intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tạo tình huống có vấn đề trong dạy học môn Toán/Bài toán chưa có thuật giải

Chia sẻ: Hanh My | Ngày: | Loại File: PDF | Số trang:4

135
lượt xem
12
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Yêu cầu học sinh giải bài toán mà họ chưa biết thuật toán để giải nó có thể là một tình huống gợi vấn đề Ví dụ 1: Hình thành phương pháp chứng minh Bài toán: Cho A = 2000.2000 và B = 1999.2001. Hãy tìm cách nhanh nhất để so sánh hai phép tính trên. Bài toán này đòi hỏi học sinh phải phát hiện đặc điểm của các số đã cho: Nếu đặt 2000 = n thì A = n2 còn B = (n - 1)(n + 1) = n2 - 1. Như vậy A lớn hơn B...

Chủ đề:
Lưu

Nội dung Text: Tạo tình huống có vấn đề trong dạy học môn Toán/Bài toán chưa có thuật giải

  1. Tạo tình huống có vấn đề trong dạy học môn Toán/Bài toán chưa có thuật giải Yêu cầu học sinh giải bài toán mà họ chưa biết thuật toán để giải nó có thể là một tình huống gợi vấn đề Ví dụ 1: Hình thành phương pháp chứng minh Bài toán: Cho A = 2000.2000 và B = 1999.2001. Hãy tìm cách nhanh nhất để so sánh hai phép tính trên. Bài toán này đòi hỏi học sinh phải phát hiện đặc điểm của các số đã cho: Nếu đặt 2000 = n thì A = n2 còn B = (n - 1)(n + 1) = n2 - 1. Như vậy A lớn hơn B một đơn vị. Ví dụ 2: Hình thành khái niệm phương trình tổng quát của đường thẳng Bài toán: “Cho đường thẳng d đi qua điểm và có vectơ pháp tuyến . Điểm M(1;2) có nằm trên đường thẳng d không?” Từ đó dẫn đến giải quyết bài toán tổng quát hơn đó là: “Tìm điều kiện để một điểm M(x;y) nằm trên đường thẳng d biết vectơ pháp tuyến và một điểm mà nó đi qua.” Ví dụ 3: Hình thành phép cộng hai số nguyên khác dấu
  2. Kiểm tra bài cũ: “Cộng hai số nguyên cùng dấu”: Bài tập 26: “Nhiệt độ hiện tại của phòng là -5°C. Nhiệt độ sắp tới tại đó là bao nhiêu biết nhiệt độ giảm 7°C?” Sau đó giáo viên đặt vấn đề (vừa phát biểu và dùng phấn sửa dấu trừ thành dấu cộng): “Vậy nhiệt độ sắp tới là bao nhiêu biết nhiệt độ vẫn giảm  7°C và nhiệt độ hiện tại của phòng là +5°C” Muốn biết nhiệt độ sắp tới tại phòng là bao nhiêu, ta đặt  phép tính gì? Dự kiến: Nếu học sinh trả lời: “(+5) – 7” thì GV công nhận là đúng  và nói đây là phép trừ hai số nguyên, ta sẽ học sau. Còn cách nào khác không? Nếu học sinh trả lời: “(+5) + (-7)” thì GV giới thiệu đây là  phép cộng hai số nguyên khác dấu vậy kết quả của phép cộng này bằng bao nhiêu, đó là nội dung bài học hôm nay. GV ghi đầu bài: §5. Cộng hai số nguyên khác dấu.  Nhận xét: Cách làm này khá phổ biến và hay được dùng trong dạy học vì nó cho phép thực hiện đồng thời một lúc hai chức năng: một là kiểm tra bài cũ (tạo tiền đề) và hai là đặt vấn đề vào bài mới. Hơn nữa thực tế chứng tỏ học sinh rất thích thú cách đặt vấn đề như trên vì nó gây được sự ngạc nhiên và hứng thú cũng như sự tò mò. Ví dụ 4: Hình thành công thức cộng lượng giác
  3. Bài toán: Không dùng máy tính, hãy tính các giá trị lượng giác: a) sin(-315°) b) cos(375°) Dự kiến: Câu a là quen thuộc: học sinh sẽ giải bằng cách quy gọn  góc dẫn về góc đặc biệt. Câu b tình hình lại khác: sau khi quy gọn góc bài toán trở  thành tính giá trị lượng giác của một góc không đặc biệt : Vấn đề chính là ở chỗ ta chưa biết cosin của cung 15° bằng  bao nhiêu? Nhưng nhận xét rằng 15° = 60° - 45° = 45° - 30° tức là góc  cần tính được biểu diễn qua hiệu của hai góc đặc biệt (hai góc đã biết giá trị lượng giác). Điều đó có nghĩa là nếu ta xây dựng được công thức biểu  diễn cos15° qua giá trị lượng giác của các góc 60°, 45° và 30° thì bài toán được giải quyết. Từ đó giáo viên khái quát hóa: “Biết giá trị lượng giác của các cung a và b. Dùng công thức gì để tính các giá trị lượng giác của các cung a + b và a – b”.
  4. Chú ý: Ở các bài trước học sinh đã biết phương pháp để tính giá trị lượng giác của một góc đó là phải quy góc đó về các góc đặc biệt hay các góc đã biết giá trị lượng giác.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2