Tóm tắt Luận án Tiến sĩ Hóa học: Nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở một số cao su và blend của chúng với ống nano cacbon
lượt xem 6
download
Luận án đánh giá được khả năng gia cường của CNT trong nền cao su và cao su blend, chế tạo ra được vật liệu cao su nanocompozit có tính chất cơ học cao, bền dung môi và có độ dẫn điện phù hợp. Luận án đã sử dụng phương pháp trộn hợp ướt để phân tán khoảng 4%CNT hoặc với 3%CNT biến tính trong hệ CSTN/NBR; CNT- PVC tương hợp tốt với NBR do vậy tương tác tốt với pha nền CSTN/NBR hơn so với CNTPEG (chỉ hình thành được liên kết vật lý); chính vì vậy, mẫu CSTN/NBR/CTN- PVC có tính chất cơ học và khả năng bền nhiệt cao hơn mẫu CSTN/NBR/CNT- PEG cũng như CSTN/NBR/CNT.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt Luận án Tiến sĩ Hóa học: Nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở một số cao su và blend của chúng với ống nano cacbon
- VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ……..….***………… CHU ANH VÂN NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT VẬT LIỆU CAO SU NANOCOMPOZIT TRÊN CƠ SỞ MỘT SỐ CAO SU VÀ BLEND CỦA CHÚNG VỚI ỐNG NANO CACBON Chuyên ngành: Hóa hữu cơ Mã số: 62.44.01.14 TÓM TẮT LUẬN ÁN TIẾN SỸ HÓA HỌC Hà Nội – 2016
- Công trình đƣợc hoàn thành tại: Học viện Khoa học và Công nghệ- Viện Hàn lâm Khoa học và Công nghệ Việt Nam Ngƣời hƣớng dẫn khoa học 1: PGS.TS. Đỗ Quang Kháng Ngƣời hƣớng dẫn khoa học 2: PGS.TS. Ngô Trịnh Tùng Phản biện 1: … Phản biện 2: … Phản biện 3: …. Luận án sẽ được bảo vệ trước Hội đồng chấm luận án tiến sĩ, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi … giờ ..’, ngày … tháng … năm 2016 Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam
- A. KHÁI QUÁT CHUNG VỀ LUẬN ÁN 1. Đặt vấn đề Kể từ khi được phát hiện đến nay, ống nano cacbon (CNT) luôn là đề tài hấp dẫn thu hút các nghiên cứu và ứng dụng thực tiễn bởi những đặc tính cơ- lý- hóa vượt trội của nó. CNT được biết đến với tính linh hoạt cao, tỷ trọng thấp và bề mặt riêng lớn. Chính vì vậy, nhiều thực nghiệm cho thấy vật liệu này có modul kéo và độ bền rất cao, bên cạnh đó các kết quả về tính chất nhiệt, tính chất điện của polyme nanocompozit chế tạo trên cơ sở CNT cũng rất đáng chú ý. Tuy nhiên, CNT lại đòi hỏi một phương pháp phân tán hợp lý để tránh cuộn lại và dính vào nhau. Để tăng khả năng liên kết giữa CNT với nền polyme, các nghiên cứu đã đưa ra nhiều biện pháp như: thay đổi phương pháp chế tạo, sử dụng kết hợp các chất trợ tương hợp... nhưng việc gắn thêm nhóm chức lên bề mặt CNT là phổ biến hơn cả. Điều này có nghĩa là tạo ra các nhóm chức phản ứng hoặc tương tác vật lý với polyme nền và do đó cải thiện sự tương tác bề mặt chung giữa CNT và nền, tăng cường khả năng tương hợp nhiệt động của ống nano với polyme nền. Hiện nay, công nghệ nano đã trở thành một chiến lược phát triển với nhiều hướng nghiên cứu khác nhau trong các lĩnh vực khoa học vật liệu, điện tử, y sinh học... thu hút nguồn đầu tư lớn. Các nghiên cứu ở nước ta về ứng dụng CNT trong công nghệ nanocompozit cũng như sử dụng vật liệu này trong công nghiệp cao su, chất d o mới ch dừng lại ở mức độ thăm dò. Cho tới nay, chưa thấy có công trình nghiên cứu nào về lĩnh vực này được ứng dụng vào thực tế sản xuất mà mới ch có một kết quả nghiên cứu được công bố trong các tạp chí, hội nghị. Việt Nam với nguồn nhân lực dồi dào cũng như chính sách thu hút đãi ngộ hợp lý nên các hãng điện tử lớn như SamSung, Canon... hiện đầu tư khá nhiều nhà máy sản xuất và lắp ráp linh kiện tại nhiều khu công nghiệp. Sự phát triển của công nghiệp điện tử dẫn đến nhu cầu về thảm chống tĩnh điện trải trên các bàn lắp ráp nhằm tránh sự xung đột dòng điện ngoài ý muốn với IC, bo mạch, vi mạch nói riêng và các sản phẩm điện tử nói chung là rất lớn. Không ch trong lĩnh vực điện tử, các nhà máy dệt may, nhà máy chế tạo thuốc phóng, thuốc nổ… cũng có nhu cầu rất cao về chống tĩnh điện. Do vậy, việc nghiên cứu chế tạo và ứng dụng vật liệu cao su CNT/nanocompozit ngoài tính bền cơ học, bền mài mòn còn có khả năng chống tĩnh điện là cần thiết vì không ch có ý nghĩa khoa học mà còn có giá trị thực tiễn cao. Xuất phát từ lý do đó, tác giả luận án đã chọn vấn đề: “Nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở một số cao su và blend của chúng với ống nano cacbon” làm chủ đề nghiên cứu. 1
- 2. Mục tiêu và nội dung nghiên cứu của luận án Mục tiêu nghiên cứu của đề tài: Đánh giá được khả năng gia cường của CNT trong nền cao su và cao su blend, chế tạo ra được vật liệu cao su nanocompozit có tính chất cơ học cao, bền vững trong dung môi, và có độ dẫn điện phù hợp. Nội dung nghiên cứu của đề tài: - Nghiên cứu biến tính bề mặt CNT bằng các phương pháp khác nhau. - Nghiên cứu khả năng gia cường của CNT và chất trợ phân tán, tương hợp nguồn gốc dầu thực vật cho cao su thiên nhiên (CSTN). - Nghiên cứu chế tạo và tính chất cao su nanocompozit trên cơ sở blend CSTN/NBR với CNT. - Nghiên cứu chế tạo và tính chất cao su nanocompozit trên cơ sở blend CSTN/CR với CNT. - Nghiên cứu khả năng chế tạo thảm chống tĩnh điện từ vật liệu cao su/CNT nanocompozit. 3. Những đóng góp mới của luận án - Biến tính, ghép một số tác nhân hữu cơ lên bề mặt ống nano cacbon cụ thể như sau: 24,85% phần khối lượng bis-(3-trietoxysilylpropyl) tetrasunfide; 3,29% phần khối lượng polyetylenglicol; 23% phần khối lượng polyvinylclorua; làm cơ sở chế tạo vật liệu cao su nanocompozit. - Đã chế tạo thành công vật liệu CSTN/NBR gia cường 4% CNT hoặc 3% CNT biến tính, trong đó CNT- PVC tương hợp tốt với nền cao su NBR. - Đã chế tạo thành công vật liệu CSTN/CR gia cường 4% CNT hoặc 3,5% CNT biến tính, trong đó CNT- TESPT phân tán tốt nhất trong nền CSTN/CR. - Bằng phương pháp bán khô đã phân tán được CNT (CNT-Nanocyl và CNT-Vast) trong nền cao su blend trên cơ sở CSTN/CR khá đều đặn và đẳng hướng. Mặt khác thông qua việc áp dụng quy hoạch thực nghiệm, xây dựng phương trình hồi quy xác định hàm lượng gia cường tối ưu của CNT trong nền CSTN/CR khá phù hợp với kết quả thực nghiệm thu được. - Vật liệu cao su nanocompozit trên cơ sở LCSTN/CR gia cường CNT có độ dẫn điện khá phù hợp cho ứng dụng chế tạo thảm chống tĩnh điện. 4. Bố cục của luận án Luận án bao gồm 140 trang với 23 bảng số liệu, 53 hình, 120 tài liệu tham khảo. Bố cục của luận án: Mở đầu 2 trang, Chương 1: Tổng quan 38 trang, Chương 2: Nguyên vật liệu và phương pháp nghiên cứu 11 trang, Chương 3: Kết quả và thảo luận 72 trang, Kết luận 2 trang, Các công trình công bố liên qua đến luận án 1 trang, Tài liệu tham khảo 14 trang. 2
- B. NỘI DUNG CỦA LUẬN ÁN MỞ ĐẦU Phần mở đầu đề cập đến ý nghĩa khoa học và thực tiễn. Từ đó đưa ra mục tiêu và nội dung nghiên cứu của luận án. Chƣơng 1: TỔNG QUAN Phần tổng quan đã tổng hợp các tài liệu trong nước và trên thế giới về những vẫn đề liên quan đến luận án như: - Vật liệu nanocompozit, cao su nanocompozit với những cách phân loại và ưu nhược điểm cụ thể. - Ống nano cacbon và 4 phương pháp biến tính bề mặt, trong đó cũng ch ra phương pháp biến tính bao gói phân tử không ứng dụng trong công nghệ chế tạo cao su nanocompozit. - Tình hình ứng dụng của CNT trong công nghệ cao su nanocompozit. Một số điểm còn bỏ ngỏ là mục tiêu luận án hướng tới. Chƣơng 2: NGUYÊN VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1. Nguyên vật liệu, hóa chất - Ống nano cacbon đa tường: loại NC7000 của hãng Nanocyl S.A. (Vương quốc B ), độ sạch 95%, kích thước 10- 15 nm. - Bis-(3-trietoxysilylpropyl) tetrasunfide (Si 69- TESPT) của Trung Quốc: là chất lỏng trong suốt màu vàng, tan trong dung môi béo và thơm như ancol, ete, xeton. Nhiệt độ sôi: 2500C, tỷ trọng: 1,08; công thức cấu tạo: - Polyetylenglycol: loại PEG 6000 (hãng BDH Chemicals Ltd Poole- Anh), nhiệt độ nóng chảy 610C. - Polyvinylclorua: là loại SG 710 (Việt Nam), là chất bột màu trắng, kích thước: 20-150 micromet, khối lượng riêng đổ đống: 0,46- 0,48 g/cm3. - D01: dầu trẩu đã qua tinh chế, là chất lỏng màu vàng, tỷ trọng (ở 20oC): 0,920-0,945; ch số khúc xạ (ở 20oC): 1,500-1,520; ch số axit: 1,4; ch số iot: 149,5-170,58; ch số xà phòng: 193,38-196,73. - Cetyl trimetylamoni bromua (CTAB): hãng Merck (Đức), M= 364,46 g/mol, độ tinh khiết > 97%. - AlCl3 tinh khiết của hãng Merck (Đức). - Cao su thiên nhiên (CSTN) là loại SVR- 3L của Công ty cao su Việt Trung, Quảng Bình. - Latex cao su thiên nhiên: loại pH > 7; hàm lượng khô 60% của công ty cao su Phước Hòa, Việt Nam. - Cao su nitril (NBR) loại Kosyn- KNB35 (Hàn Quốc), có hàm lượng nhóm acrylonitril 34%. - Cao su clopren (CR) loại BayprenR 110 MV 49 5 của hãng Lanxess. 3
- - Các chất phụ gia lưu hóa gồm: + Lưu huỳnh của hãng Sae Kwang Chemical IND. Co. Ltd (Hàn Quốc) + Oxit kẽm Zincollied (Ấn Độ) + Axit stearic của PT. Orindo Fine Chemical (Indonesia) + Xúc tiến DM (Dibenzothiazolil disunfit) (Trung Quốc) + Xúc tiến D (N, N-diphenyl guanidin) (Trung Quốc) + Phòng lão D (Phenyl -naphtylamin) (Trung Quốc) Các hóa chất khác Dung dịch axit HCl, toluen, KOH, iso octan, etanol 96%, axit axetic, DMF, ete dầu hỏa, SOCl2, H2O2, NH3, tetrahydrofuran (THF), cloroform, CaCl2, axeton, ete dầu hỏa (Trung Quốc). 2.2. Quy trình biến tính bề mặt CNT và chế tạo vật liệu cao su nanocompozit gia cƣờng CNT 2.2.1. Biến tính bề mặt CNT bằng phản ứng este hóa Fischer CNT được loại bỏ kim loại còn dư bằng cách ngâm với HCl đặc và khuấy trong 2 giờ ở 500C dưới điều kiện thường, rửa nhiều lần bằng nước cất cho tới khi pH=7, làm khô trong 12 giờ, sản phẩm ký hiệu p-CNT. Phân tán 0,3g p-CNT trong 25ml hỗn hợp NH4OH và H2O2 (t lệ 1:1). Khuấy hỗn hợp trong 5 giờ ở 80oC dưới áp suất thường. Hỗn hợp sản phẩm lọc bằng màng lọc PTFE (kích thước mao quản 0,2 μm), rửa bằng nước cất về môi trường trung tính và làm sạch bằng axeton nhiều lần. Sản phẩm biến tính kí hiệu CNT-COOH được sấy 80oC trong 48 giờ. - Clo hóa CNT Cân 0,5gam CNT-COOH cho vào bình cầu 100ml có sẵn 20ml SOCl2 và 10ml DMF, tiến hành khuấy trộn dưới áp suất thường trong 24 giờ ở 700C, sau khi kết thúc phản ứng được hỗn hợp màu nâu đen CNT-COCl, lọc, rửa sạch bằng THF và làm khô ở nhiệt độ phòng. - Tổng hợp CNT-PEG Cân 1gam PEG, đun nóng chảy ở 900C, cho vào bình cầu chứa sẵn 0,1gam CNT-COCl, khuấy trộn 10 phút rồi thêm tiếp 40ml hỗn hợp benzen/THF (t lệ thể tích 3:1), tiến hành phản ứng ở 800C trong 40 giờ. Kết thúc phản ứng, hỗn hợp sản phẩm được rung siêu âm 30 phút ở 600C, tần số 40kHz trên máy DR-MH30, sau đó lọc qua màng lọc PTFE, hỗn hợp rắn màu đen được rửa sạch bằng axeton và ete dầu hỏa 3 lần, làm khô ở 900C trong 12 giờ. - Tổng hợp CNT-TESPT 5ml TESPT được thủy phân trong 20ml C2H5OH 960, 10ml nước cất và 5ml NaOH 10% ở 500C trong 2 giờ, tiến hành cất quay loại bỏ dung môi, sau đó chất rắn màu vàng TESPT-OH được làm khô ở 500C trong 4giờ. Cân 0,1g CNT-COCl và 1g TESPT-OH được cho vào bình 4
- cầu 100ml có sẵn 30ml C2H5OH khan, tiến hành khuấy trộn trong 5 giờ ở 600C, hỗn hợp sản phẩm được rung siêu âm 60 phút ở 60 0C, tần số 40kHz trên máy DR-MH30, sau đó lọc qua màng lọc PTFE, rửa sạch nhiều lần bằng nước nóng để loại bỏ hợp phần silane còn dư, làm khô và rửa tiếp bằng axeton. Sản phẩm thu được đem sấy chân không ở 600C trong 5 giờ. 2.2.2. Ankyl hóa bề mặt CNT Cân 0,2g CNT và 0,5g PVC cho vào bình cầu 3 cổ có sẵn 30ml CHCl3 khan, bình cầu được nối với một ống đựng CaCl2 khan và một ống dẫn khí khác được nhúng trong dung dịch NaOH 10% để loại bỏ HCl sinh ra trong quá trình phản ứng. Thêm 0,5g AlCl3, đồng thời khuấy trộn trong môi trường nitơ ở 60oC trong 30 giờ tiếp theo. Sau khi làm nguội đến nhiệt độ phòng hỗn hợp sản phẩm CNT-PVC được khuấy rung siêu âm trong dung môi tetrahydrofuran (THF) 10 phút, lọc và rửa nhiều lần bằng axeton và ete dầu hỏa, sấy ở 60 oC trong 10 giờ. 2.2.3. Biến tính bằng chất hoạt động bề mặt Đun nóng chảy 0,1g CTAB rồi thấm đều 1g CNT, đặt trong tủ ấm ở 600C trong 72 giờ. Tiếp tục cân 0,1g CTAB khuấy trong 50ml nước cất trong 1 giờ ở nhiệt độ thường, thêm vào đó lượng CNT trên, tiếp tục khuấy trong 1 giờ. Bổ sung thêm 50ml nước cất, đem hỗn hợp rung siêu âm ở 600C trong 2 giờ. Hỗn hợp thu được đem sấy ở 60 0C trong 12 giờ. 2.2.4. Phương pháp chế tạo mẫu cao su nanocompozit 2.2.4.1. Mẫu CSTN/CNT Thành phần CNT và CSTN trong các mẫu khảo sát được trình bày trong bảng 2.1: Bảng 2.1. Thành phần CNT và CSTN của các mẫu nghiên cứu Thành phần Hàm lượng (%) CSTN 100 Kẽm oxit 4,5 Phòng lão A 0,6 Phòng lão D 0,6 Axit stearic 1 Xúc tiến D 0,2 Xúc tiến DM 0,4 Lưu huỳnh 2,0 D01 1-4% CNT 1-5% 2.2.4.2. Mẫu cao su blend trên cơ sở CSTN Trên cơ sở đơn phối trộn từ CSTN, đã tiến hành khảo sát ảnh 5
- hưởng của hàm lượng CNT (biến tính và chưa biến tính) tới tính chất của hệ blend CSTN/NBR 80/20 và CSTN/CR 70/30 với quy trình như sau: (ký hiệu CNT trong quy trình này dành cho cả CNT biến tính và chưa biến tính) CSTN NBR hoÆc CR c¾t m¹ch c¸n trén 10 phót Hçn hîp CNT hoÆc CNT/etanol Trén kÝn Hçn luyÖn 1 8 phót, 750C, 50 vßng/phót ZnO, axit, phßng l·o Hçn luyÖn 2 S, xóc tiÕn 3 phót, 500C, 50 vßng/phót B¸n thµnh phÈm XuÊt tÊm Ðp, l-u hãa 20-25 phót, 1450C Nanocompozit Hình 2.2. Sơ đồ chế tạo mẫu cao su nanocompozit/CNT Để nghiên cứu khả năng phân tán CNT trong nền polyme, đã sử dụng 3 phương pháp khác nhau như: trộn hợp dung dịch, sử dụng chất hoạt động bề mặt hoặc sử dụng chất trợ tương hợp (hàm lượng các phụ gia, điều kiện quá trình trộn kín cũng như lưu hóa được giữ không đổi) theo quy trình như sau: CSTN,CR CNT/toluen Ng©m toluen rung siªu ©m CNT D01 96 giê 2 giê ñ Êm 600C,72 giê khuÊy trén CR 3 giê, 500C CSTN Hçn hîp masterbathch CNT/D01 c¾t m¹ch Trén kÝn Trén kÝn (a) (b) 6
- CTAB/H2O CNT khuÊy trén, 1 giê rung siªu ©m 2 giê Latex CSTN CNT/CTAB khuÊy trén 3 giê, 500C Hçn hîp masterbathch CR Etanol Trén kÝn (c) Hình 2.3. Tối ưu hóa điều kiện phân tán CNT trong nền CSTN/CR: phương phá dung dịch (a),sử dụng chất trợ phân tán (b), sử dụng chất hoạt động bề mặt cation (c) 2.2.5. Phương pháp nghiên cứu cấu trúc và tính chất của CNT biến tính Cấu trúc và tính chất của CNT biến tính được xác định bằng phương pháp phổ hồng ngoại (IR) trên máy FTS-6000 P (của hãng Biorad, Mỹ), phương pháp phổ Raman với máy HR LabRAM 800 (Pháp), phổ UV-vis trên máy SP3000 nano (Nhật Bản) và phương pháp phân tích nhiệt trọng lượng trên máy Setaram (Pháp), tốc độ nâng nhiệt là 10oC/phút trong môi trường không khí, khoảng nhiệt độ nghiên cứu từ 25oC đến 800oC. Hình ảnh ống CNT biến tính được nghiên cứu cấu trúc hình thái trên kính hiển vi điện tử truyền qua (TEM) trên máy Jeol 1010 (Nhật Bản). 2.2.6. Các phương pháp xác định cấu trúc và tính chất của vật liệu Xác định độ bền kéo đứt, độ dãn dài khi đứt của mẫu vật liệu cao su blend theo tiêu chuẩn TCVN 4509 - 2006. Xác định độ cứng (độ cứng Shore A) của vật liệu cao su blend theo tiêu chuẩn TCVN 1595-1:2007. Xác định độ mài mòn (Acron) của vật liệu theo tiêu chuẩn TCVN 1594 - 87. Xác định hệ số già hóa theo tiêu chuẩn TCVN 2229-2007. Xác định độ trương của vật liệu cao su blend trong dung môi toluen: iso octan theo tiêu chuẩn TCVN 2752 – 2008. Nghiên cứu hình thái, cấu trúc vật liệu bằng phương pháp kính hiển vi điện tử quét trường phát xạ (FESEM và độ bền nhiệt của vật liệu bằng phương pháp phân tích nhiệt trọng lượng (TGA). 7
- Chƣơng 3 – KẾT QUẢ VÀ THẢO LUẬN 3.1. Biến tính bề mặt ống nanocacbon 3.1.1. Nghiên cứu quá trình oxy hóa thành ống nanocacbon Kết quả phổ Raman: Hình 3.3. Phổ Raman của CNT và CNT-oxy hóa Sự gia tăng tỷ lệ cường độ ID/IG chứng tỏ đã xảy ra sự thay đổi về mặt cấu trúc ống CNT tương ứng với quá trình biến đổi của C sp2 thành Csp3 trong quá trình oxy hóa để gắn thành công nhóm COOH lên thành ống. Việc gắn nhóm chức này làm gia tăng đáng kể kích thước CNT. a Hình 3.5. Ảnh TEM của CNT (a) và CNT- oxy hóa (b) Kết quả TGA cho thấy có khoảng 27,85% nhóm chức COOH và NH2 được gắn thành công trong quá trình oxy hóa. 3.1.2. Phản ứng este hóa Fischer với TESPT và PEG Trên phổ Raman có thể nhận thấy tỷ lệ ID/IG tăng từ 1,7 đối với CNT lên 2,05 (CNT-PEG) và 2,0 (CNT-TESPT), nghĩa là gia tăng mức độ hỗn loạn của vòng graphit trong quá trình biến tính. Hình ảnh TEM cho thấy CNT-TESPT và CNT- PEG được gia tăng kích thước lên tương ứng khoảng 25 và 30nm. Hàm lượng nhóm chức este được xác định bằng phương pháp TGA, kết quả được trình 8
- bày trong bảng 3.1: Bảng 3.1. Kết quả phân tích TGA của CNT-PEG và CNT- TESPT Nhiệt độ bắt Nhiệt độ Nhiệt độ Tổn hao khối Mẫu vật liệu đầu phân hủy phân hủy phân hủy lượng đến mạnh nhất 1 mạnh nhất 2 750oC CNT 5000C 577 0C - 53,67% CNT-PEG 4000C 4430C 6070C 78,52% CNT- TESPT 4000C 4410C 6870C 56,96% 3.1.3. Biến tính CNT bằng polyvinylclorua Cấu trúc của CNT gồm nhiều nguyên tử C sp liên kết với nhau 2 tạo vòng sáu cạnh lục giác đều gần giống với vòng benzen. Vì vậy, việc thực hiện phản ứng giữa polyvinylclorua với CNT có AlCl 3 khan làm chất xúc tác được xác định theo cơ chế của phản ứng kiểu ankyl hóa Fridel- Craft như sau: (CH2 CH) (CH2 CH) n + AlCl3 n CHCl3 Cl AlCl4 CH2 CH + (CH2 CH) n CHCl3 AlCl4 Cl Từ kết quả phân tích nhiệt trọng lượng đã xác định được hàm lượng PVC ghép lên bề mặt CNT là khoảng 23% khối lượng (ở 400oC). Việc gắn thành công phân tử PVC lên thành ống đã làm gia tăng kích thước lên khoảng 25nm. 3.1.4. Biến tính CNT bằng chất hoạt động bề mặt Như đã biết CNT hoàn toàn không tan trong nước dù dưới điều kiện sóng siêu âm trong thời gian dài, do vậy không thể thu được các tín hiệu trong vùng ánh sáng nhìn thấy. Ngược lại CNT/CTAB hoàn toàn có thể phân tán được trong nước, chính vì vậy có thể thu được tín hiệu UV- vis trong dải sóng 200-800nm. 9
- Hai đ nh hấp phụ đặc trưng ở trong vùng 240- 265 cm-1 ứng với sự * dịch chuyển electron π π của nguyên tử C sp2 liên hợp. Kết quả TGA của mẫu CNT- CTAB được thể hiện trên hình 3.18. Hình 3.18. Giản đồ TGA của CNT- CTAB Như vậy có thể tính toán sơ bộ ở 300oC có khoảng 17% CTAB bị hấp phụ. 3.2. Nghiên cứu chế tạo và tính chất của vật liệu CSTN/CNT bằng phƣơng pháp trộn hợp nóng chảy Luận án tiến hành khảo sát hàm lượng CNT và hàm lượng chất trợ phân tán, tương hợp D01, kết quả thu được thể hiện trong bảng 3.2, 3.3 dưới đây: Bảng 3.2. Ảnh hưởng của hàm lượng CNT tới tính chất cơ học của vật liệu trên cơ sở CSTN và các phụ gia Hàm lượng Độ bền Độ dãn dài Độ mài mòn Độ cứng CNT (%) kéo đứt (MPa) khi đứt (%) (cm3/1,61km) (Shore A) 0 14,14 920 0,93 42 1 15,25 900 0,85 44 3 16,03 860 0,81 45 5 17,92 860 0,75 46 7 16,94 820 0,79 47 10 15,96 600 0,86 50 10
- Bảng 3.3. Ảnh hưởng của hàm lượng D01 tới tính chất cơ học của vật liệu CSTN/5%CNT Hàm lượng Độ bền kéo Độ dãn dài Độ mài mòn Độ cứng 3 D01 (%) đứt (MPa) khi đứt (%) (cm /1,61km) (Shore A) 0 17,92 860 0,75 46 1 18,89 870 0,70 45,9 2 20,13 890 0,63 45,5 3 19,24 915 0,60 44,6 4 17,03 940 0,58 43 - Hàm lượng tối ưu của CNT gia cường cho CSTN là 5% khối lượng (so với CSTN). Tại tỷ lệ biến tính này, vật liệu có các tính chất cơ học vượt trội so với mẫu đối chứng như: độ bền kéo đứt tăng 27%, nhiệt độ bắt đầu phân hủy tăng 7oC, nhiệt độ phân hủy mạnh nhất tăng 5,4oC, hệ số già hóa trong môi trường của vật liệu đều tăng đáng kể. - Khi có thêm 2% chất trợ phân tán, tương hợp (D01) làm cho vật liệu có cấu trúc đều đặn và chặt chẽ hơn đã làm tăng tính chất cơ học, độ bền nhiệt cũng như độ bền môi trường của vật liệu. 3.3. Nghiên cứu chế tạo và tính chất của mẫu vật liệu CSTN/NBR/ CNT bằng phƣơng pháp trộn hợp ƣớt 3.3.1. Ảnh hưởng của hàm lượng CNT đến tính chất cơ, nhiệt của hệ CSTN/NBR Căn cứ vào kết quả nghiên cứu của tác giả Ngô Kế Thế và cộng sự về chế tạo hệ blend CSTN/NBR, tỷ lệ 80/20 được lựa chọn để nghiên cứu khả năng gia cường của CNT. Tính chất cơ học của vật liệu CSTN/NBR đạt giá trị lớn nhất với hàm lượng CNT là 4% hoặc với CNT biến tính là 3%. Ở các hàm lượng này, CNT (chưa biến tính và biến tính) đã cải thiện đáng kể khả năng bền nhiệt của vật liệu. CNT- PVC tương tác tốt với nền CSTN/NBR hơn so với CNT-PEG. Chính vì vậy, mẫu CSTN/NBR/CTN- PVC có tính chất cơ học và khả năng bền nhiệt cao hơn mẫu CSTN/NBR/CNT- PEG. 19 18 Độ bền kéo đứt (MPa) 17 16 15 14 13 12 CSTN/NBR/CNT 11 CSTN/NBR/CNT-PVC 10 CSTN/NBR/CNT-PEG 9 0 1 2 3 4 5 6 Hàm lượng chất gia cường (%) Hình 3.24. Ảnh hưởng của hàm lượng chất gia cư ng tới độ bền k o đứt của vật liệu CSTN/NBR/CNT 11
