Sự tồn tại và duy nhất nghiệm tiệm cận hầu tuần hoàn của một lớp phương trình truyền nhiệt
lượt xem 2
download
Bài viết Sự tồn tại và duy nhất nghiệm tiệm cận hầu tuần hoàn của một lớp phương trình truyền nhiệt trình bày sự tồn tại và duy nhất nghiệm tiệm cận hầu tuần hoàn của phương trình truyền nhiệt với vế phải chứa hàm tiệm cận hầu tuần hoàn. Lớp phương trình này đã được giới thiệu trong bài viết, ở đó tác giả đã nghiên cứu sự tồn tại và duy nhất nghiệm giả tuần hoàn có trọng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sự tồn tại và duy nhất nghiệm tiệm cận hầu tuần hoàn của một lớp phương trình truyền nhiệt
- Tuyển tập Hội nghị Khoa học thường niên năm 2020. ISBN: 978-604-82-3869-8 SỰ TỒN TẠI VÀ DUY NHẤT NGHIỆM TIỆM CẬN HẦU TUẦN HOÀN CỦA MỘT LỚP PHƯƠNG TRÌNH TRUYỀN NHIỆT Nguyễn Thị Vân Trường Đại học Thuỷ lợi, email: van@tlu.edu.vn 1. GIỚI THIỆU CHUNG Ký hiệu AP , X : h : X , h hầu Trong bài báo này, chúng tôi trình bày sự tuần hoàn}. tồn tại và duy nhất nghiệm tiệm cận hầu tuần Trước khi đề cập tới định nghĩa tiếp theo, hoàn của phương trình truyền nhiệt với vế chúng tôi đưa thêm không gian phải chứa hàm tiệm cận hầu tuần hoàn. Lớp phương trình này đã được giới thiệu trong bài C0 , X : : X , liên tục và báo [3], ở đó tác giả đã nghiên cứu sự tồn tại và duy nhất nghiệm giả tuần hoàn có trọng. lim t 0 . t Lớp hàm tiệm cận hầu tuần hoàn chứa lớp Định nghĩa 3.2. Hàm số f C , X hàm hầu tuần hoàn và lớp hàm tuần hoàn mà được gọi là hầu tuần hoàn tiệm cận nếu tồn chúng ta đã biết. tại hàm h AP , X và C0 , X sao 2. PHƯƠNG PHÁP NGHIÊN CỨU cho f h . Dựa trên nguyên lí Massera [2], chúng tôi Ký hiệu AAP , X : f : X , f thu được kết quả thông qua việc xét hai bước hầu tuần hoàn}, với chuẩn xác định như sau: như sau: Bước 1 chứng minh sự tồn tại toán tử nghiệm cho phương trình tuyến tính và f AAP , X : h AP ,X C0 ,X toán tử nghiệm bảo toàn tính chất tiệm cận hầu tuần hoàn của hàm đầu vào; Bước 2 sử sup h t X sup t X . dụng nguyên lí ánh xạ co để chứng minh tính t t sự tồn tại và duy nhất nghiệm tiệm cận hầu 3.2. Phương trình truyền nhiệt tuần hoàn của phương trình phi tuyến. a) Trường hợp tuyến tính 3. KẾT QUẢ NGHIÊN CỨU u 2 u 3.1. Kiến thức chuẩn bị: t, x 2 t, x G t v t, x , 3.1 t x Chúng tôi nhắc lại định nghĩa 3.1 đã được u t,0 u t, 0, trình bày trong [1]: Định nghĩa 3.1. Hàm số h Cb , X t , x 0, được gọi là hầu tuần hoàn nếu với mỗi 0 , Trong đó hằng số 0, v AAP L2 0, , tồn tại l 0 sao cho với mỗi khoảng có độ dài l chứa ít nhất một số T thoả mãn G t sint sin 2t e t , t . sup h t T h t . t Xét X L2 0, , . 2 . Đặt: 54
- Tuyển tập Hội nghị Khoa học thường niên năm 2020. ISBN: 978-604-82-3869-8 u L2 0, ,u'' L2 0, , Định lý 3.1. Phương trình 3.1 tồn tại D A : u 0 u 0 duy nhất nghiệm u AAP , L2 0, khi và Au . : u u '' . , u . D A . v AAP , L 0, .2 Do [0, ] compact nên A sinh ra nửa Chứng minh. tA nhóm bị chặn e trên L2 0, thoả mãn: Sử dụng Bổ đề 3.1, chúng ta chỉ cần chứng minh toán tử nghiệm bảo toàn tính chất tiệm etA et . L2 0 , cận hầu tuần hoàn. Đặt F(t, x) : G(t)v(t, x) . Dễ thấy Từ nay, để ngắn gọn trong trình bày, chúng tôi quy ước: F AAP , L2 0, . Do đó tồn tại . AAP ;L2 0, : . AAP L2 0, . H AP , L2 0, và C0 , L2 0, Nghiệm mạnh đủ tốt của phương trình sao cho F H . Khi đó 3.1 được định nghĩa bởi công thức sau: S F t e tA u0 e t t A H d . t 0 u t e t A G( )v( ) d . Từ Bổ đề 3.1, đặt t S H t : H d , t A Bổ đề 3.1. Tồn tại duy nhất nghiệm mạnh đủ e tốt u Cb , L2 0, của phương trình 3.1 . t S t : e d . t A Hơn nữa u C ; L2 0, C v C ;L2 0, với điều b b 0 kiện C 3 . Toán tử nghiệm có thể viết lại: Chứng minh: t u t L2 0, e G( )v( ) t A d L2 0 , t Sử dụng tính chất của nửa nhóm bị chặn t 3 e d v Cb 2 ;L 0, . và các hàm thuộc các không gian AP , L2 0, C0 , L2 0, , chúng tôi Suy ra u C ;L2 0, 3 v C ;L2 0, . chứng minh được AP , L2 0, , b b Vậy tồn tại duy nhất nghiệm mạnh đủ tốt C0 , L2 0, u Cb , L2 0, . Điều đó dẫn đến toán tử nghiệm bảo toàn Do đó chúng ta có thể định nghĩa toán tử tính hầu tuần hoàn tiệm cận. nghiệm như sau: t b) Trường hợp nửa tuyến tính S v t : G v( )d t A e u 2 u t, x 2 t, x G t u t, x , 3.2 t t x e tA u0 e t A G v( ) d u t,0 u t, 0, t , 0 0 t , x 0, , Trong đó u0 : u 0 e A G ( )v( )d . trong đó hằng số 0 3 1. 55
- Tuyển tập Hội nghị Khoa học thường niên năm 2020. ISBN: 978-604-82-3869-8 Định lý 3.2. Tồn tại duy nhất nghiệm mạnh 4. KẾT LUẬN đủ tốt với chuẩn đủ nhỏ u AAP , L2 0, Trong bài báo này, chúng tôi đã thiết lập của phương trình 3.2 . tính đặt chỉnh của nghiệm tiệm cận hầu tuần hoàn cho phương trình truyền nhiệt với vế phải Chứng minh. thỏa mãn điều kiện tiệm cận hầu tuần hoàn. v AAP ; L2 0, : Tiếp theo, chúng tôi sẽ nghiên cứu về tính ổn Đặt B : AAP . định và phân rã của những nghiệm này. v AAP L2 0, Lấy v B . Xét phương trình: AAP 5. TÀI LIỆU THAM KHẢO u 2 u [1] D. N. Cheban, 2009, Asymptotically Almost t t, x 2 t, x G t v t, x x Periodic Solutions of Differential Equations, . Hindawi Publishing Corporation. Theo Định lý 3.1, phương trình trên có [2] J. Massera, 1950, The existence of periodic t solutions of systems of differential u t G v( )d . t A nghiệm e Xét equations, Duke Math. J. 17, 457 - 475. [3] Toka Diagana, 2008, Weighted pseudo- ánh xạ : B AAP BAAP xác định bởi almost periodic solutions to some (v)(t) : u(t) . Chúng ta sẽ chứng minh differential equations, Nonlinear Analysis: Theory, Methods & Applications, Volume là ánh xạ co. Thật vậy, áp dụng Bổ đề 3.1, ta 68, Issue 8, Pages 2250-2260. có u AAP L2 0, 3 v AAP L2 0, . Hơn nữa, (v1 ) (v2 ) AAP L2 0, 3 v1 v2 AAP L2 0, v1 v2 AAP L2 0, . Vì vậy, : BAAP BAAP là ánh xạ co. Theo nguyên lí ánh xạ co, tồn tại duy nhất u sao cho u u . Tức là: t u t e t A G u d . Do đó tồn tại duy nhất nghiệm mạnh đủ tốt với chuẩn đủ nhỏ u AAP ; L2 0, . 56
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình Vi phân và phương trình đạo hàm riêng: Phần A - TS. Lê Văn Hạp
73 p | 325 | 92
-
phương trình vi phân
123 p | 92 | 10
-
Tính giải được và duy nhất của nghiệm tích phân đối với phương trình vi tích phân ngẫu nhiên trung tính có xung và chuyển động Brown bậc phân số
10 p | 23 | 3
-
Một số kết quả về sự tồn tại và tính duy nhất của nghiệm yếu toàn cục cho hệ phương trình Navier - Stokes trong miền tổng quát
6 p | 34 | 2
-
Về sự tồn tại điểm bất động của ánh xạ cyclic hầu co kiểu geraghty suy rộng trong không gian B-mêtric
13 p | 33 | 2
-
Sự tồn tại và duy nhất nghiệm của hệ phương trình g-Navier-Stokes với trễ vô hạn
6 p | 47 | 2
-
Sự tồn tại và duy nhất nghiệm của bài toán Cauchy
3 p | 5 | 2
-
Sự tồn tại và duy nhất nghiệm của phương trình vi phân khoảng có trễ trong không gian thứ tự
11 p | 81 | 2
-
Sự tồn tại và tính duy nhất nghiệm của bài toán biên ban đầu thứ hai đối với phương trình Schrödinger cấp hai trong hình trụ đáy không trơn
6 p | 62 | 2
-
Sự tồn tại duy nhất nghiệm và phương pháp lặp giải bài toán giá trị biên phi tuyến cấp bốn đầy đủ
6 p | 67 | 2
-
Một tiêu chuẩn hiệu quả về tính giải được của bài toán biên cho phương trình vi phân hàm bậc cao
8 p | 24 | 1
-
Về sự tồn tại điểm bất động của các ánh xạ T-co yếu và T-co yếu suy rộng trong không gian kiểu b-mêtric
15 p | 40 | 1
-
Về một phương trình sóng phi tuyến với điều kiện biên hỗn hợp không thuần nhất: Khai triển tiệm cận của nghiệm theo nhiều tham số bé
12 p | 42 | 1
-
Về một phương trình sóng phi tuyến liên kết với điều kiện biên Dirichlet thuần nhất
15 p | 36 | 1
-
Về một phương trình sóng phi tuyến liên kết với điều kiện biên chứa tích phân tuyến tính
10 p | 34 | 1
-
Một lớp bài toán biên cho phương trình vi phân bậc cao
9 p | 44 | 1
-
Về một phương trình sóng phi tuyến liên kết với điều kiện biên không thuần nhất chứa tích chập
15 p | 33 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn