intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt luận án Tiến sĩ Kỹ thuật điều khiển và tự động hóa: Nhận dạng, điều khiển hệ phi tuyến dùng mô hình nơ rôn phối hợp với thuật toán tiến hóa vi sai

Chia sẻ: Thep Thep | Ngày: | Loại File: PDF | Số trang:27

31
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu của luận án nghiên cứu thuật toán tiến hóa vi sai và đề xuất các phiên bản cải tiến chất lượng của thuật toán. Sau đó, các thuật toán đề xuất được sử dụng để huấn luyện mạng nơ rôn truyền thẳng MLP ứng dụng trong nhận dạng và điều khiển hệ phi tuyến.

Chủ đề:
Lưu

Nội dung Text: Tóm tắt luận án Tiến sĩ Kỹ thuật điều khiển và tự động hóa: Nhận dạng, điều khiển hệ phi tuyến dùng mô hình nơ rôn phối hợp với thuật toán tiến hóa vi sai

  1. ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA NGUYỄN NGỌC SƠN NHẬN DẠNG, ĐIỀU KHIỂN HỆ PHI TUYẾN DÙNG MÔ HÌNH NƠ RÔN PHỐI HỢP VỚI THUẬT TOÁN TIẾN HÓA VI SAI Chuyên ngành: Kỹ thuật điều khiển & tự động hóa Mã số chuyên ngành: 62520216 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT TP. HỒ CHÍ MINH NĂM 2017
  2. Công trình được hoàn thành tại Trường Đại học Bách Khoa – ĐHQG-HCM Người hướng dẫn khoa học 1: PGS.TS. Hồ Phạm Huy Ánh Người hướng dẫn khoa học 2: TS. Trương Đình Châu Phản biện độc lập 1: Phản biện độc lập 2: Phản biện 1: Phản biện 2: Phản biện 3: Luận án sẽ được bảo vệ trước Hội đồng chấm luận án họp tại ............................................................................................................................... ............................................................................................................................... vào lúc giờ ngày tháng năm Có thể tìm hiểu luận án tại thư viện: - Thư viện Khoa họcTổng hợp Tp. HCM - Thư viện Trường Đại học Bách Khoa – ĐHQG-HCM
  3. DANH MỤC CÔNG TRÌNH ĐÃ CÔNG BỐ 1. Nguyen Ngoc Son, Cao Van Kien and Ho Pham Huy Anh, “Adaptive feedforward- PID control of parallel PAM robot based neural network and modified differential evolution algorithm”, Journal: Robotics and Autonomous Systems, (SCIE, IF=1.950), Elsevier publishing, 06/2017. 2. Nguyen Ngoc Son, Ho Huu Vinh and Ho Pham Huy Anh, “Hybrid neural differential evolution approach for nonlinear system identification applied in identification of shape memory alloy actuator”, Asian Journal of Control, (SCIE, IF=1.421), DOI: 10.1002/asjc.1529, 2017. 3. Nguyen Ngoc Son, Ho Pham Huy Anh and Truong Dinh Chau, “Adaptive neural model optimized by modified differential evolution for identifying 5-DOF robot manipulator dynamic system”, Soft Computing (SCIE, IF= 2.472), Springer publishing, vol.20, DOI: 10.1007/s00500-016-2401-x, 2016. 4. Nguyen Ngoc Son, Ho Pham Huy Anh and Nguyen Thanh Nam, “Robot manipulator identification based on adaptive multiple-input and multiple-output neural model optimized by advanced differential evolution algorithm”, International Journal of Advanced Robotic Systems (SCIE, IF= 0.987), SAGE publishing, DOI: 10.1177/1729881416677695, 2016. 5. Nguyen Ngoc Son and Ho Pham Huy Anh, “Adaptive displacement online control of shape memory alloys actuator based on neural networks and hybrid differential evolution algorithm”, Neurocomputing (SCIE, IF=3.317), Elsevier publishing, vol 166, pp. 464-474, 2015. 6. Nguyen Ngoc Son, Ho Pham Huy Anh and Truong Dinh Chau, “Optimization using a hybrid algorithm based on differential evolution and gradient descent method”, 3nd Vietnam Conference on Control and Automation, pp. 534-537, 2015. 7. Nguyễn Ngọc Sơn, Hồ Phạm Huy Ánh, “Thuật toán tiến hóa vi sai tối ưu mô hình nơ rôn ứng dụng để nhận dạng hệ động học phi tuyến đa biến”, Chuyên san Kỹ thuật Điều khiển & Tự động hóa, pp. 14-20, 2014. 8. Nguyen Ngoc Son, Ho Pham Huy Anh and Truong Dinh Chau, “Inverse kinematics solution for robot manipulator based on adaptive MIMO neural network model optimized by hybrid differential evolution algorithm”, IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), pp. 2019-2024, 2014. 9. Nguyen Ngoc Son and Ho Pham Huy Anh, “Adaptive MIMO neural network model optimized by differential evolution algorithm for manipulator kinematic system identification”, International Conference on Automatic Control Theory and Application, Atlantis Press, pp. 23-26, 2014.
  4. MỞ ĐẦU Tính cấp thiết của đề tài Hệ thống phi tuyến với các yếu tố bất định và nhiễu động rất khó để xác định chính xác mô hình toán học của hệ thống. Hơn nữa, sự phát triển không ngừng của khoa học công nghệ làm xuất hiện các đối tượng điều khiển có độ phức tạp ngày càng tăng. Yêu cầu thực tiễn đặt ra là phải điều khiển các hệ thống động ngày càng phức tạp, trong điều kiện các yếu tố bất định ngày càng gia tăng, cũng như yêu cầu chất lượng ngày càng cao. Do đó, các hướng tiếp cận điều khiển thông thường dựa trên mô hình toán học gần như không đáp ứng được yêu cầu. Vì thế, ngày càng có nhiều nghiên cứu tập trung vào các mô hình và các bộ điều khiển ứng dụng kỹ thuật tính toán mềm như logic mờ, mô hình nơ rôn nhân tạo và các thuật toán tiến hóa. Mỗi một kỹ thuật này đều đã được ứng dụng thành công trong lĩnh vực nhận dạng và điều khiển. Tuy nhiên, trong một số trường hợp mà nếu chỉ sử dụng một kỹ thuật trong số đó thì không đủ để đạt được yêu cầu chính xác và hiệu quả. Vì lý do này, thật sự cần thiết phải lai ghép các kỹ thuật tính toán mềm với nhau để tận dụng ưu điểm của từng kỹ thuật riêng lẻ. Trong luận án này, tác giả tập trung vào nghiên cứu sử dụng mô hình nơ rôn phối hợp với thuật toán tiến hóa vi sai ứng dụng trong nhận dạng và điều khiển hệ phi tuyến. Mục đích nghiên cứu Nghiên cứu thuật toán tiến hóa vi sai và đề xuất các phiên bản cải tiến chất lượng của thuật toán. Sau đó, các thuật toán đề xuất được sử dụng để huấn luyện mạng nơ rôn truyền thẳng MLP ứng dụng trong nhận dạng và điều khiển hệ phi tuyến. Đối tượng và phạm vi nghiên cứu • Đối tượng được sử dụng để mô phỏng, đánh giá chất lượng và hiệu quả của các thuật toán, các mô hình đề xuất là: Các hàm toán học như Ackley, Sphere, Rastrigin, Griewank được sử dụng để kiểm chứng chất lượng và hiệu quả của các thuật toán tiến hóa vi sai cải tiến. Bài toán nhận dạng và 1
  5. điều khiển một số hệ phi tuyến SISO và MIMO [41], [164] được sử dụng để kiểm chứng chất lượng và hiệu quả của mô hình đề xuất. • Đối tượng thực nghiệm được sử dụng để kiểm chứng tính hiệu quả của bộ điều khiển đề xuất là đối tượng truyền động dùng hợp kim nhớ hình dạng SMA, tay máy song song PAM 2-DOF và hệ bồn nước liên kết. • Các hệ phi tuyến SISO và MIMO dùng trong mô phỏng và kiểm chứng thực nghiệm phải thuộc lớp các đối tượng phi tuyến có thể điều khiển ổn định và bền vững khi dùng bộ điều khiển PID. Đóng góp mới về mặt khoa học và thực tiễn • Ý nghĩa khoa học - Đã nghiên cứu và phát triển thuật toán tiến hóa vi sai cải tiến HDE bằng cách kết hợp ưu điểm của thuật toán DE cơ bản và thuật toán suy giảm độ dốc GD. Kết quả kiểm chứng trên một số hàm Benchmark toán học đã chứng tỏ chất lượng và hiệu quả của thuật toán đề xuất tốt hơn so với các thuật toán DE cơ bản và thuật toán PSO. Hạn chế của thuật toán HDE là thời gian tính toán tương đối lớn so với thuật toán DE cơ bản. Kết quả của nghiên cứu này được trình bày ở bài báo [6]. - Đã đề xuất thuật toán tiến hóa vi sai cải tiến MDE bằng cách thay đổi cơ chế gây đột biến của thuật toán DE cơ bản, thay đổi cách chọn các thông số điều khiển F và CR và lai ghép với thuật toán suy giảm độ dốc GD. Kết quả kiểm chứng trên một số hàm Benchmark toán học đã chứng tỏ hiệu quả vượt trội cả về tiêu chí chất lượng lời giải và tiêu chí thời gian tính toán của thuật toán MDE so với các thuật toán DE cơ bản, thuật toán PSO và thuật toán HDE. - Đã đề xuất áp dụng các thuật toán HDE, MDE để tối ưu hóa các trọng số mạng nơ rôn MLP nhằm tăng chất lượng huấn luyện mạng. Sau đó, mô hình NNARX tạo thành bằng cách lai ghép mô hình nơ rôn MLP và mô hình hồi quy phi tuyến NARX, các trọng số được tối ưu bởi thuật toán HDE, MDE được phát triển để nhận dạng hệ phi tuyến. Kết quả của nghiên cứu này được trình bày ở bài báo [1]-[5] và [7]-[9]. 2
  6. - Đã đề xuất phát triển bộ điều khiển tích hợp PID-INN dựa trên nguyên tắc thiết kế bộ điều khiển học FEL để điều khiển hệ phi tuyến. Bộ điều khiển PID-INN là sự kết hợp của bộ điều khiển thuận dựa trên mô hình ngược dự báo INN (Inverse NNARX) và bộ điều khiển PID. Kết quả của nghiên cứu này được trình bày ở bài báo [1] và [5]. - Đề xuất cải thiện khả năng học thích nghi của thuật toán BP bằng cách thay đổi cơ chế lựa chọn hệ số học λ. Dựa trên kinh nghiệm chuyên gia, tác giả đã đề xuất xây dựng mô hình mờ Sugeno để tự chỉnh định hệ số học λ trong quá trình cập nhập online các trọng số mô hình ngược INN. Chất lượng điều khiển và khả năng tự chỉnh định hệ số học đã được kiểm chứng trên hệ tay máy song song PAM 2-DOF. Kết quả của nghiên cứu này được trình bày ở bài báo [1]. • Ý nghĩa thực tiễn - Đã áp dụng thành công mô hình dự báo NNARX với các trọng số được tối ưu bởi thuật toán tiến hóa vi sai cải tiến HDE để giải bài toán động học thuận của tay máy, kết quả nghiên cứu này được công bố ở bài báo [4], [9] và giải bài toán động học ngược của tay máy [8]. - Đã áp dụng thành công mô hình NNARX với các trọng số được tối ưu bởi thuật toán tiến hóa vi sai cải tiến MDE để dự báo đặc tính động lực học của mô hình tay máy 5 bậc tự do dựa vào tập dữ liệu vào ra thực nghiệm gồm điện áp cấp cho các động cơ và góc quay của các khớp tay máy. Kết quả nghiên cứu này được công bố ở bài báo [3]. - Đã cài đặt, nhận dạng và điều khiển chính xác thiết bị truyền động dùng hợp kim nhớ hình SMA. Đây là tiền đề cho việc nghiên cứu các ứng dụng của thiết bị truyền động SMA trong tương lai. Kết quả nghiên cứu này được công bố ở bài báo [5]. - Đã cài đặt, nhận dạng và điều khiển chính xác góc quay tay máy song song 2-DOF dùng sợi cơ nhân tạo PAM. Đây là tiền đề cho việc nghiên cứu các ứng dụng chuyên sâu trong lĩnh vực người máy. Kết quả nghiên cứu này được công bố ở bài báo [1]. 3
  7. - Đã khảo sát chất lượng của bộ điều khiển tích hợp PID-INN trên các đối tượng thực nghiệm SISO (thiết bị truyền động SMA), MIMO (hệ bồn nước liên kết, hệ tay máy song song 2-DOF). Với các kết quả thực nghiệm khả quan này, tác giả tin rằng có thể hoàn toàn áp dụng bộ điều khiển đề xuất vào các đối tượng thực tế trong công nghiệp. - Đã xây dựng được quy trình áp dụng mô hình đề xuất để nhận dạng và điều khiển các hệ thống thực nghiệm mà không cần quan tâm nhiều đến mô hình toán học của chúng một cách nhanh chóng và dễ dàng thực hiện. Bố cục của báo cáo Luận án gồm 6 chương. Chương 1 giới thiệu tổng quan về luận án. Chương 2 trình bày thuật toán tiến hóa vi sai cơ bản và các phiên bản cải tiến của thuật toán. Chương 3 trình bày việc sử dụng các thuật toán tiến hóa vi sai cải tiến để tối ưu hóa các trọng số của mạng nơ rôn MLP ứng dụng trong nhận dạng hệ phi tuyến. Chương 4 trình bày bộ điều khiển tích hợp PID-INN và các kết quả mô phỏng kiểm chứng để từ đó đưa ra ưu điểm và giới hạn của bộ điều khiển. Chương 5 thực hiện kiểm chứng bộ điều khiển đề xuất trên một số đối tượng thực nghiệm. Chương 6 tổng kết các kết quả nghiên cứu và hướng phát triển. CHƯƠNG 1 TỔNG QUAN Chương 1 giới thiệu tổng quan về nhận dạng và điều khiển hệ phi tuyến ở mục 1.1; tổng quan về mô hình nơ rôn và thuật toán tiến hóa vi sai ở mục 1.2; mục 1.3 giới thiệu tổng quan tình hình nghiên cứu để từ đó đề ra mục tiêu nghiên cứu trọng tâm của luận án ở mục 1.4. 1.4 Mục tiêu nghiên cứu Mục tiêu nghiên cứu trọng tâm của luận án bao gồm các vấn đề sau: a) Nghiên cứu thuật toán tiến hóa vi sai cơ bản DE, các yếu tố ảnh hưởng đến chất lượng của thuật toán DE. Từ đó đề xuất thuật toán tiến hóa vi sai cải tiến HDE và MDE. Mô phỏng, so sánh và đánh giá chất lượng các thuật toán trên một số hàm Benchmark toán học thông dụng. b) Nghiên cứu áp dụng thuật toán tiến hóa vi sai cải tiến HDE và MDE vào bài toán tối ưu các trọng số mạng nơ rôn truyền thẳng MLP. 4
  8. c) Xây dựng mô hình nhận dạng NNARX bằng cách kết hợp mạng nơ rôn MLP và mô hình hồi quy phi tuyến NARX, các trọng số mô hình NNARX được tối ưu bởi thuật toán HDE và MDE. Mô phỏng, so sánh và đánh giá chất lượng nhận dạng trên một số hệ phi tuyến thông dụng. d) Xây dựng bộ điều khiển tích hợp PID-INN ứng dụng trong điều khiển hệ phi tuyến. Bộ điều khiển tích hợp PID-INN là sự kết hợp của bộ điều khiển thuận dùng mô hình ngược dự báo INN (Inverse Neural NARX) và bộ điều khiển có phản hồi PID. e) Kiểm tra tính hiệu quả của bộ điều khiển tích hợp PID-INN: (i) mô phỏng và so sánh chất lượng với bộ điều khiển PID trên cùng hệ phi tuyến; (ii) kiểm chứng thực nghiệm trên đối tượng thiết bị truyền động dùng hợp kim nhớ hình SMA, tay máy song song PAM 2-DOF và hệ bồn nước liên kết. CHƯƠNG 2 THUẬT TOÁN TIẾN HÓA VI SAI 2.1 Giới thiệu Thuật toán tiến hóa vi sai cơ bản DE được giới thiệu lần đầu dưới dạng một báo cáo kỹ thuật bởi hai nhà khoa học R. Storn và K.V. Price vào năm 1995, là thuật toán tìm kiếm lời giải tối ưu ngẫu nhiên. Thuật toán DE xử lý rất hiệu quả các bài toán tìm cực trị hàm không khả vi, hàm phi tuyến và các hàm đa mục tiêu. 2.2 Thuật toán tiến hóa vi sai cơ bản 2.2.1 Các bước thực hiện thuật toán Lưu đồ thuật toán DE bao gồm các bước khởi tạo, đột biến, Hình 2.1 lai ghép, chọn lọc và hội tụ. Chi tiết các bước thực hiện thuật toán xem ở hình 2.1. Khởi tạo: Giả sử chúng ta muốn tìm kiếm lời giải tối ưu cho một hàm thực với D tham số. Thuật toán DE được bắt đầu bằng cách tạo ra một cách ngẫu nhiên NP vector D chiều. Mỗi một vector này được gọi là một cá thể và được biểu 5
  9. diễn ở (2.1). Trong đó, G = {0,1,.., GEN } là số thế hệ tiến hóa; i = {1,2,..., NP} ; NP là kích thước quần thể. X i ,G = [ x1,i ,G , x2,i ,G ,..., xD,i ,G ] (2.1) Đột biến: Để tạo ra véc-tơ đột biến cho mỗi véc-tơ mục tiêu thứ i từ thế hệ hiện tại, ba véc-tơ mục tiêu khác nhau X r , X r , X r được lấy mẫu ngẫu nhiên từ 1 i i 2 i 3 quần thể ở thế hệ hiện tại, trong đó hệ số đột biến F ∈ [ 0,1] . 1 ( Vi ,G = X r ,G + F X r ,G − X r ,G i i 2 3 i ) (2.3) Lai ghép: Véc-tơ đột biến Vi,G được lai ghép với véc-tơ mục tiêu X i ,G hình thành véc-tơ thử nghiệm Ui ,G = [u1,i ,G ,..., uD,i ,G ] . Thuật toán DE thường sử dụng phương pháp lai ghép nhị thức, mô tả như sau:  v j ,i ,G if (rand j ,i [0,1] ≤ CR)  u j ,i ,G =  (2.4)   x otherwise   j , i , G Trong đó, i = 1, 2,..., NP và j = 1, 2,..., D ; CR được gọi xác suất lai ghép; rand j ,i [0,1] là một số ngẫu nhiên phân bố đều. Chọn lọc: Véc-tơ mục tiêu X i ,G được so sánh với véc-tơ thử nghiệm Ui ,G .Trong ( ) đó, f X là hàm chi phí cực tiểu. Quá trình chọn lọc được mô tả như sau:   ( ) U i ,G if f U i ,G ≤ f X i ,G X i ,G +1 =  ( (2.6) )    X otherwise   i ,G Hội tụ: Quá trình lặp chỉ kết thúc khi một trong các điều kiện sau đây được đáp ứng: khi số thế hệ tiến tới trị cực đại GEN; khi hàm chi phí không thay đổi đáng kể trong quá trình lặp; khi hàm chi phí đạt giá trị mong muốn. 2.2.2 Các biến thể của thuật toán Hầu hết các biến thể của thuật toán DE dựa trên cách tiếp cận để tạo ra các véc- tơ đột biến và các véc-tơ thử nghiệm. Bảng 2.2 mô tả các biến thể khác nhau của thuật toán DE. 2.2.3 Các thông số điều khiển Chất lượng của thuật toán tiến hóa vi sai DE phụ thuộc vào các thông số điều khiển như kích thước quần thể NP, hệ số đột biến F và xác suất lai ghép CR. 6
  10. 2.3 Tổng quan nghiên cứu về thuật toán DE 2.3.1 Các nghiên cứu liên quan Trong phần này, tác giả thực hiện khảo sát các công trình nghiên cứu liên quan đến việc cải thiện chất lượng hội tụ của thuật toán tiến hóa vi sai cơ bản DE để từ đó đưa ra các điểm hạn chế của thuật toán, trình bày ở mục 2.3.2. 2.4 Một số cải tiến của thuật toán DE 2.4.1 Thuật toán lai HDE Tác giả thực hiện lai ghép thuật toán suy giảm độ dốc GD với thuật toán tiến hóa vi sai cơ bản DE được gọi là thuật toán lai HDE (Hybrid Differential Evolution). Đầu tiên, tác giả sử dụng khả năng tìm kiếm toàn cục của thuật toán DE để tìm kiếm không gian tối ưu tiềm năng và sau đó sử dụng khả năng tìm kiếm cục bộ chính xác của thuật toán GD để tăng tốc độ hội tụ. Có nhiều cách khác nhau để áp dụng lai thuật toán GD với thuật toán DE. Ở đây, thuật toán GD được áp dụng ở giai đoạn “lai ghép” để tạo ra véc-tơ thử nghiệm mới trước khi bước vào giai đoạn “chọn lọc”. 2.4.2 Thuật toán MDE Trong phần này, thuật toán MDE được tạo thành bằng cách thay đổi cơ chế gây đột biến, kết hợp với thuật toán suy giảm độ dốc và thay đổi cách chọn các thông số điều khiển của thuật toán. 2.4.2.1 Thay đổi cơ chế gây đột biến Sự thành công của phương pháp tìm kiếm tối ưu thường chịu ảnh hưởng của sự cân bằng hai khía cạnh trái ngược nhau đó là: khám phá toàn cục và khai thác cục bộ. Chẳng hạn như: với cơ chế đột biến rand/1, thuật toán DE sẽ mạnh mẽ trong tìm kiếm toàn cục nhưng hạn chế trong tìm kiếm cục bộ. Ngược lại, với cơ chế đột biến best/1, thuật toán DE rất mạnh mẽ trong tìm kiếm cục bộ nhưng khá ngèo nàn trong tìm kiếm toàn cục. Tác giả sửa đổi cơ chế gây đột biến của thuật toán DE bằng cách ghép hai cơ chế đột biến rand/1 và best/1 với nhau để tạo ra véc-tơ thử nghiệm thay vì chỉ sử dụng một cơ chế đột biến rand/1 hoặc best/1. Việc sửa đổi này nhằm mục đích cân bằng khả năng khám phá toàn cục và khai thác cục bộ của thuật toán tối ưu DE. 7
