intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Sáng kiến kinh nghiệm Tiểu học: Rèn kỹ năng giải toán điển hình cho học sinh lớp 4

Chia sẻ: Tomjerry004 | Ngày: | Loại File: DOC | Số trang:12

43
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Sáng kiến kinh nghiệm Tiểu học được hoàn thành với mục tiêu nhằm hướng dẫn học sinh giải các bài toán có tính chất chuẩn bị cơ sở cho việc giải loại toán sắp học. Giúp học sinh tập trung vào khâu nhận dạng bài toán và rút ra được cách giải quyết tổng quát.

Chủ đề:
Lưu

Nội dung Text: Sáng kiến kinh nghiệm Tiểu học: Rèn kỹ năng giải toán điển hình cho học sinh lớp 4

  1. 1. PHẦN MỞ ĐẦU 1.1. Lý do chọn đề tài Trong chương trình toán tiểu học, việc giải các bài toán chiếm một vị  trí rất quan trọng. Phần lớn các biểu tượng, khái niệm, quy tắc, tính chất  toán học đều được học sinh tiếp thu qua con đường giải toán. Việc giải   toán giúp học sinh củng cố vận dụng các kiến thức, rèn luyện kỹ năng tính  toán. Thông qua giải toán học sinh sẽ tiếp nhận được những kiến thức về  cuộc sống và có điều kiện để  rèn luyện khả  năng áp dụng các kiến thức  vào cuộc sống. Đồng thời qua việc giải toán cho học sinh mà giáo viên có  thể  dễ  dàng phát hiện những mặt mạnh, mặt yếu của từng em về  kiến   thức, kỹ  năng và tư  duy. Để  từ  đó giúp học sinh phát huy được tính chủ  động, sáng tạo trong học tập. Hướng dẫn cho học sinh tìm ra lời giải đúng và hay là rất khó. Đại đa  số giáo viên chỉ hướng dẫn học sinh giải các bài toán trong sách giáo khoa,   ít khi đề  cập đến các bài toán trong tài liệu tham khảo, tài liệu nâng cao.   Chính vì thế việc rèn kỹ năng giải toán điển hình còn có phần hạn chế. Nhận thức được tầm quan trọng của việc rèn kỹ  năng giải toán điển  hình đồng thời xuất phát từ  thực tế giảng dạy của giáo viên trong các tiết   bồi dưỡng toán cho học sinh tôi thấy cần phải rèn kỹ  năng giải toán điển   hình cho học sinh là rất quan trọng. Song bản thân tôi không có tham vọng  lớn mà chỉ cố gắng nghiên cứu tìm tòi nhằm đáp ứng được phần nào trong  việc nâng cao dạy toán điển hình cho học sinh lớp 4. Vì lẽ  đó tôi đã chọn   sáng kiến “Rèn kỹ  năng giải toán điển hình cho học sinh lớp 4 ” để  nghiên cứu và áp dụng vào công tác giảng dạy của mình. Hi vọng đây là tài  liệu tham khảo bổ  ích cho giáo viên đang trực tiếp giảng dạy lớp 4, giáo  viên bồi dưỡng học sinh giỏi lớp 4 và những ai quan tâm đến vấn đề này. Sáng kiến này do tôi nghiên cứu qua quá trình trực tiếp giảng dạy cho   học sinh giỏi lớp 4, 5, sáng kiến có những điểm mới sau: Hướng dẫn học sinh giải các bài toán có tính chất chuẩn bị cơ sở cho   việc giải loại toán sắp học Giúp học sinh tập trung vào khâu nhận dạng bài toán và rút ra được  cách giải quyết tổng quát. Đây là điểm rất quan trọng. 1