- CNT- biến tính dễ tương hợp với nền polyme nên đã cải thiện tính chất cơ học của vật liệu rõ ràng hơn so với CNT không biến tính. CNT- PEG tạo liên kết hidro với nền cao su với giả thiết mô hình như sau: CN CN liªn kÕt hidro COO(CH2)nOH HO(CH2)nOOC CNT liªn kÕt Van der Van CSTN Trong khi đó CNT- PVC có tính chất cơ học cao hơn CNT- PEG một chút, dẫu rằng sự chênh lệch chưa quá nhiều. Điều này có thể giải thích do PVC tương hợp tốt với NBR nên sự có mặt của đoạn mạch PVC trên bề mặt (cũng như bị hấp phụ một phần trong quá trình biến tính giúp cho CNT- PVC tương hợp với nền cao su tốt hơn. Chính vì vậy, các tính chất cơ học của vật liệu được cải thiện. CNT- biến tính làm cấu trúc của vật liệu đồng đều và chặt chẽ hơn, do vậy làm gia tăng độ bền môi trường: hệ số già hóa trong không khí và nước muối đạt khá cao, độ bền trong dung môi được cải thiện. Hình 3.29. Cấu trúc hình thái của vật liệu CSTN/NBR gia cư ng CNT (a), CNT-PVC (b), CNT- PEG (c) Bảng 3.9. Hệ số già hóa của vật liệu CSTN/NBR/CNT ở 700C trong 72 gi Hệ số già hóa Hệ số già hóa Mẫu trong không khí trong nước muối CSTN/NBR 0,82 0,8 CSTN/NBR/4%CNT 0,89 0,87 CSTN/NBR/3%CNT-PVC 0,91 0,89 CSTN/NBR/3%CNT-PEG 0,9 0,88 12
- 240 220 200 180 160 Độ trương 140 120 100 80 60 40 20 0 0 8 16 24 32 40 48 56 64 72 Thời gian (giờ) CSTN/NBR/CNT CSTN/NBR/CNT-PVC CSTN/NBR/CNT-PEG CSTN/NBR Hình 3.30. Độ trương của hệ CSTN/NBR gia cư ng CNT dung môi 3.3.2. Ảnh hưởng của ống nanocacbon đến tính chất lưu hóa của vật liệu CSTN/NBR Tính chất cơ học của vật liệu cũng thể hiện dưới góc nhìn của tính chất lưu hóa. Lựa chọn điều kiện lưu hóa đúng sẽ làm gia tăng độ bền của cao su kỹ thuật. Kết quả khảo sát ảnh hưởng của CNT tới quá trình lưu hóa blend CSTN/NBR được thể hiện trong bảng 3.8. Bảng 3.8. Ảnh hưởng của CNT đến khả năng lưu hóa của blend CSTN/NBR Mmin Mmax Ts1 Tc90 Mẫu (kgf.cm) (kgf.cm) (phút:giây) (phút:giây) CSTN/NBR/CNT 0,2 4,75 02:19 7:57 CSTN/NBR/CNT-PVC 0,17 5,26 02:42 8:55 CSTN/NBR/CNT-PEG 0,16 4,83 02:26 7:51 Giá trị momen xoắn cực tiểu thể hiện tính d o hay độ linh động của cao su ở trạng thái chảy mềm ban đầu. Kết quả cho thấy ở mẫu chứa CNT giá trị Mmin cao nhất. Điều này là phù hợp vì CNT không có các nhóm phân cực mạnh nên khả năng phối trộn vào hệ blend chứa cao su NBR phân cực bị giảm đi. Trong khi đó mẫu chứa PVC, PEG thì sự xuất hiện của các nhóm chức phân cực như : Cl, NH 2, OH sẽ làm tăng khả năng phối trộn. Giá trị momen cực đại thường liên quan đến liên kết hóa học hay mật độ khâu mạch, giá trị này của mẫu chứa CNT- PVC cao hơn hẳn điều này cũng tương ứng với độ cứng của mẫu chứa CNT- PVC cao hơn, lúc này mạng liên kết S-S của lưu huỳnh đạt lớn nhất. Thời gian lưu hóa Tc90 của mẫu chứa CNT-PEG là thấp nhất, do trong CNT-PEG có nhóm NH2 trở thành tác nhân xúc tiến cho quá trình lưu hóa. Giá trị Tc90 của mẫu chứa CNT- PVC khá cao cũng là 13
- một trở ngại cho quá trình gia công chế tạo sản phẩm . 3.4. Nghiên cứu chế tạo và tính chất của vật liệu CSTN/CR/CNT bằng phƣơng pháp trộn hợp ƣớt 3.4.1. Ảnh hưởng của CNT đến tính chất lưu hóa của vật liệu CSTN/CR Căn cứ vào kết quả nghiên cứu của tác giả Đỗ Quang Kháng và cộng sự về chế tạo hệ blend CSTN/CR, tỷ lệ 70/30 được lựa chọn để nghiên cứu khả năng gia cường của CNT bằng phương pháp trộn hợp ướt với CNT/etanol. Đã tiến hành nghiên cứu khả năng lưu hóa của các mẫu vật liệu chứa CNT và CNT- biến tính. Các giá trị momen xoắn cực đại, cực tiểu, thời gian lưu hóa đạt 90% (Tc90) được trình bày dưới đây. Bảng 3.11. Ảnh hưởng của CNT đến khả năng lưu hóa của blend CSTN/CR Mmin Mmax Ts1 Tc90 Mẫu (kgf.cm) (kgf.cm) (phút:giây) (phút:giây) CSTN/CR/CNT 2,35 20,58 01: 32 14:54 CSTN/CR/CNT-PVC 1,6 18,63 01: 27 14:44 CSTN/CR/CNT-PEG 1,96 20,03 01:28 14:24 CSTN/CR/CNT-TESPT 1,31 21,71 01:21 12:48 Thời gian lưu hóa Tc90 của mẫu chứa TESPT là thấp nhất (12 phút 48 giây), điều này có thể giải thích là do trong CNT- TESPT có nhóm NH2 đóng vai trò xúc tiến và sự xuất hiện của gốc S-S hình thành do phân hủy nhẹ dưới nhiệt độ cao (hình 3.37) trực tiếp tham gia vào khâu mạch với hệ thống nối đôi trong cao su, gây ra hiện tượng lưu hóa sớm (giá trị ts1 cũng đạt nhỏ nhất) làm giảm thời gian lưu hóa. Thời gian lưu hóa Tc90 ngắn có giá trị kinh tế trong việc gia công chế tạo sản phẩm nên CNT- TESPT rất đáng được chú ý. 3.4.2. Ảnh hưởng của hàm lượng CNT tới tính chất cơ học của vật liệu CSTN/CR Từ các kết quả trên cho thấy ch cần 1% CNT (chưa biến tính và biến tính) đã làm tăng đáng kể tính chất cơ học của blend CSTN/CR. Khi hàm lượng CNT và CNT- TESPT tăng lên, các tính chất cơ học (độ bền kéo đứt, độ dãn dài khi đứt) của vật liệu tăng lên và đạt giá trị lớn nhất với hàm lượng CNT là 4% hoặc CNT-TESPT là 3,5%. Tính chất cơ học của vật liệu CSTN/CR/CNT- TESPT cao hơn hẳn vật liệu CSTN/CR/CNT, điều này được giải thích do CNT- TESPT tương tác tốt hơn CNT. Và chúng tạo liên kết với mạch cao su, do quá trình phân hủy nhiệt của tác nhân silan đã làm xuất hiện liên kết S-S, liên 14
- kết này không những trực tiếp tham gia vào lưu hóa tạo mạng lưới chặt chẽ mà còn tạo liên kết hóa học với nền cao su. Việc giải phóng phân tử HCl làm gia tăng độ bền nhiệt động, đồng thời tạo liên kết trực tiếp Si-O-C càng củng cố thêm sự bền chặt của mạng lưới nanocompozit. Giả thiết với mô hình liên kết trong mạng nanocompozit như hình 3.37. 20 Độ bền kéo đứt (MPa) 18 16 14 CSTN/CR/CNT CSTN/CR/CNT-TESPT CSTN/CR/CNT-PVC 12 CSTN/CR/CNT-PEG 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Hàm lượng chất gia cường (%) Hình 3.33 . Ảnh hưởng của hàm lượng chất gia cư ng tới độ bền k o đứt của vật liệu CSTN/CR/CNT HO HO HO Si (CH2)3 S4 (CH2)3Si(OH)3 HO Si CH2CH2CH2 S SH OOC OOC NH2 t0 NH2 COO COO 2 (CH2)3 S4 (CH2)3Si(OH)3 CH (CH2)3 S SH HO Si 2 HO Si H3C CH CH HO = C CH HO 2 = CH C 2 Cl CH2 HO CH CH3 C S S (CH2)3 Si OH CH2 OOC CH2 NH2 COO CH2 (CH2)3 S S C Cl HO Si CH2 HO CH2 15
- CH2 HO CH2 HO CH3 C S S (CH2)3 Si OH CH3 C S S (CH 2 3 Si OH ) CH2 OOC CH2 OOC CH2 NH2 CH2 NH2 COO CH2 t0 COO CH2 HO Si (CH2)3 S S C -HCl HO Si (CH2)3 S S C O- H Cl CH2 CH2 CH2 O CH2 Hình 3.37. Mô tả liên kết bề mặt giữa CNT-TESPT với mạch CSTN/CR Cấu trúc của vật liệu CSTN/CR/CNT-TESPT chặt chẽ và đạt sự phân bố đồng đều, do vậy làm ảnh hưởng mạnh đến độ bền nhiệt, hệ số già hóa cũng như độ trương trong dung môi. Hình 3.38. Cấu trúc hình thái của vật liệu CSTN/CR gia cư ng CNT (a) và CNT- TESPT (b) Bảng 3.13. Kết quả phân tích TGA của một số mẫu vật liệu trên cơ sở CSTN/CR Nhiệt Nhiệt độ Nhiệt độ phân Tổn hao độ bắt phân hủy hủy mạnh khối lượng đầu mạnh nhất nhất 2 đến 600oC Mẫu phân 1 (oC) (%) hủy (oC) (oC) CSTN/CR 268,7 349,7 434,5 91,02 CSTN/CR/4CNT 272,4 350,2 433,2 86,67 CSTN/CR/3,5CNT- 274,5 353,6 428,4 90,66 TESPT CSTN/CR/3,5CNT-PVC 273 344 438,8 91,14 CSTN/CR/3,5CNT-PEG 274 347,7 432,9 92 16
- 3.5. Nghiên cứu tối ƣu hóa khả năng phân tán CNT trong nền cao su blend CSTN/CR Từ những kết quả nghiên cứu được trình bày ở trên, nhận thấy hệ CSTN/CR có tính chất cao hơn hệ CSTN/NBR khi sử dụng CNT và CNT biến tính. Để tiếp tục nâng cao tính chất của hệ blend này cần tiếp tục đề cập tới điều kiện tối ưu để phân tán CNT bằng cách sử dụng 3 phương pháp phân tán sau: - Phương pháp dung dịch: CSTN/CR/CNT/toluen. - Phương pháp sử dụng latex CSTN kết hợp với chất HĐBM: LCSTN/CR/CNT-CTAB. - Phương pháp sử dụng chất trợ phân tán, tương hợp: CSTN/CR/CNT/D01. Kết quả đáng quan tâm nhất là khả năng phân tán của CNT dưới tác động của CTAB trong latex CSTN theo cơ chế như sau: Hình 3. 46. Cơ chế tách bó ống CNT của CTAB và cơ chế phân tán của CNT- CTAB trong latex CSTN Các hạt latex cao su thiên nhiên có tính linh hoạt cao, ngay cả với một lượng rất nhỏ CNT ch 1% cũng làm gia tăng đáng kể độ bền kéo đứt từ 13,32 lên 16,12 MPa đối với LCSTN/CR và từ 14,32 lên 17,02 MPa đối với CSTN/CR. Tại các hàm lượng 3% CNT và 3% CNT- CTAB đây là hàm lượng tối ưu để các phân tử cao su và CNT tạo thành mạng lưới polyme- chất độn chặt chẽ. Mạng lưới polyme- chất độn như mô tả trên hình 3.43 được ổn định hóa bởi liên kết Van der Walls, liên kết hydro và liên kết ion (tạo bởi điện tích âm trong 17
- phân tử latex và điện tích dương trên nguyên tử nitơ của CTAB). Chính điều này đã làm gia tăng độ bền kéo đứt của các mẫu vật liệu. Hình 3.43. Tương tác giữa CNT/CTAB với nền polyme 3.5.1. Chế tạo vật liệu cao su nanocompozit sử dụng CNT- Vast Trên cơ sở kết quả chế tạo vật liệu LCSTN/CR/CNT-CTAB, luận án cũng tiến hành nghiên cứu sử dụng CNT được chế tạo tại Viện Khoa học Vật liệu -Viện Hàn lâm KHCN Việt Nam (CNT- Vast) để gia cường tính chất của blend CSTN/CR. CNT- Vast được rung siêu âm trong etanol hoặc phân tán trong nước bằng CTAB trước khi phối trộn với cao su thiên nhiên, cao su clopren như quy trình và đơn pha chế trong mục 2.2. Dưới đây là kết quả tính chất cơ học thu được: Bảng 3.17. Ảnh hưởng của hàm lượng CNT- Vast tới tính chất cơ học của vật liệu CSTN/CR Độ bền Độ dãn Độ cứng Mẫu kéo đứt dài khi đứt (Shore A) (MPa) (%) CSTN/CR 13,32 610 51,2 CSTN/CR/1%CNT- Vast/etanol 15,12 603 51,9 CSTN/CR/2%CNT- Vast/etanol 17,28 592 52,6 CSTN/CR/3%CNT- Vast/etanol 16,53 584 53,0 CSTN /CR/4%CNT- Vast/etanol 15,76 578 53,8 CSTN/CR/1% CNT- Vast/CTAB 15,52 600 51,8 CSTN/CR/2% CNT- Vast/CTAB 18,14 593 52,3 CSTN/CR/3% CNT- Vast/CTAB 17,09 567 54,0 CSTN/CR/4% CNT- Vast/CTAB 16,76 579 54,4 Tính chất cơ học của mẫu vật liệu CSTN/CR/CNT- Vast/CTAB cao hơn của mẫu CSTN/CR/CNT- Vast/eatnol chút ít. Để lý giải cho điều này, luận án sử dụng kết quả nghiên cứu của nhóm tác giả [97] đã công bố. Khi so sánh kích thước của CNT- Vast và CNT- Nanocyl 18
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận án Tiến sĩ Giáo dục học: Phát triển tư duy vật lý cho học sinh thông qua phương pháp mô hình với sự hỗ trợ của máy tính trong dạy học chương động lực học chất điểm vật lý lớp 10 trung học phổ thông
219 p | 291 | 35
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Chiến lược Marketing đối với hàng mây tre đan xuất khẩu Việt Nam
27 p | 191 | 18
-
Tóm tắt Luận án Tiến sĩ Luật học: Hợp đồng dịch vụ logistics theo pháp luật Việt Nam hiện nay
27 p | 280 | 17
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Thúc đẩy tăng trưởng bền vững về kinh tế ở vùng Đông Nam Bộ đến năm 2030
27 p | 212 | 17
-
Tóm tắt Luận án Tiến sĩ Y học: Nghiên cứu điều kiện lao động, sức khoẻ và bệnh tật của thuyền viên tàu viễn dương tại 2 công ty vận tải biển Việt Nam năm 2011 - 2012
14 p | 273 | 16
-
Tóm tắt luận án Tiến sĩ: Nghiên cứu tối ưu các thông số hệ thống treo ô tô khách sử dụng tại Việt Nam
24 p | 261 | 12
-
Tóm tắt Luận án Tiến sĩ Triết học: Giáo dục Tư tưởng Hồ Chí Minh về đạo đức cho sinh viên trường Đại học Cảnh sát nhân dân hiện nay
26 p | 156 | 12
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu tính toán ứng suất trong nền đất các công trình giao thông
28 p | 225 | 11
-
Tóm tắt Luận án Tiến sĩ Kinh tế Quốc tế: Rào cản phi thuế quan của Hoa Kỳ đối với xuất khẩu hàng thủy sản Việt Nam
28 p | 188 | 9
-
Tóm tắt Luận án Tiến sĩ Xã hội học: Vai trò của các tổ chức chính trị xã hội cấp cơ sở trong việc đảm bảo an sinh xã hội cho cư dân nông thôn: Nghiên cứu trường hợp tại 2 xã
28 p | 151 | 8
-
Tóm tắt Luận án Tiến sĩ Luật học: Các tội xâm phạm tình dục trẻ em trên địa bàn miền Tây Nam bộ: Tình hình, nguyên nhân và phòng ngừa
27 p | 215 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển kinh tế biển Kiên Giang trong tiến trình hội nhập kinh tế quốc tế
27 p | 64 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phản ứng của nhà đầu tư với thông báo đăng ký giao dịch cổ phiếu của người nội bộ, người liên quan và cổ đông lớn nước ngoài nghiên cứu trên thị trường chứng khoán Việt Nam
32 p | 185 | 6
-
Tóm tắt Luận án Tiến sĩ Triết học: Tư tưởng Triết học của Tôn Trung Sơn và ý nghĩa của nó
32 p | 164 | 6
-
Tóm tắt Luận án Tiến sĩ Luật học: Quản lý nhà nước đối với giảng viên các trường Đại học công lập ở Việt Nam hiện nay
26 p | 137 | 5
-
Tóm tắt Luận án Tiến sĩ Ngôn ngữ học: Phương tiện biểu hiện nghĩa tình thái ở hành động hỏi tiếng Anh và tiếng Việt
27 p | 125 | 4
-
Tóm tắt luận án Tiến sĩ Y học: Nghiên cứu mức lọc cầu thận bằng Cystatin C huyết thanh ở bệnh nhân tiền đái tháo đường và đái tháo đường típ 2
38 p | 96 | 4
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển sản xuất chè nguyên liệu bền vững trên địa bàn tỉnh Phú Thọ các nhân tố tác động đến việc công bố thông tin kế toán môi trường tại các doanh nghiệp nuôi trồng thủy sản Việt Nam
25 p | 175 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn