intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt luận án Tiến sĩ Khoa học vật liệu: Nghiên cứu chế tạo và khảo sát đặc trưng tính chất màng zirconi oxit kết hợp với silan tiền xử lý cho sơn phủ trên thép

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:26

17
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận án nghiên cứu với mục tiêu chế tạo lớp màng kép zirconia/silan trên bề mặt thép tiền xử lý cho sơn phủ thay thế phốt phát hóa và cromat hóa. Đề xuất cơ chế quá trình hình thành màng và đánh giá đặc trưng về hình thái, thành phần, điện hóa và liên kết của lớp màng kép zirconia/silan trên nền thép.

Chủ đề:
Lưu

Nội dung Text: Tóm tắt luận án Tiến sĩ Khoa học vật liệu: Nghiên cứu chế tạo và khảo sát đặc trưng tính chất màng zirconi oxit kết hợp với silan tiền xử lý cho sơn phủ trên thép

  1. VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN CHI NGHIÊN CỨU CHẾ TẠO VÀ KHẢO SÁT ĐẶC TRƯNG TÍNH CHẤT MÀNG ZIRCONI OXIT KẾT HỢP VỚI SILAN TIỀN XỬ LÝ CHO SƠN PHỦ TRÊN THÉP Chuyên ngành: Kim loại học Mã số: 9.44.01.29 TÓM TẮT LUẬN ÁN TIẾN SỸ KHOA HỌC VẬT LIỆU Hà Nội – 2020
  2. Công trình này được hoàn thành tại: Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam Người hướng dẫn khoa học 1: TS. Phạm Trung Sản Người hướng dẫn khoa học 2: PGS.TS. Tô Thị Xuân Hằng Phản biện 1:……………………….. Phản biện 2:……………………….. Phản biện 3:……………………….. Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Học viện, học tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi…giờ, ngày…tháng…năm … Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam
  3. MỞ ĐẦU Tính cấp thiết của luận án Xử lý bề mặt (tiền xử lý) có vai trò quyết định đến hiệu quả bảo vệ của sơn phủ. Tiền xử lý không những gia tăng độ bám dính giữa sơn với nền mà còn cải thiện hiệu quả bảo vệ ăn mòn lâu dài. Tiền xử lý bằng phốt phát hóa hoặc cromat hóa đã và đang được ứng dụng rộng rãi cho mục đích này. Tuy nhiên các phương pháp này thường gây ra các tác động tiêu cực đến môi trường và con người, đồng thời yêu cầu cao về năng lượng và chi phí nên ngày càng bị hạn chế bởi các công ước quốc tế. Xu hướng tìm kiếm phương pháp thay thế đã được quan tâm nghiên cứu và ứng dụng gần đây. Các loại màng thay thế này thường là oxit kim loại chuyển tiếp như zirconi, titan, vanadi, molipden. Trong đó, triển vọng và được nghiêu cứu rộng rãi là phương pháp tiền xử lý bằng zirconi oxit (zirconia) hoặc silan. Ưu điểm nổi trội của zirconia ở chỗ, màng tạo thành có tính chất của vật liệu nano, thân thiện môi trường, tiết kiệm chi phí, công nghệ đơn giản, áp dụng được trên nhiều kim loại nền. Tuy nhiên nhược điểm là phải sử dụng nước rửa là nước khử ion hay nước qua siêu lọc vì màng mới hình thành khá nhạy với ion có trong nước rửa và dễ hình thành gỉ trong thời gian chuyển tiếp giữa các công đoạn. Bên cạnh đó, silan cũng được coi như là phương pháp tiền xử lý bề mặt rất triển vọng vì tăng khả năng liên kết giữa sơn và bề mặt kim loại đồng thời bảo vệ ăn mòn hiệu quả. Tuy nhiên, nhược điểm cơ bản của phương pháp sử dụng silan là phụ thuộc rất nhiều vào cách xử lý bề mặt, độ sạch của bề mặt và mật độ tạo nhóm hydroxyl trên bề mặt. Vì vậy, cần phải làm sạch bề mặt thật tốt trước khi phủ silan mới phát huy được hiệu quả của phương pháp này. 1
  4. Một số nghiên cứu đã kết hợp hai phương pháp này ở những góc độ khác nhau như: Tạo lớp màng zirconia trên thép mạ nhúng nóng từ muối zirconi nitrat rồi sau đó tạo màng silan; tạo màng silan trên nền thép mạ sử dụng phụ gia muối zirconi nitrat; tạo màng xeri trên nền hợp kim nhôm bổ sung zirconia và silan. Các kết quả đã khẳng định, lớp màng kết hợp có độ bền ăn mòn cao hơn, ít rỗ xốp, viết nứt tế vi và tiền xử lý tốt hơn từng lớp riêng phần. Để tạo lớp màng kết hợp giữa zirconia và silan, nhiều phương pháp có thể được áp dụng. Sol-gel để tạo màng zirconia là phương pháp ở qui mô nguyên tử, tính đồng nhất của sản phẩm cao, các giai đoạn của phản ứng có thể điều khiển được để tạo ra sản phẩm mong muốn. Tuy vậy, so với phương pháp nhúng hóa học, phương pháp sol-gel cần nhiều công đoạn hơn, yêu cầu cao về nhiệt độ, dễ tạo sản phẩm phụ nên hạn chế trong việc công nghiệp hóa. Lớp màng kết hợp zirconia và silan cũng có thể được tạo bằng hai bước trong hai dung dịch tuy vậy, phương pháp một dung dịch sẽ cho phép đơn giản hơn về công đoạn đồng thời tạo cơ chế cho zirconia và silan cùng tạo màng trên bề mặt. Các yếu tố liên quan trực tiếp đến màng tạo thành theo phương pháp nhúng trong dung dịch axit hexaflorozirconic có thể kể đến là: nhiệt độ, pH, nồng độ của dung dịch và thời gian nhúng. Một số công trình nghiên cứu đã chỉ ra rằng, khi tăng nhiệt độ dung dịch thì độ bền và các tính chất của lớp màng zirconia đều giảm. Độ pH và nồng độ là hai thông số tương quan trực tiếp với nhau. Tuy vậy dung dịch axit hexaflorozirconic có nồng độ thấp (với pH khoảng từ 3 đến 4) thường tạo ra màng zirconia có hiệu quả tiền xử lý tốt hơn đồng thời khi pH thay đổi thì sẽ ảnh hưởng quyết định đến màng tạo thành. 2
  5. Dựa trên cách đặt vấn đề trên, với mong muốn tạo ra lớp màng tiền xử lý bề mặt thép có hiệu quả tương đương phốt phát hóa và cromat hóa, đề tài của luận án lựa chọn là: “Nghiên cứu chế tạo và khảo sát đặc trưng tính chất màng zirconi oxit kết hợp với silan tiền xử lý cho sơn phủ trên thép”. Mục tiêu của luận án - Chế tạo lớp màng kép zirconia/silan trên bề mặt thép tiền xử lý cho sơn phủ thay thế phốt phát hóa và cromat hóa; - Đề xuất cơ chế quá trình hình thành màng và đánh giá đặc trưng về hình thái, thành phần, điện hóa và liên kết của lớp màng kép zirconia/silan trên nền thép. Nội dung nghiên cứu - Nghiên cứu chế tạo màng đơn zirconia trên thép và lựa chọn điều kiện ban đầu về pH của dung dịch và thời gian tạo màng làm cơ sở cho việc chế tạo lớp màng kép zirconia/silan; - Nghiên cứu chế tạo màng kép zirconia/silan trên nền thép; luận giải cơ chế quá trình hình thành và mô tả đặc trưng về hình thái, thành phần, điện hóa và liên kết của lớp màng kép; - Nghiên cứu vai trò của màng kép zirconia/silan tiền xử lý cho sơn tĩnh điện. Ý nghĩa khoa học và thực tiễn của luận án Về mặt khoa học, luận án đã đóng góp những điểm mới vào hướng nghiên cứu chế tạo lớp màng xử lý bề mặt thép cho sơn phủ thay thế phốt phát và cromat hóa. Về mặt thực tiễn, kết quả của luận án làm cơ sở cho việc phát tiển công nghệ chế tạo màng xử lý bề mặt thép cho sơn phủ thân thiện môi trường tại Việt Nam. 3
  6. Mục tiêu cụ thể của luận án - Chế tạo được lớp đơn zirconi oxit và lớp màng kép zirconi oxit/silan trên bề mặt thép bằng phương pháp nhúng hóa học. - Luận giải cơ chế hình thành lớp màng kép ZrO2/silan và mô tả đặc trưng về hình thái, thành phần, điện hóa và liên kết của chúng. - Xác định được một số yếu tố cơ bản ảnh hưởng chính đến quá trình tạo màng; lựa chọn được điều kiện tạo màng thích hợp. - Tạo ra lớp màng zirconi oxit/silan có độ bền ăn mòn cao, cải thiện độ bám dính và tăng khả năng bảo vệ chống ăn mòn của hệ sơn tĩnh điện tương đương phốt pháp kẽm. CHƯƠNG 1. TỔNG QUAN 1.1. Các phương pháp truyền thống xử lý bề mặt thép Khái lược về phương pháp cơ học. Khái niệm, lịch sử phát triển, cơ chế hình thành, tính chất và sơ đồ công nghệ phương pháp hóa học: phốt phát hóa, cromat hóa. 1.2. Phương pháp xử lý dựa trên zirconia: Cơ chế hình thành, hiệu quả tiền xử lý, đặc trưng tính chất và các yếu tố ảnh hưởng; 1.3. Phương pháp xử lý dựa trên silan: Cơ chế hình thành, hiệu quả tiền xử lý, đặc trưng tính chất và các yếu tố ảnh hưởng; 1.4. Phương pháp xử lý bề mặt thép kết hợp zirconia và silan: Trình bày các công bố về kết hợp ở một số góc độ nhất định giữa hai phương pháp để tạo ra lớp phủ kết hợp tốt hơn; Những ưu điểm của sự kết hợp hai phương pháp này so với phương pháp riêng lẻ; CHƯƠNG 2. THỰC NGHIỆM VÀ PHƯƠNG PHÁP 2.1. Sơ đồ nghiên cứu 4
  7. Chuẩn bị hóa chất, mẫu, và điều chế dung dịch H2ZrF6 Chế tạo lớp màng đơn zirconi oxit Lựa chọn điều kiện thích hợp về độ Chuẩn bị hóa chất, mẫu pH và thời gian xử lý theo chỉ tiêu và điều chế dung dịch kết độ bền ăn mòn và độ bám dính hợp H2ZrF6/ silan Chế tạo lớp màng kết hợp zirconi oxit/silan Đặc trưng thành phần, liên Cơ chế quá trình hình thành kết, hình thái, độ bền ăn mòn Ảnh hưởng của thời gian và nồng độ silan đến đặc trưng tính chất Độ bám dính màng sơn Độ bền ăn mòn dưới lớp sơn Biện luận, Hiệu quả bảo vệ của hệ sơn kết luận 2.2. Nguyên vật liệu, hóa chất chính - Mẫu thép cacbon (Công ty Quốc Việt) được xử lý bằng giấy nhám, tẩy dầu mỡ, gỉ rồi rửa lại bằng nước cất rồi bảo quản trong tủ hút ẩm (mẫu nền). - ZrF4 dạng tinh thể, độ tinh khiết 99,99 % màu trắng (Sigma), Silan A-1100: γ- APS (Trung quốc, độ tinh khiết 99 %) 2.3. Điều chế dung dịch xử lý bề mặt Điều chế dung dịch H2ZrF6: ZrF4 được hòa tan hoàn toàn trong dung dịch HF rồi dùng nước cất để định mức dung dịch axit H2ZrF6 thu được chứa Zr4+ = 50 ppm. Điều chế dung dịch H2ZrF6 kết hợp silan: Silan A-1100 với các nồng độ khác nhau được thêm vào H2ZrF6 để tạo thành H2ZrF6/silan. 5
  8. 2.4. Các phương pháp xử lý bề mặt mẫu nền 2.4.1. Xử lý bề mặt mẫu nền trong dung dịch H2ZrF6 Để tạo lớp màng đơn zirconi oxit (zirconia), mẫu nền được nhúng trong dung dịch H2ZrF6 theo tổ hợp pH thay đổi từ 1 đến 6, khoảng chia là 1 đơn vị và thời gian từ 1 đến 6 phút, khoảng chia là 0,5 phút. 2.4.2. Xử lý bề mặt trong dung dịch H2ZrF6 kết hợp silan Để tạo lớp màng kép zirconia/silan, mẫu nền được nhúng trong dung dịch H2ZrF6/silan theo tổ hợp silan từ 0 %  0,05 % (v/v), khoảng chia 0,0125 %. thời gian từ 1 đến 6 phút, khoảng chia 0,5. 2.4.3. Xử lý bề mặt mẫu bằng phương pháp hai dung dịch Mẫu nền lần lượt được xử lý trong dung dịch H2ZrF6 để tạo màng zirconia, rồi trong dung dịch silan để tạo lớp màng silan lên trên. Sau khi xử lý bề mặt, các mẫu được sấy bằng dòng khí khô (70 ± o 3 C) khoảng 15 phút trong phòng thí nghiệm. 2.5. Các phương pháp, thiết bị và kỹ thuật sử dụng EIS và DC được thực hiện trên máy PGSTAT204N, hệ đo 3 điện cực trong NaCl 3,5%. Tần số 100kHz10mHz; ±100 mV/OCP với tốc độ 1mV/s, bước 1 mV. OCP của mẫu trong quá trình tạo màng được xác định sau mỗi 30 giây cho đến 6 phút. Hình thái, cấu trúc bề mặt của các mẫu thử nghiệm được nghiên cứu bằng FE-SEM trên thiết bị Jeol 7401F (Nhật). Thành phần, liên kết trong màng được nghiên cứu bằng FT-IR trên máy Bruker Alpha (Đức) ở dải số sóng 3000500 cm-1, EDS thông qua đầu đo trên thiết bị Jeol 7401F và XRD ở chế độ như sau: 2: 20  80o; tốc độ 0,05o/giây; Cu (Kα) = 1,5406 Å. Độ bám dính được đánh giá định tính bằng phương pháp băng keo (ASTM D3359, mẫu rạch chữ X) và định lượng bằng phương pháp kéo tách sử dụng thiết bị PosiTest AT-M (ASTM D4541). 6
  9. Để nhanh chóng đánh giá độ suy giảm bám dính màng sơn, mức độ ăn mòn dưới vết rạch, các mẫu sơn được ngâm trong nước muối NaCl 3,5% theo tiêu chuẩn ASTM D 1654 – 05. Phương pháp mù muối, (JIS 8502:1999) trên thiết Q – FOG CCT 600 (Mỹ): pH: 6,5÷7,2, NaCl: 5%, áp suất: 1,0Atm, nhiệt độ: 35÷37 C, nhiệt độ bão hòa: 47÷49 C, tốc độ: 2 mL/giờ o o Thử nghiệm tự nhiên thực hiện theo ISO 4628:2016 (Phần 8) tại Trạm Nghiên cứu thử nghiệm biển – Chi nhánh Ven biển. CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN 3.1. Nghiên cứu chế tạo màng đơn zirconia 3.1.1. Ảnh hưởng của pH của dung dịch axit hexaflorozirconic 3.1.1.1. Ảnh hưởng của pH đến độ bền ăn mòn của mẫu Phổ tổng trở, đường cong phân cực theo pH (hình 3.1, 3.3) có dạng những đường cong tương đồng nhưng bán kính khác nhau. Hình 3.1, 3.3. Phổ tổng trở và đường cong phân cực theo pH. Sử dụng phần mềm Nova 2.0, sơ đồ tương đương, công thức tính điện dung: và ngoại suy Tafel ta xác định được các thông số đặc trưng trong bảng 3.1, 3.2. Lớp màng zirconia tạo thành đã tăng độ bền ăn mòn của mẫu. Rp lớn hơn (Jcorr nhỏ hơn) khi pH từ 3 đến 5 và đạt kết quả lớn nhất tại pH = 4. Khi pH < 3, tính axit mạnh, Fe bị hòa tan nhanh và lớp màng chuyển tiếp nếu được 7
  10. tạo thành cũng dễ bị hòa tan. Khi pH > 5 tính kiềm tăng nên phản ứng anot giảm, phản ứng catot cũng chậm lại nên pH tại giao diện bề mặt và dung dịch tăng không đủ để hình thành nên oxit của Zr. Bảng 3.1. Các thông số điện hóa của lớp màng theo pH dung dịch Mẫu pH của dung dịch H2ZrF6 Thông số nền 2 3 4 5 6 72,63 72,86 72,38 74,63 73,40 73,59 Rs (Ω.cm2) ± 0,34 ± 0,31 ± 0,64 ± 0,26 ± 0,49 ± 0,38 664,29 947,04 2177,68 3198,74 2438,82 1372,37± Rp (Ω.cm2) ±14,88 ± 16,65 ± 37,23 ± 46,38 ± 41,46 30,31 C (µF.cm-2) 970 660 310 280 306 536 0,003643 0,002487 0,000875 0,000993 0,001122 0,001959 Y0 (±%) ± 1,903 ± 1,546 ± 1,650 ± 0,952 ± 1,249 ± 1,700 0,8145 0,8202 0,7855 0,7886 0,8016 0,8250 n (±%) ± 0,881 ± 0,663 ± 0,596 ± 0,356 ± 0,486 ± 0,708 χ² 0,02798 0,02239 0,02854 0,01311 0,03318 0,03287 Bảng 3.2. Kết quả ngoại suy Tafel các mẫu theo pH dung dịch. Mẫu pH của dung dịch H2ZrF6 Thông số nền 2 3 4 5 6 E (- mV/SCE) 560,8 633,2 676,4 690,2 683,9 637,6 2 Jcorr (µA/cm ) 137 38,8 7,7 7,2 8,0 74 3.1.1.2. Ảnh hưởng của pH đến độ bám dính của hệ sơn tĩnh điện Mẫu nền pH=2 pH=3 pH=4 pH=5 pH=6 Hình 3.4. Độ bám dính của mẫu theo pH khác nhau. 8
  11. Độ bong tróc (hình 3.4) cho thấy, mẫu sơn được xử lý tại pH = 3 hoặc 4 đạt kết quả tốt nhất, xung quanh vết rạch gần như không thay đổi (mức 5). Các mẫu còn lại đều xuất hiện các vết bong tróc nhất định thể hiện độ bám dính ở mức thấp hơn. 3.1.2. Ảnh hưởng của thời gian xử lý trong dung dịch H2ZrF6 3.1.2.1. Ảnh hưởng của thời gian nhúng đến độ bền ăn mòn của mẫu Phổ tổng trở và đường cong phân cực của mẫu zirconia theo thời gian (hình 3.5, 3.6), các số liệu xử lý từ EIS, DC (bảng 3.3, 3.4). Hình 3.5, 3.6. Phổ tổng trở và đường cong phân cực theo thời gian. Bảng 3.3. Thông số điện hóa của các lớp màng theo thời gian nhúng. Mẫu Thời gian xử lý mẫu trong dung dịch H2ZrF6 Thông số nền 2 phút 3 phút 4 phút 5 phút 6 phút 72,63 73,59 73,87 74,63 73,66 75,74 Rs (Ω.cm2) ± 0,34 ± 0,35 ± 0,38 ± 0,26 ± 0,35 ± 0,41 664,29 1151,83 2381,55 3198,74 1953,97 1000,94 Rp (Ω.cm2) ± 14,88 ± 25,23 ± 40,25 ± 46,38 ± 49,44 ± 28,83 C (µF.cm-2) 970 711 679 280 731 1160 Y0 (±%) 0,003643 0,002549 0,002139 0,000993 0,002350 0,003797 ± 1,903 ± 1,576 ± 1,6326 ± 0,952 ± 1,2641 ± 1,744 n (±%) 0,8145 0,8268 0,8027 0,7886 0,7915 0,7528 ± 0,881 ± 0,699 ± 0,754 ± 0,356 ± 0,667 ± 0,861 χ² 0,02798 0,02740 0,02564 0,01311 0,03512 0,02704 9
  12. Bảng 3.4. Điện trở phân cực và điện dung của lớp màng. Mẫu Thời gian xử lý mẫu trong dung dịch H2ZrF6 Thông số nền 2 phút 3 phút 4 phút 5 phút 6 phút E (- mV/SCE) 560,8 630,5 649,3 690,2 650,7 634,7 Jcorr (µA/cm2) 137 16,1 12,5 7,2 16,1 18,1 Lớp màng zirconia tạo thành với độ bền ăn mòn khác nhau, nhưng đều làm tăng Rp của mẫu nền từ 2 đến 5 lần. Jcorr của các mẫu thép được xử lý giảm đi rất nhiều so với mẫu nền từ 7,5 đến 19 lần. Khi thời gian tăng, lớp màng hoàn thiện dần nên tăng Rp (giảm Jcorr), thời gian quá nhiều màng quá dày, không đồng nhất nên nứt do sấy nhiệt, loại nước dẫn tới giảm Rp (tăng Jcorr). 3.1.2.2. Ảnh hưởng của thời gian nhúng đến độ bám dính của sơn Đánh giá độ bong tróc (hình 3.7) cho thấy, mẫu được xử lý từ 3 đến 5 phút đạt kết quả khá tốt, xung quanh vết rạch gần như không thay đổi (mức 5), cao hơn các mẫu được xử lý trong 6 hoặc 2 phút. Mẫu nền 2 phút 3 phút 4 phút 5 phút 6 phút Hình 3.7. Độ bám dính của mẫu theo thời gian xử lý khác nhau. 3.2. Chế tạo và đặc trưng tính chất lớp màng kép zirconia/silan 3.2.1. Động học quá trình và thành phần màng kép Biến đổi thế mạch hở (hình 3.8) cho thấy, điện cực thép dịch chuyển dần về phía dương hơn trong quá trình tạo màng. Lớp màng được hình thành nhanh chóng trong 2 phút đầu tiên, chậm dần cho đến 4 phút và ổn định đến 6 phút. 10
  13. Hình 3.8. Biến thiên thế mạch hở trong dung dịch H2ZrF6/silan. Ban đầu, khi mẫu nền được nhúng trong H2ZrF6/silan, Fe sẽ bị oxy hóa vào dung dịch bởi phản ứng anot (Fe-2e→Fe2+). Ion Fe2+ sẽ kết hợp với ZrF6-2 để giải phóng Zr4+ vào trong dung dịch (Fe2+ + ZrF6-2 → Zr4+ + FeF6-4 ). Ion H+ bị khử bởi phản ứng catot cục bộ trên bề mặt, giải phóng H2 (2H+ + 2e → H2↑). Kết quả pH cục bộ trên bề mặt mẫu tăng dẫn tới kết tủa zirconi oxit ngậm nước. Tinh thể được nảy mầm rồi sau đó lan tỏa ra toàn bộ bề mặt để hình thành lớp màng zirconia theo phương trình (Zr4++ 3H2O→ ZrO2·H2O +4H+). Phản ứng hình thành mạng siloxan cũng có thể được xảy ra: Trong dung dịch silan, các nhóm ethoxy chuyển sang nhóm silanol (–Si(OC2H5)3+3H2O→–Si(OH)3+3C2H5OH). Nhóm silanol bị hấp phụ bởi (Fe-OH) thông qua liên kết hydro thành liên kết siloxan- kim loại (Si-O-Fe) theo (–Si(OH)3+Fe-OH→H2N(CH2)3Si(OH)2-O- Fe). Các nhóm Si-OH cũng tạo thành mạng lưới siloxan (Si-O-Si) ổn định hóa học theo phương trình (SiOH+SiOH→Si-O-Si+H2O). Bảng 3.5. Tỷ lệ phần trăm các nguyên tử trên bề mặt màng zirconia/silanxác định từ phổ EDS Tỷ lệ phần trăm Fe O C Zr Si Al Cu Theo nguyên tử 77,34 12,65 6,99 2,05 0,76 0,12 0,09 Theo khối lượng 90,09 3,95 1,59 3,85 0,35 0,06 0,11 11
  14. Phổ EDS có mặt của Zr (3.9b) và Zr, Si (3.9c) chứng tỏ sự hình thành pha của Zr và Si trong màng. Sự có mặt của O cũng chứng tỏ có oxit hoặc hydroxit của zirconi và mạng lưới siloxan. Các pic khác có thể đến từ bề mặt nền do lớp màng tạo thành rất mỏng. a) b) c) Hình 3.9. Phổ EDS của các mẫu nền (a), mẫu nền được xử lý sau 4 phút trong dung dịch H2ZrF6 (b) và H2ZrF6/silane (c). Tỷ lệ Zr và Si trong thành phần màng có thể đại diện cho việc hình thành các pha zirconia và silan (hình 3.10). Ban đầu tốc độ hình thành ZrO2 rất nhanh, tốc độ hình thành màng silan rất chậm. Kết quả này do phản ứng điện hóa xảy ra nhanh chóng để hình thành ZrO2 ở thời điểm ban đầu sẽ ức chế phản ứng cộng hóa trị hình thành màng silan trên bề mặt mẫu. Theo thời gian, màng ZrO2 dần hoàn thiện, bao phủ bề mặt, phản ứng điện hóa sẽ chậm lại và phản ứng tạo liên kết cộng hóa trị giữa silan và kim loại trở nên dễ dàng hơn. Từ 1 đến 4 phút, cả nồng độ Zr và Si đều tăng chứng tỏ hai lớp màng được hình thành song song với nhau. Nghĩa là silan vừa cạnh tranh với Zr trong việc hình thành liên kết với thép vừa tạo liên kết xung quanh ZrO2 mới được hình thành. 12
  15. Hình 3.10. Biến thiên tỷ lệ Zr và Si trong màng kép ZrO2/silan. 3.2.2. Hình thái bề mặt oxit zirconi/silan. Ảnh FE-SEM của các mẫu (hình 3.11) cho thấy, lớp màng zirconia có sự sắp xếp hình thái với cấu trúc hạt hình cầu hoặc elip, cỡ chục nano và các nhóm hạt hình thù bất định phân bố ngẫu nhiên trên bề mặt (hình 3.11b). Hình 3.11c cho thấy, lớp màng kép zirconia/silan có đặc điểm mịn hơn, kín khít hơn. a) b) c) Hình 3.11. Ảnh FE-SEM của mẫu nền chưa xử lý bề mặt (a), được xử lý bề mặt trong dung dịch H2ZrF6 (b) và H2ZrF6/silan (c). 3.2.3. Liên kết trong lớp màng zirconi oxit /silan Trong phổ FT-IR (hình 3.12), pic ở khoảng 500-600 cm-1 chứng tỏ cho liên kết O-Zr-O. Theo báo cáo, liên kết Si-O-Zr thường ở số sóng 964 cm-1. Do chịu ảnh hưởng bởi tính dương điện cao của ZrO2 nên liên kết này có thể được nâng lên tại 1050 cm-1. Pic trong khoảng 1000-1130 cm-1 được tạo ra bởi liên kết Si-O-Si bất đối xứng, dao động rung kéo dài và sự phân tách của pic này cho thấy cấu trúc nhiều lớp và xác nhận vai trò cầu nối của O giữa Zr, Si với nhau. 13
  16. Hình 3.12. Phổ hồng ngoại FT-IR của màng kép zirconia/silan. Pic ở xung quanh số sóng 1400 và 2900 cm-1 có thể đại diện cho dao động biến dạng và bất đối xứng của nhóm –CH (-CH2, -CH3). Pic ở khoảng 1600 cm-1 là đặc trưng cho dao động hóa trị của nhóm N-H trong silan. Giản đồ nhiễn xạ tia X hình (3.13) cho thấy, một pic chính ở 2 = 44,38 và một pic phụ ở 2 = 64,70 trên cả mẫu nền và mẫu ZrO2/silan đặc trưng cho thép. Pic ở 2 = 35,26 trong hình 3.13b đặc trưng cho ZrO2 trong màng. Chỉ có một pic của ZrO2 đạt được có lẽ do lớp màng quá mỏng, ưu thế của phép đo vẫn thuộc về Fe hoặc do mẫu được xử lý nhiệt chưa cao. Từ phương trình Scherrer, có thể xác định được kích thước hạt trung bình của ZrO2 là 81,27 nm. Kết quả này khá tương đồng với thông số hạt đạt được tử ảnh FE-SEM. Fe Fe ZrO2 Fe Fe Hình 3.13. XRD của mẫu (a-mẫu nền, b-mẫu ZrO2/silan). 14
  17. 3.2.4. Ảnh hưởng của nồng độ silan đến hình thái, thành phần và độ bền ăn mòn của màng kép zirconia/silan 3.2.4.1. Ảnh hưởng của nồng độ silan đến hình thái bề mặt 0,0 0,0125 0,025 0,05 2 dung dịch silan Hình 3.14. Ảnh FE-SEM bề mặt mẫu theo nồng độsilan Ảnh FE-SEM cho thấy, sự có mặt của silan cải thiện đáng kể độ mịn bề mặt so với trường hợp không có silan. 3.2.4.2. Ảnh hưởng của nồng độ silan đến thành phần màng Tỷ lệ nguyên tử Si/Zr được thể hiện trên hình 3.15. Tỷ lệ Si/Zr trong trường hợp 2 dung dịch (0,025 %) xấp xỉ bằng 1 dung dịch (0,0125 %) và thấp hơn so với 1 dung dịch (0,025 %) chứng tỏ, 2 màng kép tạo thành đồng thời trong quá trình tạo màng kép. Tỷ lệ này tăng lên khi nồng độ silan trong dung dịch tăng phản ánh sự cạnh tranh trong việc tạo mối liên kết giữa Zr, Si với thép. 3.2.4.3. Ảnh hưởng của nồng độ silan đến độ bền ăn mòn 15
  18. Phổ tổng trở và thông số điện hóa của màng ở các nồng độ silan khác nhau (hình 3.16 và bảng 3.9) cho thấy, dung dịch H2ZrF6 được bổ sung thêm silan ở các nồng độ khác nhau đều dẫn đến tăng cả điện Hình 3.16. Phổ tổng trở Nyquist trở phân cực và điện dung của theo nồng độ silan. lớp màng kép. Bảng 3.6. Thông số điện hóa lớp màng kép theo nồng độ silan. Nồng độ silan (% về thể tích) Hai Thông số 0 0,0125 0,025 0,05 dung dịch Rp 3198,74 5279,68 9116,37 7830,15 7152,84 (Ω.cm2) ± 46,38 ± 111,40 ± 279,57 ± 219,24 ± 305,43 C (µF.cm-2) 280 422 327 413 321 3.2.5. Ảnh hưởng của thời gian xử lý đến hình thái, thành phần và độ bền ăn mòn lớp màng kép zirconia/silan 3.2.5.1. Ảnh hưởng của thời gian xử lý đến hình thái bề mặt Ảnh FE-SEM của các mẫu nền xử lý theo thời gian (hình 3.17) cho thấy, từ 2 đến 3 phút, màng chủ yếu là zirconia, bề mặt vẫn còn nhiều rỗ xốp và mang đặc trưng màng ZrO2. a b c d e f Hình 3.17. Ảnh FE-SEM mẫu được xử lý theo thời gian: 2 phút (a), 3 phút (b), 4 phút (c), 5 phút (d), 6 phút (e), chỉ silan (f). 16
  19. Sau 4 phút màng ZrO2/silan hầu như đã hoàn thiện, tuy vậy, silan vẫn có thể được hình thành dẫn tới màng có đặc trưng của silan nhiều hơn (hình 3.17de). 3.2.5.2. Ảnh hưởng của thời gian xử lý đền thành phần màng Hình 3.18 cho thấy tỷ lệ Si/Zr trong lớp màng kép tạo thành tăng dần khi thời gian xử lý tăng dần. Ở thời điểm 2 phút, tỷ lệ này rất thấp (khoảng 23/100), tăng nhanh Hình 3.18. Tỷ lệ nguyên tử Si/Zr lên theo thời gian và đạt được theo thời gian xử lý. khoảng 36/100 và 38/100 tương ứng với 3 và 4 phút. Trong khoảng từ 2 đến 4 phút, tỷ lệ này tăng ít hơn khẳng định sự cạnh tranh lẫn nhau trong quá trình hình thành màng. 3.2.5.2. Ảnh hưởng của thời gian xử lý đến độ bền ăn mòn Phổ tổng trở và thông số điện hóa của các mẫu (hình 3.19 và bảng 3.7) cho thấy rằng độ lớn của cung tròn tương ứng với điện trở phân cực của lớp màng tạo thành tăng dần khi thời gian nhúng tăng Hình 3.19. Phổ tổng trở của các từ 2 đến 4 phút. Sau 4 phút, mẫu theo thời gian nhúng. có sự khác biệt không nhiều về đặc trưng tổng trở của lớp màng kép. Bảng 3.7. Thông số điện hóa của mẫu theo thời gian nhúng. Thông số Thời gian xử lý trong dung dịch H2ZrF6/silan 17
  20. 2 phút 3 phút 4 phút 5 phút 6 phút 3198,74 6851,81 9116,37 9080,63 9078,74 Rp (Ω.cm2) ± 46,38 ± 144,57 ± 279,57 ± 277,43 ± 286,89 C (µF.cm-2) 312 374 327 413 486 3.3. Khả năng bảo vệ của hệ sơn tĩnh điện được xử lý bề mặt 3.3.1. Độ bám dính của màng sơn 3.3.1.1. Độ bám dính khô Độ bám dính của màng sơn theo các phương án khác nhau (bảng 3.8) chứng tỏ tất cả các mẫu được xử lý đều có độ bám dính cao hơn thép. Kết quả có được là do màng zirconia liên kết chặt chẽ với nền còn bên ngoài silan phát huy tốt vai trò tác nhân liên kết kép. Bảng 3.8. Kết quả xác định độ bám dính của sơn tĩnh điện. Thông số xử lý của mẫu nền Lực bám dính (MPa) Mẫu nền 3,04 ± 0,23 H2ZrF6 trong 4 phút 4,20 ± 0,50 H2ZrF6/silan 0,0125 % trong 4 phút 4,85 ± 0,63 H2ZrF6/silan 0,025 % trong 4 phút 6,04 ± 0,59 H2ZrF6/silan 0,05 % trong 4 phút 5,68 ± 0,51 Hai dung dịch 5,83 ± 0,47 H2ZrF6/silan 0,025 % trong 2 phút 3,66 ± 0,34 H2ZrF6/silan 0,025 % trong 3 phút 4,72 ± 0,48 H2ZrF6/silan 0,025 % trong 5 phút 5,92 ± 0,53 H2ZrF6/silan 0,025 % trong 6 phút 5,85 ± 0,49 Silan APS 0,025 % trong 4 phút 4,35 ± 0,23 Phốt phát kẽm 5,87 ± 0,57 Mẫu nền được xử lý trong dung dịch H2ZrF6/silan đều cải thiện độ bám dính hơn so với từng phương pháp riêng lẻ. 18
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2