  2. Hướng dẫn học sinh giải các bài toán phức tạp dần từ  các bài toán   chuẩn bị cơ sở đến các bài toán nâng cao. Rèn trí thông minh và óc sáng tạo của học sinh qua việc giải một bài  toán bằng nhiều cách, không thể bằng lòng với kết quả tìm được. Giúp học sinh tiếp xúc với những bài toán có dữ kiện thừa hoặc thiếu Dựa vào đề của bài toán để đặt điều kiện cho bài toán. Những điểm mới trên nhằm giải quyết một số vấn đề đó là: Những bài toán có tính chất cơ  sở  tạo tiền đề  giúp các em làm quen  với dạng toán sắp học. Nếu những bài toán cơ sở này được chuẩn bị tốt thì  việc giải các bài toán sắp học thật dễ dàng. Đối với những bài toán khó thì bước nhận dạng để tìm ra hướng giải  quyết là khâu cơ  bản nhất. Học sinh thường nhầm lẫn từ  dạng toán này  sang dạng toán khác. Nếu các em chắc chắn trong bước nhận dạng thì việc  giải bài toán sẽ thành công. Để  giải được những bài toán khó thì học sinh phải bắt đầu từ  những  bài toán đơn giản, những bài toán cơ sở nâng dần đến những bài toán phức   tạp. Có như  vậy việc nắm bắt, tiếp cận kiến thức mới dễ dàng. Đối với  những học sinh giỏi thì phải tập cho các em đừng tự bằng lòng với kết quả  của mình tìm được mà có thể  tìm các cách giải khác để  chọn ra cách dễ  hiểu, ngắn gọn nhất. Với những bài toán cần đặt điều kiện thì học sinh  phải hiểu, nắm chắc yêu cầu của đề bài, nhất là những bài toán dạng cấu   tạo số. Nếu không đọc kỹ, nắm vững đề  bài thì không thể  đặt được điều  kiện cho bài toán và dẫn đến bài toán thiếu điều kiện, không chặt chẽ. 1.2. Phạm vi áp dụng của sáng kiến: Sáng kiến này áp dụng để  giảng dạy các bài toán điển hình cho học  sinh lớp 4 trong lĩnh vực toán học. 2
  3. 2. PHẦN NỘI DUNG 2.1. Thực trạng của nội dung cần nghiên cứu Những năm học trước việc giải toán điển hình đối với học sinh lớp 4,   thậm chí những học sinh giỏi lớp 5 cũng rất khó khăn khi gặp phải những   bài toán điển hình, chất lượng các hội thi học sinh giỏi thấp. Các em còn lẫn lộn giữa dạng toán này sang dạng toán khác (tổng ­ tỷ,   hiệu ­ tỷ, tổng ­ hiệu) Kỹ  năng tóm tắt bài toán còn yếu, năng lực tư  duy trừu tượng còn  kém. Học sinh phân vân không biết tính cái gì trước, cái gì sau dẫn đến bài  toán bị lẫn lộn, tẩy xóa, sửa bỏ Những em học khá cũng tự  bằng lòng với kết quả  làm được, chưa  chịu khó tìm cách giải khác. Chưa có thói quen thử lại kết quả đúng hay chưa đúng Kỹ  năng biểu thị  bài toán bằng sơ  đồ  cũng rất yếu, chưa điền được   các dữ kiện lên sơ đồ hay điền chưa đúng, đủ. Phần lý luận để  trình bày bài toán một cách mạch lạc hầu như  chưa   có, các em chỉ  biết ghi lời giải rồi đến phép tính, thậm chí có những lời  giải sai hay chưa đúng trọng tâm. Hầu hết các dạng toán điển hình trong chương trình các em nắm rất   mơ hồ nên trong các bài kiểm tra thì phần bài giải thường bị điểm thấp.  * Nguyên nhân dẫn đến tình hình trên là: Trong quá trình dạy học, người giáo viên còn chưa có sự  chú ý đúng  mức tới việc làm thế  nào để  đối tượng học sinh nắm vững được lượng   kiến thức, đặc biệt là các bài toán điển hình. Nguyên nhân là do giáo viên   dạy nhiều môn, thời gian dành để  nghiên cứu tìm tòi những phương pháp  dạy học phù hợp với đối tượng học sinh trong lớp còn hạn chế. Do vậy  chưa lôi cuốn được sự  tập trung chú ý nghe giảng của học sinh. Bên cạnh   đó nhận thức về vị trí, tầm quan trọng của các bài toán điển hình trong môn  Toán cũng chưa đầy đủ. Từ đó dẫn đến tình trạng dạy học chưa trọng tâm,   kiến thức còn dàn trải. Trong giảng dạy giáo viên chưa yêu cầu cao đến kỹ  năng giải toán  đặc biệt là các bài toán điển hình, giáo viên còn coi nhẹ  việc hướng dẫn  học sinh đọc kỹ  đề  bài để  hiểu rõ nội dung, yêu cầu của bài toán. Việc   3
  4. nhận dạng bài toán, rèn kỹ  năng tóm tắt bài toán bằng sơ  đồ  hay hình vẽ  chưa được chú trọng Đa số  học sinh tiểu học kỹ  năng hiểu đề  qua đọc bài toán còn yếu,   đọc hấp tấp, không chịu khó tìm hiểu đề bài phân tích bài toán dựa trên các   giả  thiết để  tìm ra các mối quan hệ  chính trong bài toán nhằm nhận dạng   bài toán (vì mỗi dạng toán có cách giải khác nhau) Các em chỉ biết làm phép tính mà chưa biết chuyển hình thức câu hỏi  sang câu lời giải mang tính khẳng định một phần do tư  duy ngôn ngữ  còn  yếu Tất cả những yếu tố trên đã làm ảnh hưởng đến kết quả  chất lượng   giải toán điển hình cho học sinh tiểu học nói chung và học sinh lớp 4 nói  riêng. 2.2. Các giải pháp: Để  nâng cao chất lượng giải toán điển hình cho học sinh lớp 4. Là  một giáo viên giảng dạy môn Toán lớp 4 tôi xin đưa ra một số  giải pháp  sau: *. Xác định các bước giải toán điển hình: a. Bước 1:  Cho học sinh giải các bài toán có tính chất chuẩn bị  cơ  sở  cho việc   giải loại toán sắp học. Các bài toán có tính chất chuẩn bị này nên có số liệu   không lớn lắm để học sinh có thể tính miệng được dễ dàng nhằm tạo điều   kiện cho các em tập trung suy nghĩ vào các mối quan hệ toán học và các từ  mới chứa trong đề bài toán. Ví dụ 1:  Để chuẩn bị cho việc học loại toán “Tìm số trung bình cộng”   có thể cho học sinh giải bài toán đơn sau:  “Anh Hải điều khiển máy xay lúa. Trong 8 giờ anh xay được 72 tạ lúa.   Hỏi trung bình mỗi giờ anh xay được máy tạ thóc?” Ví dụ 2: Để chuẩn bị cho việc học loại toán “Tìm hai số khi biết tổng   và tỷ số của chúng” có thể cho học sinh giải bài toán sau:  “Mẹ có 30 cái kẹo chia thành 3 gói bằng nhau. Mẹ cho chị 1 gói, em 2   gói. Hỏi chị được mấy cái kẹo?” b. Bước 2: Cho học sinh phân tích và giải bài mẫu về  loại toán điển hình đó.  Những bài toán được chọn làm mẫu này nên có số liệu không lớn quá và có   4
  5. dạng tiêu biểu nhất chứa đựng tất cả những đặc điểm chung của loại toán  điển hình cần học để học sinh có thể tập trung chú ý được vào khâu nhận   dạng bài toán và rút ra được cách giải tổng quát. Ví dụ  3:  Dạy phần bài mới của bài “Bài toán tìm 2 số  biết tổng và  hiệu của chúng”  * Giáo viên đọc đề  toán: “Mẹ  cho hai anh em tất cả 10 cái kẹo, biết  em nhiều hơn anh 2 cái. Hỏi mẹ  cho anh bao nhiêu cái kẹo, em bao nhiêu  cái kẹo”. + Giáo viên có thể tổ chức làm việc trên đồ dùng học tập như sau: ­ Mỗi học sinh lấy 10 que tính (hoặc nắp bia) tượng trưng cho 10 cái   kẹo, khoanh phần trên mặt bàn thành 2 vòng: vòng lớn chứa số kẹo của em,  vòng nhỏ chứa số kẹo của anh. ­ Em được nhiều hơn anh 2 cái, vậy ta lấy 2 cái kẹo cho em trước rồi   chia đôi phần còn lại. Hãy lấy 2 cái kẹo cho em trước (học sinh đặt 2 nắp  bia vào vòng lớn) ­ Còn lại mấy cái kẹo? (10 ­ 2 = 8 cái) ­ Bây giờ chia đều cho hai anh em, vậy mỗi người được mấy cái? (8 :   2 ­ 4 cái). Học sinh bỏ vào vòng, mỗi vòng 4 nắp bia. ­ Vậy anh được máy cái? (4 cái) ­ Còn em được mấy cái? (4 + 2 = 6 cái) + Giáo viên hướng dẫn nhận dạng trên sơ đồ tóm tắt: Bài toán yêu cầu tìm hai số: trong này có một số  lớn (số kẹo của em)   và một số  bé (số  kẹo của anh). Ta biểu thị  số  lớn bằng một đoạn thẳng   dài, số bé bằng một đoạn thẳng ngắn: Số lớn: Số bé:  ­ Bài toán cho biết gì? (Có tất cả 10 cái kẹo, em nhiều hơn anh 2 cái) Đúng vậy. Có tất cả  10 cái kẹo nghĩa là tổng của hai số  là 10. Em   nhiều hơn anh 2 cái nghĩa là hiệu của 2 số  đó là 2 (giáo viên vẽ  tiếp vào  tóm tắt để có) 2 10 Giáo viên nêu: ta có bài toán tìm hai số biết tổng của chúng là 10, hiệu  của chúng là 2. 5
  6. * Hướng dẫn học sinh giải trên sơ đồ: Giáo viên lấy thước che “đoạn 2” đi rồi hỏi: Nếu bớt 2 ở số lớn thì hai  số như thế nào? (bằng nhau) ­ Vậy 2 lần số bé là bao nhiêu? (10 ­ 2 = 8) ­ Tìm số bé bằng cách nào? (8 : 2 = 4) ­ Tìm số lớn bằng cách nào? (4 + 2 = 6) Giáo viên lần lượt ghi từng phần bài giải lên bảng làm mẫu cho học   sinh * Hướng dẫn rút ra quy tắc giải: Cách giải này gồm mấy bước: (3 bước) Bước 1: Tìm 2 lần số bé bằng cách lấy tổng trừ đi hiệu Bước 2: Tìm số bé bằng cách chia đôi kết quả trên Bước 3: Tìm số lớn bằng cách lấy số bé + hiệu (hoặc lấy tổng trừ  đi  số bé) Song song với việc hướng dẫn, giáo viên có thể  ghi thêm vào lời giải   như sau: Hai lần số bé là: 10   ­     2  = 8             Tổng      hiệu Số bé là: 8 : 2 = 4                  (tổng ­ hiệu): 2 Số lớn là: 4      +    2  = 6                                  Số bé  + hiệu Vậy tìm số bé ta làm như thế nào? Số bé = (tổng ­ hiệu) : 2 Muốn tìm số lớn ta làm như thế nào? Số lớn = số bé + hiệu Cho vài học sinh nhắc lại. * Làm tương tự để hướng dẫn cách giải thứ hai Bước 3: Học sinh giải một số bài toán tương tự với bài mẫu song thay   đổi văn cảnh và số  liệu để  học sinh có khả  năng nhận dạng loại toán và   giải bài toán. Bước 4: Cho học sinh giải các bài toán phức tạp dần 6
  7. Chẳng hạn bài toán có thêm câu hỏi hay có câu hỏi khác với câu hỏi   bài mẫu để sau khi giải như bài mẫu học sinh phải làm thêm 1 đến 2 phép   tính nữa mới ra đáp số. Thay đổi dữ  liệu để  học sinh phải giải trước những bước trung gian   rồi mới áp dụng được cách giải như bài mẫu. Bước 5: Cho H giải xen kẽ 1, 2 bài toán thuộc loại khác đã học nhưng   có dạng na ná tương tự như loại toán đang học (tương tự  về nội dung, về  cách nêu dữ  liệu hoặc về  một bước giải nào đó) để  tránh cách suy nghĩ   máy móc, rập khuôn. Bước 6: Cho học sinh tự  lập đề  toán thuộc loại toán điển hình đang  học. * Rèn kỹ năng cho học sinh sau khi đã biết cách giải Cụ  thể: Các loại bài rèn kỹ  năng dạng toán “Tìm hai số  khi biết tổng  và hiệu của 2 số đó” * Giải các bài toán nâng dần mức độ phức tạp trong mối quan hệ giữa   số đã cho và số phải tìm. Bài toán 1: Tuổi chị  và em cộng là được 32 tuổi. Em kém chị  8 tuổi.  Hỏi em bao nhiêu tuổi, chị bao nhiêu tuổi? Tóm tắt bài toán như sau: 8 tuổi Tuổi chị: 32 tuổi Tuổi em:  Bài giải Hai lần tuổi em là 32 ­ 8 = 24 (tuổi) Tuổi em là 24 : 2 = 12 (tuổi) Tuổi chị là 12 + 8 = 20 (tuổi) Đáp số: chị: 20 tuổi; em: 12 tuổi Bài toán 2:  Một vườn trường hình chữ nhật có chu vi 480m. Tính diện  tích của vườn biết rằng nếu viết thêm chữ số 2 vào trước số đo chiều rộng   thì được số đo chiều dài. Tóm tắt bài toán: Chiều dài: 7
  8. Chiều rộng: GV hướng dẫn HS: Theo đề  ra thì số  đo chiều rộng phải là số  có hai  chữ số. Vì nếu một chữ số thì chu vi của vườn sẽ nhỏ hơn 480m. Nếu có 3   chữ số thì chu vi vườn sẽ lớn hơn 480m. Khi ta viết thêm số  2 vào trước số  đo chiều rộng thì tức là chiều dài   hơn chiều rộng 200m. Đây là bài toán dạng tìm hai số khi biết tổng và hiệu. Giải Nửa chu vi vườn trường là: 480 : 2 = 240(m) Chiều rộng vườn trường là: (240 ­ 200): 2 = 20(m) Chiều dài vườn trường là 200 + 20 = 220(m) Diện tích vườn trường là 220 x 20 = 4400(m2) Đáp số: 4400m2 * Một số điểm cần lưu ý: Khắc sâu kiến thức đã học, ôn lại kiến thức cũ. Gọi học sinh nhắc lại  công thức tính diện tích hình chữ nhật. Học sinh tính nữa chu vi hình chữ nhật để tính tổng chiều dài và chiều  rộng. Khi viết thêm chữ số 2 vào một số có 2 chữ số thì có ý nghĩa gì? * Biện pháp khắc phục: Gọi học sinh nêu công thức tính chu vi, diện tích HCN P = (a + b) x 2 ­> nữa chu vi là: 480 : 2 SHCN = a x b Đưa bài toán về dạng cơ bản + Biết nữa chu vi tức là ta biết được gì (tổng của chiều dài và chiều   rộng) + Viết thêm chữ  số  2 vào chiều rộng thì được chiều dài chứng tỏ  chiều dài như thế nào với chiều rộng? (chiều dài hơn chiều rộng 200 đơn   vị) *. Giải bài toán có nhiều cách giải khác: 8
  9. Để rèn trí thông minh và óc sáng tạo của học sinh thì phải tập cho học   sinh có thói quen không nên tự  bằng lòng với kết quả  của mình đã giải   được, tìm ra đáp số đúng. Giáo viên giúp học sinh nên tiếp tục suy nghĩa để  tìm ra cách giải khác có tính chất sáng tạo nhằm khắc sâu thêm kiến thức  bài và phát huy được khả  năng tư  duy của học sinh, đặc biệt đây là một  trong những biện pháp để bồi dưỡng cho học sinh giỏi. Ví dụ 1: Một vườn trồng hoa có chu vi 28m. Cạnh đó là một vườn rau  hình vuông có chu vi gấp đôi chu vi vườn hoa. Tính diện tích vườn rau. Với bài toán này, có thể hướng dẫn học sinh qua các cách như sau: Cách thứ nhất: Bài giải Chu vi vườn rau là: 28 x 2 = 56 (m) Cạnh vườn rau là: 56 : 4 = 14 (m) Diện tích vườn rau là: 14 x 14 = 196 (m2) Cách thứ hai: Bài giải Cạnh vườn hoa là: 28 : 4 = 7 (m) Cạnh vườn rau là: 7 x 2 = 14 (m) Diện tích vườn rau là: 14 x 14 = 196 (m2) Cách thứ ba: Cạnh vườn hoa là: 28 : 4 = 7(m) Diện tích vườn hoa là: 7 x 7 = 49 (m2) Diện tích vườn rau là: 49 x 2 x 2 = 196 (m2) Ở bài toán này giáo viên lưu ý cho học sinh: Chu vi và cạnh của hình   vuông là hai đại lượng tỉ  lệ  thuận. Khi chu vi hình vuông tăng gấp đôi thì  cạnh của nó cũng tăng lên gấp đôi. Khi cạnh hình vuông tăng lên gấp đôi thì diện tích tăng lên gấp 4 Ví dụ: Ví dụ 2: Tìm hai số chẵn liên tiếp có tổng bằng số  chẵn lớn nhất có  hai chữ số. Theo đề ra ta thấy hai số chẵn liên tiếp thì có hiệu là 2. Đưa về dạng   bài toán tìm hai số khi biết tổng và hiệu. Giải Cách 1: 9
  10. Hai lần số  chẵnbé là: 98 ­ 2 = 96 Số chẵn bé là: 96 + 2 = 48 Số  chẵnlớn là: 48 + 2 = 50 Cách 2: Hai lần số  chẵnlớn là: 100 : 2 = 50 Số chẵn bé là: 50 ­ 2 = 48 Cách 3: Trung bình cộng của 2 số là: 98 : 2 = 49 Số chẵn lớn là: 49 + 1 = 50 Số chẵn bé là: 49 ­ 1 = 48 Đáp số: 48 và 50 *. Tiếp xúc với các bài toán thừa dữ  kiện, thiếu dữ  kiện hoặc điều  kiện của bài toán Ví dụ 1: Tuổi của hai bố con là 50 tuổi. Hỏi tuổi bố và tuổi con Bài toán này giải có được không? (không) Vì sao không giải được? (vì chỉ biết tổng số tuổi của hai bố con) Muốn giải được bài toán này thì ta cần thêm yếu tố gì? (hiệu giữa tuổi   bố và tuổi con) Ví dụ: thêm vào cha hơn con là 25 tuổi (26, 27 … 51 + 15 = 66 (loại) 10
  11. a = 6; b = 2 ­> 62 + 26 = 88 (loại) a = 7; b = 3 ­> 73 + 37 = 110 (loại) a = 8; b = 4 ­> 84 + 48 = 132 (được) a = 9; b = 5 ­> 95 + 59 = 154 (loại) Lưu ý: Học sinh chưa tìm ra điều kiện của bài toán Khắc sâu cho học sinh * Biện pháp khắc phục: Để tìm ra điều kiện ta thử chọn một số trường hợp a = 0 thì 0b + b0; a ­ b = 4 (sai) *. Lập và biến đổi bài toán: a. Đặt điều kiện cho bài toán. Bài toán: Tổng của một số  có 2 chữ  số  và viết số  theo thứ  tự  ngược   lại bằng *7*. Tìm số đó biết hiệu giữa hàng chục và hàng đơn vị là 2. Hướng dẫn học sinh tìm ra điều kiện bài toán: Gọi số cần tìm là ab, viết ngược lại là ba. Theo bài ra ta có: ab + ba = *7* a ­ b = 2. Nếu a = 0 ­> b = 0 ta có: 00 + 00 = *7* a ­ b = 2 (sai) Do đó điều kiện của bài là a #0; b # 0; a   1 Giải Hàng trăm của tổng phải bằng 1, hàng đơn vị và hàng chục đều có a +   b mà tổng có hai chữ số nên a + b = 17 ­ 1 = 16. Theo đầu bài a ­ b = 2, do   đó ta có: a = (16 + 2) :2 = 9 b = 16 ­ 9 = 7 Đáp số: 97 11
  12. 3. KẾT LUẬN: 3.1. Ý nghĩa của sáng kiến: Với cách làm như trên tôi thấy kết quả đạt được như sau: ­ Học sinh thấy tự tin hơn khi tiếp xúc với các bài toán điển hình ở lớp  4. Các em đã có khả năng phân tích bài toán, tìm được các mối quan hệ, tóm  tắt, nhận dạng bài toán để tìm ra cách giải. ­ Một số bài toán nâng cao các em đã biết cách bám vào đề  ra và khai  thác những cái đã cho biết để tìm ra cách chưa biết ­ Các em thấy được chính bản thân mình là người chủ  động tìm ra  kiến thức và vì thế các em hiểu bài sâu hơn, nắm chắc hơn.  Và kết quả đạt được đó là đội tuyển HSG toán của trường do tôi trực  tiếp bồi dưỡng đạt giải cao trong kỳ thi học sinh giỏi cấp huyện. Qua thực tế  giảng dạy  ở  trường. Việc chú ý rèn luyện kỹ  năng giải   toán điển hình cho học sinh tiểu học nói chung và học sinh lớp 4 nói riêng  đã được chú trọng, gây được hứng thú say mê học tập môn Toán. Học sinh  không còn ái ngại khi làm các bài toán giải. Học sinh đạt kết quả  khá cao   trong các kỳ thi học sinh giỏi và bản thân tôi cũng rút ra được kinh nghiệm  giảng dạy tốt, tạo được niềm tin đối với phụ huynh, bạn bè đồng nghiệp.  Chất lượng về kỹ năng “Giải toán điển hình ở lớp 4” ngày càng cao. 12
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2