  11. 2.4.2.2 Kết hợp thuật toán GD với thuật toán DE Tác giả thực hiện kết hợp thuật toán GD với thuật toán DE, trong đó thuật toán GD được áp dụng sau giai đoạn chọn lọc của thuật toán DE và sử dụng các cá thể tốt nhất mà thuật toán DE khám phá được như là các giá trị khởi tạo ban đầu cho tìm kiếm của thuật toán GD. Kỹ thuật này thật sự không mất nhiều thời gian, nhưng nó có thể nâng cao xác suất đạt được lời giải tối ưu cục bộ trong mỗi thế hệ và từ đó nâng cao xác suất đạt được lời giải tối ưu toàn cục trong toàn bộ quá trình tìm kiếm. 2.4.2.3 Lựa chọn thông số điều khiển F, CR Với thuật toán MDE, các giá trị F, CR được lựa chọn ngẫu nhiên và thay đổi sau mỗi vòng lặp. Trong đó, giá trị F thay đổi trong khoảng [0.4,1] và giá trị CR thay đổi trong khoảng [0.7, 1]. Việc lựa chọn này nhằm mục đích tăng khả năng tìm kiếm đa hướng của thuật toán. 2.5 Mô phỏng, so sánh và đánh giá Trong phần này, bài toán xác định điểm cực tiểu toàn cục cho các hàm toán học như Ackley, Sphere, Rastrigin, Griewank được sử dụng để khảo sát chất lượng của thuật toán đề xuất. Chất lượng của thuật toán MDE được so sánh với các thuật toán PSO, DE và HDE. Bảng 2.7 Thống kê kết quả tìm kiếm dùng PSO, DE, HDE và MDE Hàm PSO DE HDE MDE Tốt nhất 1.86e-6 2.03e-6 7.07e-7 3.08e-7 Xấu nhất 0.0020 8.81e-6 9.75e-6 9.82e-6 Sphere Trung bình 5.20e-4 5.68e-6 4.65e-6 6.58e-6 Độ lệch chuẩn 6.73e-4 2.46e-6 3.06e-6 2.94e-6 Tốt nhất 2.08e-4 6.07e-6 4.65e-6 1.82e-6 Xấu nhất 0.0818 0.0031 3.94e-4 9.43e-6 Griewank Trung bình 0.0394 6.56e-4 1.24e-4 5.22e-6 Độ lệch chuẩn 0.0289 9.73e-4 1.27e-4 2.86e-6 Tốt nhất 0.0033 7.56e-5 3.77e-5 5.25e-6 Xấu nhất 0.1404 7.73e-4 2.47e-4 9.26e-6 Ackley Trung bình 0.0291 3.05e-4 1.41e-4 7.08e-6 Độ lệch chuẩn 0.0420 2.19e-4 8.35e-5 1.33e-6 Tốt nhất 5.76e-7 2.66e-5 1.47e-6 2.46e-7 Xấu nhất 0.9960 0.0011 6.20e-4 9.50e-6 Rastrigin Trung bình 0.3624 2.76e-4 7.64e-5 3.80e-6 Độ lệch chuẩn 0.4790 3.35e-4 1.92e-4 3.28e-6 8
  12. Các thông số điều khiển và điều kiện hội tụ của các thuật toán DE, PSO, HDE và MDE được mô tả ở bảng 2.6, trong đó các thông số điều khiển DE và PSO dựa vào kết quả trình bày ở thư viện SwarmOps, [156]. Bảng 2.8 Thống kê thời gian tìm kiếm dùng PSO, DE, HDE và MDE Thời gian tính toán trung bình (giây) Hàm PSO DE HDE MDE Sphere 0.3403 0.1335 0.3731 0.1431 Griewank 0.3828 0.2731 1.0841 0.5763 Ackley 0.4104 0.3129 0.9974 0.3030 Rastrigin 0.2765 0.1894 0.5364 0.2094 Kết quả thống kê về giá trị tối ưu nhất, xấu nhất, trị trung bình và độ lệch chuẩn sau 10 lần lặp quá trình tìm kiếm được mô tả ở bảng 2.7, kết quả thống kê về thời gian tìm kiếm trung bình được trình bày ở bảng 2.8. Dựa trên các kết quả, chúng ta thấy rằng các thuật toán tiến hóa vi sai cải tiến HDE, MDE đã cải thiện chất lượng đáng kể so với các thuật toán DE. Đặc biệt, thuật toán MDE cho thấy được hiệu quả vượt trội cả về tiêu chí thời gian tính toán và chất lượng lời giải so với các thuật toán PSO, DE và HDE. CHƯƠNG 3 THUẬT TOÁN TIẾN HÓA VI SAI HUẤN LUYỆN MẠNG NƠ RÔN MLP ỨNG DỤNG NHẬN DẠNG HỆ PHI TUYẾN 3.1 Giới thiệu Một trong những thuật toán huấn luyện mạng nơ rôn MLP thường được sử dụng là thuật toán lan truyền ngược BP. Tuy nhiên, hạn chế lớn nhất của thuật toán BP là thỉnh thoảng lời giải rơi điểm cực trị cục bộ. Để khắc phục nhược điểm này, các thuật toán tiến hóa xn h EAs được xem như lựa chọn thay thế qn h 1n g (.) o đầy hứa hẹn. Trong chương này, x2 mq yˆ m q h q2 o G (.) 1q m h o thuật toán DE và các phiên bản cải h 12 g (.) 1 m1 x1 q1 o 11 yˆ1 tiến của thuật toán DE được áp dụng h 11 o G (.) m0 1 h vào bài toán tối ưu hóa trọng số của h q0 10 o 10 mạng nơ rôn MLP giúp cải thiện chất Hình 3.1 lượng học của mạng nơ rôn. 9
  13. 3.2 Cấu trúc mạng nơ rôn MLP Mạng nơ rôn truyền thẳng nhiều lớp MLP là mạng nơ rôn có từ hai lớp tế bào xử lý trở lên. Hình 3.1 mô tả cấu trúc mạng nơ rôn truyền thẳng ba lớp với n tế bào nơ rôn ở lớp vào, q tế bào nơ rôn ở lớp ẩn và m tế bào nơ rôn ở lớp ra. 3.3 Các thuật toán huấn luyện mạng Nói chung, quá trình huấn luyện mạng có thể được thực hiện bằng cách cực tiểu hàm sai số EN. Trong đó, tập dữ liệu huấn luyện ZN được xác định Z N = { x (k ), y (k ) k = 1,..., N } . 1 N  T EN (θ , Z N ) = ∑  y (k ) − yˆ (k θ )  y (k ) − yˆ (k θ ) (3.3) 2 N k =1     Mục tiêu huấn luyện mạng là để cực tiểu hàm chi phí EN bằng cách tối ưu giá trị các trọng số θ của mạng nơ rôn MLP. Chi tiết áp dụng thuật toán DE, HDE và MDE để huấn luyện mạng nơ rôn MLP xem ở quyển LATS. 3.4 Ứng dụng nhận dạng hệ phi tuyến 3.4.1 Cấu trúc mô hình nhận dạng Mô hình nhận dạng NNARX trên cơ un yn sở kết hợp mô hình nơ rôn truyền u1 y1 thẳng nhiều lớp MLP với mô hình u1 (t − 1) z −1 yˆ1 u1 (t − nb ) hồi quy phi tuyến NARX. Các trọng z − nb un (t − 1) −+ z −1 un (t − nb) số của mô hình nhận dạng NNARX z − nb y n (t − 1) yˆ n −+ z −1 yn (t − na) được tối ưu bởi các thuật toán HDE z − na y1 (t − 1) z −1 y1 (t − na ) và MDE. Nhờ sự kết hợp này, mô z − na hình NNARX sở hữu khả năng xấp Hình 3.2 xỉ mạnh mẽ của mô hình nơ rôn và khả năng dự báo chính xác của mô hình hồi quy NARX. Cấu trúc mô hình NNARX nhận dạng hệ phi tuyến đa biến được mô tả ở hình 3.2. 3.4.2 Các bước thực hiện nhận dạng hệ thống Nhận dạng hệ thống là xây dựng mô hình của hệ thống dựa trên dữ liệu vào ra quan sát được. Bốn vấn đề cần giải quyết trong các bài toán nhận dạng là thí nghiệm thu thập dữ liệu, chọn cấu trúc mô hình, chọn tiêu chuẩn ước lượng thông số và đánh giá chất lượng mô hình. 10
  14. 3.5 Mô phỏng, so sánh và đánh giá Chất lượng của mô hình nhận dạng NNARX được kiểm chứng trên cùng hệ phi tuyến nhằm mục đích đánh giá chất lượng của thuật toán MDE khi so sánh với các thuật toán khác như BP, DE, HDE và ODE ở bài báo [164]. Hệ phi tuyến được sử dụng để khảo sát chất lượng nhận dạng bao gồm hệ tay máy 1 bậc tự do, hệ bồn nước liên kết và các hệ phi tuyến mô tả ở [164]. 3.6 Nhận xét Kết quả kiểm chứng mô hình nhận dạng NNARX trên các hệ phi tuyến ở trên cho chúng ta thấy rằng: - Chất lượng nhận dạng của mô hình NNARX bị tác động bởi các yếu tố như số nơ rôn lớp ẩn, giá trị khởi tạo và giá trị ngưỡng của các trọng số mạng, kích thước quần thể NP, số thế hệ huấn luyện GEN. Các thông số này được lựa chọn dựa trên các khảo sát và thống kê thông qua kết quả kiểm chứng cho từng bài toán riêng lẻ. - Mô hình NNARX với các trọng số được tối ưu bởi thuật toán tiến hóa vi sai cải tiến đã nhận dạng thành công cho các hệ phi tuyến SISO và MIMO khác nhau. Đây là cơ sở cho việc sử dụng mô hình này để nhận dạng, dự báo đặc tính của các đối tượng phi tuyến trong thực tiễn mà chỉ cần biết trước các thông tin về tín hiệu vào-ra của hệ thống. - Thuật toán HDE và MDE đã cải thiện chất lượng huấn luyện mô hình NNARX ứng dụng trong nhận dạng hệ phi tuyến một cách đáng kể khi so sánh với phiên bản thuật toán tiến hóa vi sai cơ bản DE, BP và ODE. Riêng về tiêu chí thời gian tính toán thì thuật toán MDE cho kết quả vượt trội khi so sánh với thuật toán HDE. CHƯƠNG 4 ĐIỀU KHIỂN DỰA VÀO MÔ HÌNH NƠ RÔN NGƯỢC 4.1 Giới thiệu Phần này giới thiệu về các phương pháp điều khiển thường dùng để kiểm soát các hệ thống phi tuyến với các yếu tố bất định và nhiễu động. Một trong số đó các bộ điều khiển dựa vào mô hình nơ rôn ngược được quan tâm nghiên cứu. Trong trường hợp mô hình nơ rôn ngược không nhận dạng chính xác đặc tính 11
  15. động học ngược của đối tượng hoặc đặc tính động học của hệ thống bị thay đổi trong quá trình làm việc thì kết quả điều khiển sẽ không còn chính xác nữa vì các trọng số mô hình nơ rôn ngược không được hiệu chỉnh trong quá trình điều khiển. Để khắc phục nhược điểm này, việc hiệu chỉnh thích nghi các trọng số của mô hình nơ rôn ngược được nghiên cứu trong chương này. 4.2 Điều khiển thích nghi dựa vào mô hình nơ rôn ngược 4.2.1 Giới thiệu Phần này phân tích các điểm hạn chế của bộ điều khiển thích nghi trực tiếp và gián tiếp dùng mô hình mạng nơ rôn. 4.2.2 Bộ điều khiển FEL Bộ điều khiển FEL (Feedback Error Learning) được đề xuất lần đầu bởi Kawato có cấu trúc được mô tả như ở hình 4.4. Trong sơ đồ điều khiển này, bộ điều khiển FEL bao gồm 2 thành phần: Bộ điều khiển thuận FFC được thiết kế dựa trên mô hình ngược của đối tượng. Kawato đã sử dụng mạng nơ rôn MLP để nhận dạng mô hình ngược đối tượng; Tín hiệu ra của bộ điều khiển CFC được xem như là sai số học và được sử dụng để huấn luyện bộ u ff điều khiển thuận. Hơn nữa, bộ điều khiển CFC còn đóng vai yref ey u y u fb trò bù tín hiệu điều khiển do nhiễu tác động lên đối tượng. Hình 4.4 Sơ đồ khối bộ điều khiển FEL Trong điều khiển FEL, bộ điều khiển CFC có vai trò đảm bảo ổn định tiệm cận toàn cục của toàn bộ hệ thống. Thông thường bộ điều khiển CFC thường sử dụng là bộ điều khiển PD hoặc PID. Phiên bản đầu tiên về bộ điều khiển FEL của Kawato cho chất lượng điều khiển khá thú vị, nhưng các đặc điểm bên dưới làm cho bộ điều khiển FEL có một số hạn chế nhất định như: - Khả năng xấp xỉ chính xác của mạng nơ rôn MLP. - Khả năng hội tụ chậm và dễ dàng rơi vào điểm cực trị cục bộ của thuật toán lan truyền ngược BP trong nhận dạng và điều khiển thích nghi. 12
  16. Để khắc phục các nhược điểm của bộ điều khiển FEL, các nghiên cứu khác nhau đã đề xuất một số phương án như: Kawato và các cộng sự [179], Er và các cộng sự [180] đã đề xuất thêm tín hiệu sai số giữa tín hiệu đặt và tín hiệu mô hình thực như 1 ngõ vào của bộ xấp xỉ ngược dùng mạng nơ rôn. Thay đổi cấu trúc mô hình xấp xỉ dùng mạng nơ rôn MLP bằng các mô hình xấp xỉ khác như dùng mô hình mờ loại 2 [174], [181]; dùng mô hình mờ loại 1 [182-183]; dùng mô hình CMAC [184-185]; dùng mô hình B-Spline Network [186]; dùng các thuật toán phỏng sinh học [187] để tăng khả năng xấp xỉ và tính thích nghi trong quá trình điều khiển. 4.2.3 Bộ điều khiển tích hợp PID-INN Theo hướng nghiên cứu này, tác giả đề xuất xây dựng bộ điều khiển tích hợp dựa vào mô hình nơ rôn ngược dự báo và bộ điều khiển PID, với tên gọi PID- INN. Bộ điều khiển PID-INN về cơ bản dựa trên nguyên tắc thiết kế bộ điều khiển FEL và có một số thay đổi về cấu trúc mô hình xấp xỉ ngược, tín hiệu ngõ vào mô hình xấp xỉ. Bộ điều khiển PID-INN có sơ đồ khối trình bày ở hình 4.5. Trong đó, bộ điều khiển thuận dựa trên mô hình ngược dự báo MDE-INN được ghép với bộ điều khiển PID. Sau đó, tín hiệu ra của bộ u INN eu điều khiển PID được xem như là yref u PID sai số học và được sử dụng để ey u y chỉnh định các trọng số của mô hình ngược dự báo MDE-INN. Hình 4.5 4.2.3.1 Nhận dạng mô hình ngược dự báo của hệ phi tuyến Mô hình dự báo NNARX với các trọng số được tối ưu bởi thuật toán MDE được sử dụng để nhận dạng trước đặc tính động học ngược của đối tượng. 4.2.3.2 Cập nhập trọng số của bộ điều khiển thuận Mô hình ngược dự báo MDE-INN sau khi nhận dạng offline được sử dụng để khởi tạo các trọng số của bộ điều khiển thuận. Luật điều khiển đối tượng phi tuyến được mô tả bởi phương trình như sau: u = uPID + uINN (4.4) 13
  17. Tín hiệu uINN của mô hình ngược MDE-INN được cập nhập trong suốt quá trình điều khiển bởi thuật toán lan truyền ngược BP sau mỗi chu kỳ điều khiển để 2 2 cực tiểu hàm sai số E = 1 2 (eu ) = 1 2 (u − uINN ) . Các trọng số của mô hình ngược INN được cập nhập, trong đó λ > 0 là tốc độ học: ∂E ∆w = w ( new) − w ( old ) = −λ (4.6) ∂w Quá trình học chỉ kết thúc khi sai số E = 0 → uPID = 0 , lúc này bộ điều khiển thuận dựa vào mô hình INN đóng vai trò chính trong điều khiển đối tượng. 4.2.3.3 Phân tích ổn định của bộ điều khiển Các phân tích ổn định của bộ điều khiển được thảo luận ở [188-190] tập trung vào hệ tuyến tính. Dựa vào tiêu chuẩn ổn định Lyapunov, các nghiên cứu này cung cấp cách lựa chọn các tham số bộ điều khiển phản hồi PID để hệ thống đảm bảo ổn định và đã đề xuất mối liên hệ kd > k p là điều kiện cần thiết để hệ 2 thống ổn định tiệm cận cho lớp hệ thống SISO. Với các hệ phi tuyến, việc lựa chọn các tham số bộ điều khiển PID để hệ thống ổn định có thể sử dụng các phương pháp thực nghiệm như thử sai, Ziegler-Nichols, Chien-Hrones-Reswick hoặc dùng thuật toán tối ưu để tự chỉnh tham số bộ điều khiển PID. Tóm lại, tính ổn định và hiệu quả của bộ điều khiển PID-INN phụ thuộc trực tiếp vào việc chọn lựa các tham số bộ điều khiển PID. Tùy vào từng hệ phi tuyến mà ta có các phương pháp khác nhau để thiết kế bộ điều khiển PID. 4.3 Mô phỏng, so sánh và đánh giá Bộ điều khiển PID-INN được mô phỏng kiểm chứng trên hệ tay máy 1 bậc tự do, ở mục 4.3.1; hệ phi tuyến MIMO [164], ở mục 4.3.2; hệ bồn nước liên kết, ở mục 4.3.3. 4.3.4 Nhận xét Qua kết quả mô phỏng, chúng ta thấy rằng bộ điều khiển PID-INN có các ưu điểm nổi bật như sau: - Bộ điều khiển PID-INN cho chất lượng điều khiển tốt, ngay cả khi hệ phi tuyến bị tác động của các yếu tố như nhiễu đo lường, tải trọng thay đổi thì nhờ khả năng thích nghi mạnh mẽ mà bộ điều khiển PID-INN vẫn đảm bảo chất lượng điều khiển. 14
  18. - Tính thích nghi của bộ điều khiển PID-INN hoàn toàn dựa vào tín hiệu huấn luyện là tín hiệu ra của thành phần điều khiển PID mà không cần bất kỳ thông tin Jacobian của đối tượng trong điều chỉnh các thông số bộ điều khiển. Điều này sẽ làm giảm thời gian tính toán cho các ứng dụng thực tiễn. Hơn nữa, chúng ta có thể dễ dàng áp dụng bộ điều khiển PID-INN cho các hệ phi tuyến bất kỳ mà không cần quan tâm nhiều đến các mô tả toán học đặc tính động học của đối tượng. Ngoài các điểm mạnh trên, bộ điều khiển PID-INN cũng có một số hạn chế cần phải quan tâm, cụ thể như sau: - Chất lượng và tính ổn định của bộ điều khiển PID-INN phụ thuộc nhiều vào thành phần điều khiển PID. Do đó, việc xác định các tham số bộ điều khiển PID phù hợp đóng vai trò quan trọng trong việc nâng cao chất lượng bộ điều khiển PID-INN. Tuy nhiên, trong thực tế với các hệ phi tuyến khác nhau thì việc xác định các tham số PID không giống nhau, hơn nữa với cùng một hệ phi tuyến thì tại các điểm làm việc khác nhau các tham số PID cũng khác nhau. Do đó, không có một quy tắc chung để xác định các tham số PID cho các hệ phi tuyến mà phụ thuộc nhiều vào kinh nghiệm chuyên gia. - Khả năng thích nghi của bộ điều khiển PID-INN khá nhạy với hệ số học λ của thuật toán BP trong quá trình học online của bộ điều khiển. Không có phương pháp nào khác, bên cạnh phương pháp thử-sai, được biết đến với việc xác định hệ số học để đảm bảo các trọng số hội tụ đến giá trị đúng. CHƯƠNG 5 KIỂM CHỨNG THỰC NGHIỆM 5.1 Điều khiển vị trí hệ truyền động SMA 5.1.1 Giới thiệu Hợp kim nhớ hình dạng SMA (Shape Memory Alloy) là vật liệu kim loại có khả năng phục hồi hình dạng ban đầu của chúng. Ứng dụng công nghiệp đầu tiên của hợp kim nhớ hình dạng SMA được bắt đầu với việc chế tạo khớp nối co nhiệt CryoFit, được nghiên cứu chế tạo năm 1969 để nối các đường ống của hệ thống thủy lực của máy bay tiêm kích F14 [195]. Một số ứng dụng tiềm năng khác có thể kể đến như lĩnh vực công nghiệp ô tô [197], lĩnh vực y tế 15
  19. [196], lĩnh vực hàng không [198], trong xây dựng có thể làm khuôn đúc [199]. Ngoài ra, SMA với hiệu ứng nhớ hình dạng đã tạo ra lực và chuyển động khi bị đốt nóng. Nhờ đó hợp kim nhớ hình SMA còn được xem như một lựa chọn tiềm năng cho thiết bị truyền động, cung cấp một lựa chọn thú vị thay thế cho các thiết bị truyền động thông thường như động cơ điện, khí nén và thủy lực. Thiết bị truyền động dùng hợp kim nhớ hình Nitinol SMA có các ưu điểm như hiệu suất làm việc cao, hoạt động không gây ồn, đơn giản do có thể đốt nóng bằng điện và dễ dàng sử dụng. Hiện nay, thiết bị truyền động SMA đã được sử dụng khá nhiều trong các loại robot công nghiệp như Robotic finger [200], Micro-gripper [201], Flying robot [Festo,2013], Humanoid robot [202]. 5.1.2 Mô hình thực nghiệm Trong phần này thiết bị truyền động dùng Nitinol SMA được thiết lập. Trong đó, sơ đồ khối mô hình thực nghiệm hệ truyền động được mô tả ở hình 5.5. Hình 5.5 Sơ đồ khối mô hình thực nghiệm 5.1.3 Mô hình ngược dự báo Cấu trúc mô hình MDE-INN được đề xuất để dự báo đặc tính động học ngược của hệ truyền động SMA, được mô tả ở v( k ) d (k + 1) hình 5.8. Quá trình nhận dạng mô hình dự báo xem chi tiết ở quyển luận án. Mô hình z −1 MDE-INN được xác định là một mạng nơ vˆ ( k ) z −1 rôn truyền thẳng 3 lớp, 5 tế bào nơ rôn lớp z −2 ẩn, các trọng số mạng mô tả ở bảng 5.2. Hình 5.8 5.1.4 Kết quả thực nghiệm Chương trình điều khiển thực nghiệm được viết trên Matlab, hình 5.11. Trong đó, mô hình MDE-INN được sử dụng để dự báo đặc tính động học ngược của thiết bị truyền động SMA với các trọng số được mô tả bảng 5.2 được sử dụng 16
  20. để khởi tạo các trọng số ban đầu của bộ điều khiển thuận. Sau đó, các trọng số của bộ điều khiển thuận được cập nhập online bởi thuật toán BP với tốc độ học λ = 0.0001 qua từng chu kỳ điều khiển. Các tham số của bộ điều khiển PID được chọn lựa bởi phương pháp thử sai Kp =7 ; Ki = 0 và Kd = 7 . Hình 5.11 Chương trình điều khiển hệ truyền động SMA displacement[mm] 4 Hình 5.12 mô tả chất lượng điều khiển 2 với tín hiệu tham chiếu hình sin và so d-ref d PID d PID-INN 0 0 50 100 150 200 sánh chất lượng với bộ điều khiển PID. 1.5 1 e PID e PID-INN error 0.5 Dựa vào kết quả điều khiển, chúng ta 0 -0.5 0 50 100 150 200 thấy rằng bộ điều khiển PID-INN cải 6 voltage[V] 4 thiện chất lượng đáng kể so với bộ điều 2 u PID u PID-INN khiển PID. Hình 5.13 mô tả tín hiệu ra 0 0 50 100 150 200 time[sec] của bộ điều khiển PID-INN và biến Hình 5.12 thiên các trọng số của bộ điều khiển 6 u pid u inn u PID-INN voltage [V] 4 PID-INN trong quá trình điều khiển thiết 2 0 bị truyền động SMA. Trong đó, tín hiệu -2 0 20 40 60 80 100 120 -3 140 160 180 200 x 10 điều khiển của PID-INN là tổng tín hiệu 0.05 5 dv/dt dw/dt từ bộ điều khiển PID và bộ điều khiển 0 0 thuận INN; tín hiệu ra của bộ điều khiển -0.05 -5 0 50 100 150 200 0 50 100 150 200 time [sec] time [sec] PID được sử dụng để huấn luyện online Hình 5.13 bộ điều khiển thuận, quá trình huấn luyện chỉ kết thúc khi upid = 0 .Tương tự, thực hiện thay đổi tín hiệu đặt sang dạng tam giác, dạng hình thang; thay đổi tải trọng bằng cách tăng độ cứng của lò xo Bias Spring; tạo nhiễu ngoài để khảo sát đáp ứng của bộ điều khiển PID-INN. Qua các kết quả thực nghiệm, tác giả 17
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2