi thơ; Thi học sinh giỏi toán; cuộc thi Học sinh giỏi toàn diện…do trường, khối hay do chính lớp phát động. b. Đối với học sinh: Đối với học sinh ngoài việc giúp các em đạt được kết quả giáo dục và bồi dưỡng ý thức thích học toán, hào hứng trong hoạt động học toán, có phương pháp học bộ môn toán, có thao tác về giải toán. Các em còn phải có đầy đủ các dụng cụ học toán và chuẩn bị đầy đủ các đồ dùng học tập cần thiết trong từng tiết học. Chính vì sự liên quan hệ thống giữa kiến thức đã học với kiến thức mới nên học sinh phải làm hết và đầy đủ các bài tập, học thuộc các quy tắc, công thức toán. Để học sinh có thói quen học bài, làm bài đầy đủ tôi đã bố trí mỗi bàn có một bàn trưởng là học sinh khá toán, thường xuyên kiểm tra bài học, bài làm ở nhà của các bạn trong bàn vào giờ ôn bài, soát bài và chỉ ra chỗ đúng sai trong bài tập của bạn giúp bạn cùng tiến bộ (xây dựng đôi bạn cùng tiến ...). 7
- Ngoài các giờ học chính khóa trên lớp, các em còn được tham gia các hoạt động ngoại khóa, tìm hiểu thêm các bài toán vui, bài toán lạ do giáo viên cung cấp hoặc do các em đọc được trên các tạp chí về toán (như tạp chí Toán tuổi thơ…). 2. Hướng dẫn học sinh nắm chắc các bước giải và phân loại các kiểu bài thuộc dạng toán “Tìm hai số khi biết tống và tỉ số của hai số đó”. a. Hướng dẫn học sinh nắm chắc các bước giải. 2 Bài toán 1: Minh và Khôi có 25 quyển vở. Số vở của Minh bằng số 3 vở của Khôi. Hỏi mỗi bạn có bao nhiêu quyển vở? Bước 1: Học sinh đọc đề toán. Bước 2: Phân tích – tóm tắt bài toán. + Bài toán cho biết gì? (Minh và Khôi có 25 quyển vở, số vở của 2 Minh bằng số vở của Khôi). 3 + Bài toán hỏi gì? (Bài toán yêu cầu tìm số vở của Minh và số vở của Khôi) + Bài toán thuộc dạng toán gì đã được học? (Bài toán thuộc dạng “Tìm hai số khi biết tổng và tỉ số của hai số đó”) Bước 3: Tìm cách giải bài toán: Trình bày bài giải. Dựa vào kế hoạch giải bài toán ở trên mà học sinh sẽ tiến hành giải như sau: Tóm tắt: ? quyển 8
- Minh: 25 quyển Khôi: ? quyển Theo sơ đồ tổng số phần bằng nhau là: 2 + 3 = 5 (phần) Giá trị của một phần là: 25 : 5 = 5 (quyển) Số vở của bạn Minh là: 5 x 2 = 10 (quyển) Số vở của bạn Khôi là: 5 x 3 = 15 (quyển) hoặc: 25 – 10 = 15 (quyển) Đáp số: Minh: 10 quyển vở; Khôi: 15 quyển vở. Hỏi: Có thể tìm số vở của bạn Khôi bằng cách nào khác? Tổng số vở của hai bạn số vở của bạn Minh = số vở của bạn Khôi. [hay 25 10 = 15 (quyển)] Thử lại: Là quá trình kiểm tra việc thực hiện phép tính, độ chính xác của quá trình lập luận. 2 10 : 15 = 3 ? m ải bài toán. Bài toán 2: Đặt đề toán và gi 28 m 9 ? m
- Vải trắng: Vải hoa: 1. Hướng dẫn học sinh dựa vào sơ đồ để xác định được dạng toán và đặt đề toán. + Bài toán yêu cầu chúng ta làm gì? (Bài toán yêu cầu nêu đề bài toán rồi giải theo sơ đồ). + Quan sát sơ đồ và cho biết bài toán thuộc dạng toán gì? (Bài toán thuộc dạng tìm hai số khi biết tổng và tỉ số của hai số đó). + Tổng của hai số là bao nhiêu? (Tổng của hai số là 28m) 2 + Tỉ số của hai số là bao nhiêu? (Tỉ số của hai số là ) 3 Giáo viên yêu cầu học sinh dựa vào sơ đồ đặt đề toán. 2. Đặt đề toán. 2 Một cửa hàng đã bán 28m vải, trong đó số vải hoa bằng số vải 3 trắng. Hỏi cửa hàng đó đã bán được bao nhiêu mét vải mỗi loại? 3. Giải bài toán. * Như vậy, với hai bài toán 1 và bài toán 2, tôi đã giúp học sinh nắm chắc các bước giải bài toán có lời văn dạng “Tìm hai số khi biết tổng và tỉ số của hai số đó”, gồm các bước giải cơ bản sau: + Xác định được tổng và tỉ số đã cho. + Xác định được hai số phải tìm là số nào? 10
- Từ đó đi tới phương pháp giải chung là: + Tìm tổng số phần bằng nhau. + Tìm tổng giá trị của một phần bằng cách lấy tổng của hai số chia cho tổng số phần bằng nhau. + Tìm giá trị của mỗi số. Sau khi học sinh đã nắm được quy trình và cách giải đặc trưng của lọai toán này, giáo viên đưa ra các bài toán có tổng hoặc tỉ số ở những dạng khác nhau để học sinh vận dụng cách giải trên vào giải các bài tương tự, qua đó nhằm mở rộng, củng cố, khắc sâu hơn cho học sinh về kiến thức cũng như kĩ năng giải dạng toán này. Từ phương pháp dạy như trên giáo viên có thể áp dụng với tất cả những loại bài như sau: 3. Phân loại các kiểu bài thuộc dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó”. a. Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” (trường hợp tỉ số của hai số là một số tự nhiên). Ví dụ: Có 45 tấn thóc chứa trong hai kho. Kho lớn chứa gấp 4 lần kho nhỏ. Hỏi số thóc chứa trong mỗi kho là bao nhiêu tấn? 2 học sinh đọc thành tiếng đề toán (cả lớp đọc thầm theo bạn và gạch chân = bút chì dưới từ “gấp 4 lần”) + Bài toán cho biết gì? (Tổng số thóc ở hai kho là 45 tấn, kho lớn gấp 4 lần kho nhỏ). + Bài toán hỏi gì? (số thóc ở mỗi kho) . + Kho lớn gấp 4 lần kho nhỏ cho ta biết điều gì? ( Tỉ số giữa số thóc kho lớn và số thóc kho nhỏ hoặc ngược lại). 11
- Học sinh tóm tắt và giải bài toán: Tóm tắt: ? tấ n Kho nhỏ: 45 tấn Kho lớn: ? tấ n Tổng số phần bằng nhau là: 1 + 4 = 5 (phần) Số thóc ở kho nhỏ là: 45 : 5 = 9 (tấn) Số thóc ở kho lớn là: 9 x 4 = 36 (tấn) Đáp số: Kho nhỏ: 9 tấn; Kho lớn: 36 tấn. b. Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” (trường hợp tỉ số là một phân số). * Tỉ số giữa số bé và số lớn: 2 Ví dụ: Mẹ mua 20 kg gạo trong đó khối lượng gạo nếp bằng khối 3 lượng gạo tẻ. Tính số kg gạo mỗi loại? Ở bài này sau khi đã giúp học sinh nắm được các dữ kiện của đề bài, giáo viên hứơng dẫn để học học sinh giải bài toán. 12
- 2 + Khối lượng gạo nếp bằng khối lượng gạo tẻ, em hiểu điều này 3 như thế nào? ( Nghĩa là tỉ số giữa khối lượng gạo nếp so với khối lượng 2 gạo tẻ là ). 3 Häc sinh tù tãm t¾t vµ gi¶i bµi to¸n. ? kg Số gạo tẻ: 20 kg Số gạo nếp: ? kg Tự giải bài toán theo các bước cơ bản. * Tỉ số giữa số lớn và số bé: Ví dụ: Hai kho chứa 125 tấn thóc, trong đó số thóc ở kho thứ nhất 3 bằng số thóc ở kho thứ hai. Hỏi mỗi kho chứa bao nhiêu tấn thóc? 2 Tương tự như ở ví dụ 2, giáo viên hướng dẫn để học sinh hiểu được tỉ số giữa số thóc ở kho thứ nhất với số thóc ở kho thứ hai (là tỉ số giữa số lớn và số bé). c. Bài toán "Tìm hai số khi biết tổng và tỉ số của hai số đó"(trường hợp tổng và tỉ số của hai số chưa tường minh). * Tìm hai số khi biết tổng và tỉ số của hai số đó ( trường hợp tỉ số chưa tường minh) 13
- Ví dụ: Tổng của hai số là 72. Tìm hai số đó, biết rằng nếu số lớn giảm 5 lần thì được số bé. Ở bài toán này tỉ số được cho dưới dạng chưa tường minh, vì vậy để giải bài toán trước tiên giáo viên cần hướng dẫn học sinh tìm được tỉ số của hai số. Yêu cầu học sinh đọc thầm đề toán, dùng bút chì gạch chân dưới cụm từ “ số lớn giảm đi 5 lần thì được số bé”. + Em hiểu số lớn giảm 5 lần thì được số bé nghĩa là thế nào? (Nghĩa 1 là số lớn gấp 5 lần số bé (hay) số bé bằng số lớn). 5 1 + Vậy tỉ số của hai số là bao nhiêu? ( Tỉ số của hai số là ) 5 + Bài toán thuộc dạng toán nào? (Tìm hai số khi biết tổng và tỉ số của hai số). Khi đã xác định được tổng và tỉ số của hai số, xác định được dạng toán, học sinh tự trình bày bài giải theo các bước cơ bản. * Tìm hai số khi biết tổng và tỉ số của hai số đó ( trường hợp tổng của hai số chưa tường minh) Ví dụ: Trung bình cộng của hai số bằng 15. Tìm hai số đó, biết số 3 lớn bằng số bé. 2 Học sinh đọc đề bài. + Bài toán cho biết gì? (Trung bình cộng của hai số bằng 15, số lớn 3 bằng số bé). 2 + Trung bình cộng của hai số bằng 15 em hiểu điều đó như thế nào? ( Nghĩa là tổng của hai số chia cho 2 thì bằng 15). 14
- + Vậy muốn tìm tổng của hai số em làm thế nào? (Ta lấy 15 nhân với 2) + Bài toán thuộc dạng toán gì? (Tìm hai số khi biết tổng và tỉ số của hai số đó. Học sinh tự giải bài toán. * Tìm hai số khi biết tổng và tỉ số của hai số đó (trường hợp cả tổng và tỉ số của hai số chưa tường minh) Ví dụ: Tổng của hai số bằng số lớn nhất có 4 chữ số.Tỉ số giữa số lớn so với số bé bằng số nhỏ nhất có hai chữ số. Tìm hai số đó. Học sinh đọc đề bài. Hướng dẫn học sinh phân tích bài toán: + Bài toán cho biết gì? (Tổng của hai số là số lớn nhất có 4 chữ số; Tỉ số giữa số lớn và số bé là số nhỏ nhất có hai chữ số). + Bài toán yêu cầu gì? (Tìm hai số đó). + Số lớn nhất có bốn chữ số là số nào? (Số 9999). Vì sao? (Vì mọi số có bốn chữ số khác đều nhỏ hơn 9999, vậy số lớn nhất có 4 chữ số là số 9999). + Số nhỏ nhất có hai chữ số là số nào? (Số 10). Vì sao? (Vì mọi số có hai chữ số khác đều lớn hơn 10, vậy số nhỏ nhất có hai chữ số là số 10). + Tổng của hai số là bao nhiêu? (9999). + Tỉ số của hai số là bao nhiêu? (10). HS tự tóm tắt và giải bài toán. d. Bài toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" (có liên quan đến cácyếu tố hình học). 15
- 2 Ví dụ: Một hình chữ nhật có nửa chu vi là 125m, chiều rộng bằng 3 chiều dài. Tính chiều dài, chiều rộng của hình đó. Ở bài toán này sau khi học sinh đã nắm được các dữ kiện của đề bài, giáo viên cần giúp học sinh xác định được số chỉ tổng của hai số. + Nửa chu vi ở đây là gì? (Nửa chu vi chính là tổng số đo chiều dài và chiều rộng). 2 + Chiều rộng bằng chiều dài, em hiểu điều này như thế nào? (Tỉ 3 2 số giữa chiều rộng và chiều dài là ). 3 + Bài toán thuộc dạng toán gì? (Bài toán thuộc dạng tìm hai số khi biết tổng và tỉ số của hai số đó) Học sinh tóm tắt và giải bài toán. * Sau khi học sinh đã nhận diện và giải được các kiểu bài toán thuộc dạng “Tìm hai số khi biết tổng và tỉ số của hai số đó, giáo viên giúp học sinh hệ thống lại các kiểu bài thuộc dạng toán này. + Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” (trường hợp tỉ số của hai số là một số tự nhiên). + Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” (trường hợp tỉ số là một phân số). + Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” ( trường hợp tỉ số chưa tường minh) + Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” ( trường hợp tổng của hai số chưa tường minh) 16
- + Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” (trường hợp cả tổng và tỉ số của hai số chưa tường minh) + Bài toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" (có liên quan đến các yếu tố hình học). *Tóm lại: Với việc dạy học sinh như trên, giáo viên đã giúp học sinh: + Nắm chắc các bước giải. + Nhận diện được các kiểu bài thuộc dạng “Tìm hai số khi biết tổng và tỉ số của hai số đó”. + Vận dụng giải các bài toán dạng "Tìm hai số khi biết tổng và tỉ số của hai số đó” một cách thành thạo. III: KẾT QUẢ NGHIÊN CỨU. Trong một năm dạy học và tiến hành nghiên cứu cũng như học hỏi phương pháp dạy học của đồng nghiệp, bản thân tôi nhận thấy, để khắc phục những hạn chế cho học sinh trong môn toán nói chung và việc giải toán có lời văn nói riêng chính là việc đổi mới phương pháp dạy học theo hướng tích cực, thầy chỉ giữ vai trò tổ chức điều khiển và hướng dẫn học sinh trong quá trình tìm ra tri thức mới. Học sinh thực hành và tự đúc kết ra kinh nghiệm cho bản thân. Với việc đổi mới phương pháp dạy toán có lời văn như trên tôi đã đạt được kết quả như sau: * Đối với bản thân: Đã tự học tập và có kinh nghiệm trong dạy toán nói chung và trong việc dạy giải toán rói riêng, đồng thời giúp cho bản thân nâng cao được tay nghề và đã áp dụng được các phương pháp đổi mới không chỉ cho dạng toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" mà còn áp dụng được cho các dạng toán khác và cho tất cả các môn học. 17
- * Đối với học sinh: Các em đã nắm chắc được từng dạng bài, biết cách tóm tắt, biết cách phân tích đề, lập kế hoạch giải, phân tích kiểm tra bài giải. Đặc biệt các em được bồi dưỡng tình yêu môn toán. Rất nhiều em học sinh trong lớp khi được hỏi em thích học môn nào đều trả lời: “Thích nhất là môn toán”. Vì thế nên kết quả môn toán của các em có nhiều tiến bộ. Giờ học toán là giờ học sôi nổi nhất. Cụ thể kết quả kiểm tra toán cuối đợt nghiên cứu là: Sĩ số Điểm 910 Điểm 7 8 Điểm 56 Điểm dưới 5 35 13 = 37,1% 10 = 28,6% 10 = 28,6% 2 = 5,7% Kết quả của học sinh về giải toán dạng "Tìm hai số khi biết tổng và Tỉ số của hai số đó" là: Chọn và thực hiện Tóm tắt bài toán Lời giải và đáp số phép tính đúng Đạt Chưa đạt Đóng Sai Đóng Sai 28 7 26 9 26 9 = 80 % = 20% = 74,3% = 25,7% = 74,3% =25,7% §©y lµ mét kÕt qu¶ thµnh c«ng ngoµi mong ®îi cña t«i. Như vậy rèn cho các em có phương pháp học là biện pháp tốt nhất của người làm công tác giáo dục. 18
- IV. KẾT LUẬN . Để có kết quả giảng dạy tốt đòi hỏi người giáo viên phải nhiệt tình và có phương pháp giảng dạy tốt. Có một phương pháp giảng dạy tốt là một quá trình tìm tòi, học hỏi và tích lũy kiến thức, kinh nghiệm của bản thân mỗi người. Là người giáo viên được phân công giảng dạy lớp 5C của trường Tiểu học Quyết Thắng. Tôi nhận thấy việc tích luỹ kiến thức cho các em là cần thiết, nó tạo tiền đề cho sự phát triển tri thức của các em sau này "cái móng" chắc sẽ giúp các em học tốt các môn học khác và tạo đà để tiếp tục học lên ở các bậc học cao hơn. Cần tổ chức các hoạt động hỗ trợ cho việc học toán, qua đó nhằm bồi dưỡng cho các em tình yêu môn toán như: tổ chức các cuộc thi, các buổi giao lưu cho nhiều khối lớp. Đưa một số bài toán vui vào nội dung chương trình để tạo không khí "học chơi; chơi học" trong giờ học toán. Trong quá trình nghiên cứu và dạy giải toán có lời văn nói riêng, dạy học toán cho học sinh lớp 4, 5 nói chung, tôi mạnh dạn đưa ra một số kinh nghiệm trên rất mong đón nhận sự xây dựng và góp ý của đồng nghiệp. 19
- Cuối cùng tôi xin mượn lời một nhà nghiên cứu để nhận định như sau: "Khi làm một việc để có kết quả như mình mong muốn phải có sự kiên trì và thời gian không phải một tuần, hai tuần là học sinh sẽ có khả năng giải toán tốt mà đòi hỏi phải tập luyện trong một thời gian dài trong suốt cả quá trình học tập của các em. Giáo viên chỉ là người hướng dẫn, đưa ra phương pháp, còn học sinh sẽ là người đóng vai trò hoạt động tích cực tìm ra tri thức, lĩnh hội và biến nó thành vốn tri thức của bản thân". Những ý kiến của tôi đưa ra có thể còn nhiều hạn chế. Rất mong sự đóng góp ý kiến của đồng nghiệp, tổ chuyên môn, Ban giám hiệu nhà trường cũng như các đồng chí lãnh đạo ngành Giáo dục để người giáo viên tích lũy thêm nhiều kinh nghiệm giảng dạy, qua đó nâng cao hiệu quả dạy – học toán dạng "Tìm hai số khi biết tổng và tỉ số của hai số đó” nói riêng và giải toán có lời văn (nói chung) ở lớp 4,5. Tôi xin chân thành cảm ơn! Mạo Khê, ngày 20 tháng 11 năm 2013. Người viết: Vũ Thị Quỳnh. 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh giải nhanh bài toán khảo sát mạch điện xoay chiều khi các thông số của mạch thay đổi
20 p | 2552 | 1152
-
Sáng kiến kinh nghiệm: Hướng dẫn phụ đạo học sinh yếu Toán lớp 5
8 p | 1356 | 367
-
Sáng kiến kinh nghiệm - Hướng dẫn học sinh thực hành từ loại Tiếng Việt
19 p | 1215 | 361
-
SKKN: Kinh nghiệm hướng dẫn học sinh vẽ tranh đề tài - Trường THCS Bình Lăng
17 p | 823 | 81
-
Sáng kiến kinh nghiệm: Hướng dẫn giải nhanh một số bài tập dao động tắt dần của con lắc lò xo và con lắc đơn, chương Dao động cơ, môn Vật lí lớp 12
15 p | 442 | 67
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh sử dụng Át lát Địa lí Việt Nam trong học tập Địa lí lớp 12
17 p | 595 | 52
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh giải bài toán tìm x ở số học 6
7 p | 485 | 49
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh học bài và làm bài tập ở nhà
12 p | 386 | 42
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh vận dụng định luật bảo toàn khối lượng để giải nhanh một số bài tập Hóa học ở trung học cơ sở
17 p | 265 | 33
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh lớp 11 giải bài tập Hình học Không gian (Phần II)
20 p | 184 | 31
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh phân loại và giải một số dạng toán xác suất lớp 11
12 p | 182 | 28
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh vận dụng một số tính chất của Hypebol trong bài tập giao thoa sóng cơ
15 p | 174 | 24
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh giải bài toán định lượng về tính tương đối của chuyển động
14 p | 173 | 19
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh lớp 6 trường THCS Bắc Sơn giải toán chuyển động đạt hiệu quả
20 p | 122 | 18
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh khối 12 giải nhanh bài tập về thời gian và đường đi trong dao động điều hoà bằng việc vận dụng mối quan hệ giữa dao động điều hoà và chuyển động tròn đều
17 p | 98 | 12
-
Sáng kiến kinh nghiệm: Hướng dẫn học viên ôn tập và hệ thống hóa kiến thức Vật lí bằng sơ đồ trong tiết ôn tập chương
14 p | 90 | 9
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh tiếp cận với "Dòng biến thiên tuần hoàn bất kỳ"
10 p | 55 | 3
-
Sáng kiến kinh nghiệm: Hướng dẫn học sinh giải một số phương trình, bất phương trình và hệ phương trình vô tỉ bằng “con mắt” của lượng giác
11 p | 82 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn