intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt Luận án Tiến sĩ Kỹ thuật môi trường: Nghiên cứu chế tạo và sử dụng vật liệu nano bạc, đồng, sắt để xử lý vi khuẩn lam độc trong thủy vực nước ngọt

Chia sẻ: Lê Thị Hồng Nhung | Ngày: | Loại File: PDF | Số trang:28

64
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu nghiên cứu của luận án: Nghiên cứu, chế tạo và xác định tính chất, đặc trưng của 03 vật liệu nano (bạc, đồng và sắt) và đánh giá khả năng diệt VKL của vật liệu nano trong thủy vực nước ngọt. Mời các bạn tham khảo!

Chủ đề:
Lưu

Nội dung Text: Tóm tắt Luận án Tiến sĩ Kỹ thuật môi trường: Nghiên cứu chế tạo và sử dụng vật liệu nano bạc, đồng, sắt để xử lý vi khuẩn lam độc trong thủy vực nước ngọt

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ --------------------------- TRẦN THỊ THU HƢƠNG NGHIÊN CỨU CHẾ TẠO VÀ SỬ DỤNG VẬT LIỆU NANO BẠC, ĐỒNG, SẮT ĐỂ XỬ LÝ VI KHUẨN LAM ĐỘC TRONG THỦY VỰC NƢỚC NGỌT Chuyên ngành : Kỹ thuật môi trƣờng Mã số : 9 52 03 20 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT MÔI TRƢỜNG Hà Nội - 2018
  2. Công trình được hoàn thành tại Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam Người hướng dẫn khoa học: 1. PGS. TS. Dương Thị Thủy - Viện Công nghệ môi trường 2. TS. Hà Phương Thư - Viện Khoa học Vật liệu Phản biện 1: Phản biện 2: Phản biện 3: Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Học viện, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi … giờ …’, ngày … tháng … năm 201…. Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam
  3. 1 GIỚI THIỆU LUẬN ÁN 1. Tính cấp thiết của luận án Trong những gần đây, ô nhiễm môi trường đất, nước và không khí đã trở thành vấn đề hết sức nan giải không chỉ ở Việt Nam mà còn diễn ra ở nhiều nơi trên thế giới, trong đó ô nhiễm môi trường nước là trầm trọng hơn cả. “Nở hoa nước” là hiện tượng phát triển bùng phát của vi tảo, đặc biệt là vi khuẩn lam (VKL) tại các thủy vực nước ngọt và thường gây ra những tác động xấu lên môi trường như làm đục nước, tăng pH, giảm hàm lượng oxy hòa tan do quá trình hô hấp hoặc phân hủy sinh khối tảo và đặc biệt là việc phần lớn VKL sản sinh ra độc tố VKL có độc tính cao. Ngăn ngừa và giảm thiểu phát triển mạnh mẽ của VKL là vấn đề môi trường quan trọng cần được quan tâm. Nhiều phương pháp đã được sử dụng như hóa học, cơ học, sinh học… song hiệu quả không triệt để và khá tốn kém, gây ảnh hưởng tới hệ sinh thái và khó tiến hành, đặc biệt là trong những thủy vực lớn. Chính vì vậy việc tìm kiếm, phát triển những giải pháp mới có hiệu quả, không gây ô nhiễm thứ cấp và thân thiện với môi trường ngày càng được chú trọng nghiên cứu. Công nghệ nano là công nghệ liên quan đến việc chế tạo và ứng dụng các vật liệu có kích thước nano mét (nm). Ở kích thước nano, vật liệu có nhiều đặc tính nổi trội như có kích thước nhỏ hơn 100 nm, có diện tích tiếp xúc bề mặt lớn so với khối lượng, tạo ra ảnh hưởng của bề mặt Plasmon cộng hưởng, khả năng bám dính tốt và được ứng dụng trong nhiều ngành nghề khác nhau như y tế, mỹ phẩm, điện tử, xúc tác hoá học, môi trường... Vì vậy luận án được thực hiện với đề tài: “Nghiên cứu chế tạo và sử dụng vật liệu nano bạc, đồng, sắt để xử lý vi khuẩn lam độc trong thủy vực nước ngọt” đã được lựa chọn thực hiện. 2. Mục tiêu nghiên cứu của luận án Nghiên cứu, chế tạo và xác định tính chất, đặc trưng của 03 vật liệu nano (bạc, đồng và sắt) và đánh giá khả năng diệt VKL của vật liệu nano trong thủy vực nước ngọt. 3. Các nội dung nghiên cứu chính của luận án
  4. 2 - Chế tạo và xác định đặc trưng, tính chất của ba loại vật liệu nano bạc, đồng và sắt. - Đánh giá khả năng diệt và ức chế VKL của ba loại vật liệu. - Đánh giá tính an toàn của vật liệu và các chế phẩm ứng dụng. - Thực nghiệm ứng dụng của vật liệu ở quy mô phòng thí nghiệm với mẫu nước hồ Tiền. Chƣơng 1. Tổng quan nghiên cứu 1.1. Tổng quan về vật liệu nano 1.2. Tổng quan về vi khuẩn lam và hiện tƣợng phú dƣỡng 1.3. Tổng quan về các biện pháp xử lý ô nhiễm tảo độc Chƣơng 2. Các phƣơng pháp nghiên cứu và thực nghiệm 2.1. Đối tƣợng nghiên cứu 2.2. Hóa chất, thiết bị sử dụng trong nghiên cứu 2.3. Các phƣơng pháp tổng hợp vật liệu 2.3.1. Tổng hợp vật liệu nano bạc bằng phương pháp khử hóa học Vật liệu nano bạc được tổng hợp bằng phương pháp khử hóa học, ion Ag+ trong dung dịch muối bạc được khử thành Ag0 nhờ tác nhân khử NaBH4. 2.3.2. Tổng hợp vật liệu nano đồng bằng phương pháp khử hóa học Vật liệu nano đồng được tổng hợp bằng phương pháp khử hóa học, khử ion Cu2+ từ muối đồng thành Cu0 nhờ tác nhân khử NaBH4. 2.3.3. Tổng hợp vật liệu nano sắt từ bằng phương pháp đồng kết tủa Vật liệu nano sắt từ Fe3O4 được tổng hợp bằng phương pháp đồng kết tủa của muối Fe2+ và Fe3+ bởi NH4OH. 2.4. Các phƣơng pháp xác định đặc trƣng cấu trúc vật liệu Hình thái học của ba loại vật liệu nano được xác định bằng một số phương pháp như kính hiển vi truyền qua (TEM), kính hiển vi điện tử quét (SEM), phổ hồng ngoại (IR), phổ nhiễu xạ tia
  5. 3 X (XRD), phổ tử ngoại khả kiến (UV-VIS) và phổ tán sắc năng lượng (EDX). 2.5. Các phƣơng pháp bố trí thí nghiệm Các phương pháp thí nghiệm như nuôi cấy tảo, lựa chọn vật liệu nano, đánh giá độc tính của vật liệu, đánh giá sự ảnh hưởng của các loại kích thước vật liệu, đánh giá tính an toàn của vật liệu nano lên vi tảo và thí nghiệm với nước hồ Tiền đã được bố trí. 2.6. Các phƣơng pháp đánh giá ảnh hƣởng của vật liệu nano đến sinh trƣởng của vi tảo Để đánh giá ảnh hưởng của vật liệu nano đến sinh trưởng của vi tảo, các phương pháp sau đã được sử dụng: OD, chla, mật độ tế bào, các phương pháp phân tích một số chỉ tiêu chất lượng môi trường (NH4+, PO43-) và phương pháp quan sát bề mặt tế bào và cắt lát mỏng tế bào. 2.7. Phƣơng pháp thống kê, xử lý số liệu Chƣơng 3. Kết quả và thảo luận 3.1. Tổng hợp vật liệu nano 3.3.1. Tổng hợp vật liệu nano bạc bằng phương pháp khử hóa học 3.1.1.1. Ảnh hưởng của tỷ lệ nồng độ NaBH4/Ag+ Phổ đo UV-VIS (Hình 3.1) cho thấy dung dịch nano bạc hấp thụ ở bước sóng trong khoảng 400 nm và hiệu suất hình thành các hạt nano bạc đạt cực đại ở tỷ lệ 1:2. Kết quả chụp TEM (hình 3.2), cho thấy hạt nano bạc thu được có kích thước nhỏ hơn 20 nm. M1 M2 M3 M4 M5 Hình 3.1. Phổ UV-VIS các Hình 3.2. Ảnh TEM của nano mẫu nano Ag phụ thuộc tỷ lệ Ag phụ thuộc vào tỷ lệ nồng nồng độ NaBH4/Ag+ độ BH4-/Ag+
  6. 4 3.1.1.2. Ảnh hưởng của nồng độ chất ổn định chitosan Kết quả đo UV-VIS trên hình 3.4 cho thấy dung dịch nano Ag điều chế được hấp thụ ở bước sóng 402-411 nm. Ảnh TEM của các mẫu nano bạc phụ thuộc vào nồng độ chitosan được thể hiện trên hình 3.5. Nồng độ chitosan tối ưu cho quá trình điều chế dung dịch keo nano bạc được chọn là 300 mg/L. M6 M7 M8 M9 M1 0 Hình 3.4. Phổ UV-VIS của Hình 3.5. Ảnh TEM của nano nano bạc phụ thuộc vào nồng bạc phụ thuộc vào nồng độ độ chitosan chitosan 3.1.1.3. Ảnh hưởng của nồng độ axit citric Kết quả đo UV-VIS (Hình 3.7) cho thấy dung dịch nano bạc được điều chế hấp thụ bước sóng trong khoảng 400-412 nm. Với tỷ lệ [Citric]/[Ag+] = 3,0 các hạt nano bạc thu được có kích thước nhỏ, đồng đều nhất và đều nhỏ hơn 20 nm, kết quả đo TEM được thể hiện trên hình 3.8. M1 M12 M1 1 3 M14 M15 M1 6 Hình 3.7. Phổ UV-VIS của Hình 3.8. Ảnh TEM của nano nano bạc phụ thuộc vào nồng Ag phụ thuộc nồng độ độ axit citric [Citric]/[Ag+]
  7. 5 Hình 3.9. Ảnh HR-TEM của vật liệu nano Ag khảo sát ở tỷ lệ tối ưu Cấu trúc hạt nano bạc ở tỷ lệ lựa chọn có cấu trúc tinh thể lục giác điển hình của hạt nano kim loại. Ảnh HR-TEM ở hình 3.9 cho thấy các tinh thể có cấu trúc mạng lập phương tâm mặt Fcc. Vật liệu nano bạc ở điều kiện tỷ lệ nồng độ chất khử NaBH4/Ag+ là 1/4, tỷ lệ [Citric]/[Ag+] = 3,0 và nồng độ chitosan là 300 mg/L được tổng hợp để thử nghiệm ảnh hưởng của vật liệu đến sinh trưởng của các đối tượng nghiên cứu trong luận án. 3.1.2. Chế tạo vật liệu nano đồng bằng phương pháp khử hóa học 3.1.2.1. Ảnh hưởng của tỉ lệ nồng độ NaBH4/Cu2+ Giản đồ XRD treen hinhf 3.19 xuất hiện cả ba đỉnh có cường độ hoàn toàn trùng khớp với phổ chuẩn của kim loại đồng với các mặt (111), (200), (220) tương ứng với góc 2θ = 43,3; 50,4 và 74,00 thuộc mạng Bravais trong cấu trúc lập phương tâm mặt Fcc của kim loại đồng. M1 M2 M3 M4 M5 Hình 3.10. Phổ XRD của vật Hình 3.11. Ảnh SEM của các liệu nano Cu khảo sát theo tỉ mẫu nano đồng theo tỷ lệ lệ NaBH4/Cu 2+ NaBH4/Cu2+ Kết quả đo SEM (Hình 3.11) của vật liệu được thực hiện để xác định mức độ phân bố của hạt Cu và đo TEM để xác định kích thước hạt nano Cu (Hình 3.12).
  8. 6 M1 M2 M M4 M5 3 Hình 3.12. Ảnh TEM của các Hình 3.13. Phổ XRD của vật mẫu nano đồng theo tỷ lệ liệu nano Cu khảo sát theo NaBH4/Cu2+ nồng độ Cu0 Kết quả đo TEM cho thấy, khi tỉ lệ nồng độ NaBH4/Cu2+ = 1 : 1 và 1,5: 1 thì các hạt nano Cu tạo ra có kích thước > 50 nm. Các hạt phân bố khá đồng đều với kích thước khoảng 20- 50 nm khi tỉ lệ NaBH4/Cu2+ = 2 : 1. Các hạt nano có hiện tượng co cụm lại thành từng đám, phân bố không đồng đều, kích thước > 50 nm khi tỉ lệ NaBH4/Cu2+ = 3:1 và 4:1, phù hợp với kết quả đo SEM. Để đáp ứng mục tiêu của luận án mẫu M3 (tỉ lệ NaBH4/Cu2+ = 2:1) đã được chọn làm mẫu đại diện. 3.1.2.2. Ảnh hưởng của nồng độ Cu0 Giản đồ XRD ở hình 3.1.3 của các mẫu nano Cu đều xuất hiện các pic đặc trưng của vật liệu Cu. Các pic đặc trưng trên giản đồ có cường độ rõ nét và độ bán rộng của đỉnh hẹp. Ngoài ra, trên giản đồ XRD của vật liệu còn thấy xuất hiện các pic đặc trưng của tinh thể CuO, Cu2O. N1 N2 N1 N2 N3 N4 N5 N3 N4 N5 Hình 3.14. Ảnh SEM của vật Hình 3.15. Ảnh TEM của vật liệu nano Cu khảo sát theo liệu nano Cu khảo sát theo nồng độ Cu0 nồng độ Cu0
  9. 7 Kết quả đo SEM (Hình 3.14) vật liệu cho thấy, các hạt nano Cu tạo thành phân bố với kích thước không đồng đều khi nồng độ của Cu0 tăng. Khi nồng độ Cu0 = 2g/L, các hạt nano đồng phân bố khá đồng đều với kích thước trong khoảng 20-40 nm. Khi tăng nồng độ Cu0 = 3; 4g/L thì các hạt đồng tạo ra bắt đầu có hiện tượng co cụm lại và tạo ra các hạt có kích thước > 50 nm, phân bố không đồng đều khi nồng độ Cu0 = 6; 7g/L, phù hợp với kết quả đo TEM (Hình 3.15). Cấu trúc vật liệu nano đồng ở tỷ lệ được lựa chọn cho thấy các hạt nano Cu hình thành có bề mặt khá đồng nhất (ảnh SEM, hình 3.16a), kích thước đồng đều trong khoảng 30 - 40 nm (ảnh TEM, hình 3.16b) và có cấu trúc lập phương tâm mặt Fcc với các đỉnh nhiễu xạ của các mặt phẳng mạng (111), (200) và (220) tương ứng với góc 2θ = 43,3; 50,4 và 74,00 với cường độ lớn (phổ XRD, hình 3.16c). Mẫu vật liệu này phù hợp với mục tiêu của luận án và được lựa chọn cho các thử nghiệm tiếp theo. 3000 a) Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Cu-51 b) 2900 2800 2700 2600 2500 2400 2300 2200 d=2.089 2100 2000 1900 1800 1700 Lin (Cps) 1600 1500 1400 1300 1200 1100 d=1.808 1000 900 800 700 d=1.278 600 500 400 300 200 100 0 1 1) c) 10 20 30 40 2-Theta - Scale 50 60 70 File: ThuyVCNMT Cu-51.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 79.990 ° - Step: 0.030 ° - Step time: 0.3 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 06/10/2016 3:54:39 P Left Angle: 42.490 ° - Right Angle: 44.350 ° - Obs. Max: 43.281 ° - d (Obs. Max): 2.089 - Max Int.: 1890 Cps - Net Height: 1668 Cps - FWHM: 0.231 ° - Raw Area: 852.6 Cps x deg. - Net Area: 440.4 Cps x deg. 80 Hình 3.16. Đặc trưng chi tiết mẫu vật liệu nano đồng N1 (a) 01-085-1326 (C) - Copper - Cu - Y: 16.13 % - d x by: 1. - WL: 1.5406 - Cubic - a 3.61500 - b 3.61500 - c 3.61500 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - 4 - 47.2416 - I/Ic PDF 8.9 - F4 Ảnh SEM, (b) Ảnh TEM, (c) Giản đồ XRD 3.1.3. Chế tạo vật liệu nano sắt từ bằng phương pháp đồng kết tủa 3.1.3.1. Ảnh hưởng của nồng độ chất ổn định CMC Kết quả khảo sát hình thái, kích thước và sự phân tán vật liệu ở tỷ lệ giữa chất ổn định (CMC) và tiền chất (Fe3O4) lần lượt là 1/1; 2/1; 3/1; 4/1 và 1/2 bằng phương pháp SEM và TEM thể hiện trên hình 3.17 và 3.18. Kết quả chụp SEM cho
  10. 8 thấy, khi nồng độ CMC trong dung dịch cao thì các hạt nano sắt thu được không đồng đều và kích thước hạt lớn, sự tập hợp giữa các hạt nano dễ dàng xảy ra. Tại nồng độ CMC/Fe3O4 là 2/1 thì các hạt nano sắt thu được có kích thước đồng đều nhất và đều nhỏ hơn 20 nm. Hình 3.17. Ảnh SEM cấu trúc Hình 3.18. Ảnh TEM cấu trúc vật liệu nano sắt từ khảo sát vật liệu nano sắt từ khảo sát theo tỷ lệ CMC/ Fe3O4 theo tỷ lệ CMC/Fe3O4 Kết quả chụp TEM cho thấy kích thước hạt nano thay đổi rất khác nhau khi thay đổi nồng độ CMC. Khi tỷ lệ Fe3O4/CMC = 2:1 các hạt nano sắt thu được có kích thước nhỏ, đồng đều nhất và nhỏ hơn 20nm, nằm trong giới hạn kích thước siêu thuận từ. Vì vậy mẫu vật liệu có tỷ lệ Fe3O4/CMC = 2:1 (ký hiệu mẫu FC21) được lựa chọn để khảo sát các yếu tố tiếp theo. 3.1.3.2. Kết quả đo hồng ngoại của vật liệu Hình 3.19. Phổ hồng ngoại của mẫu vật liệu Fe3O4 (a), Hình 3.20. Kết quả đo từ độ CMC (b), FC21 (c) và tổng của vật liệu FC21 hợp phổ của ba mẫu (d)
  11. 9 Quan sát hình 3.19 ta thấy trên phổ IR của nano sắt từ về cơ bản có các đỉnh giống các đỉnh của CMC và Fe3O4, điều này chứng tỏ điều kiện tổng hợp vật liệu không phá vỡ trúc của CMC. Do đó, phương pháp đồng kết tủa để tổng hợp vật liệu phù hợp về độ tinh sạch cũng như hiệu suất. 3.1.3.3. Kết quả đo từ độ của vật liệu Kết quả đo từ độ bão hòa thể hiện trên hình 3.20 cho thấy các hạt nano sắt đều ở dạng siêu thuận từ. Từ độ bão hòa của Fe3O4 và mẫu FC21 lần lượt là 68 emu/g và 49 emu/g tương ứng với hàm lượng pha từ trong vật liệu. Kết quả chứng tỏ sự tương tác bề mặt của pha từ với polyme làm giảm từ độ bão hòa, phù hợp với kết quả phân tích TEM. 3.2. Đánh giá khả năng ức chế sinh trưởng và diệt vi tảo của các loại vật liệu nano đã tổng hợp 3.2.1. Nghiên cứu lựa chọn nồng độ của ba loại vật liệu nano Bảng 3.1. Kết quả sàng lọc tác dụng diệt VKL M. aeruginosa KG của các loại vật liệu nano chế tạo Nồng độ thử Tác dụng TT Mẫu nghiệm (mg/L) diệt VKL 1 Vật liệu nano Ag 3, 5 và 10 +++ 3 Vật liệu nano Cu 3, 5 và 10 +++ Vật liệu nano 5, 10, 100, 150 và 5 - Fe3O4 200 6 ĐC 0 - Ghi chú: +++: tác dụng ức chế rất mạnh, ++: tác dụng ức chế mạnh, +: tác dụng ức chế trung bình, -: không có tác dụng. Hình 3.21. Ảnh hưởng của các vật liệu nano đến sinh trưởng của chủng VKL M. aeruginosa KG sau 7 ngày. Các thí nghiệm sàng lọc nồng độ được tiến hành nhằm đánh giá nhanh tác dụng diệt VKL M. aeruginosa KG sau thời gian 7
  12. 10 ngày. Kết quả thu được ở bảng 3.1 và hình 3.21 cho thấy hai vật liệu nano bạc và đồng ức chế sinh trưởng và phát triển của chủng VKL M. aeruginosa KG sau 6 ngày thử nghiệm (Bảng 3.1 và hình 3.21a và b), trong khi đó vật liệu nano sắt từ không có tác dụng diệt M. aeruginosa KG (Bảng 3.1 và hình 3.21c). 3.2.2. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng và phát triển của VKL M. aeruginosa KG và tảo lục C. vulgaris 3.2.2.1. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng và phát triển của VKL M. aeruginosa KG Các thí nghiệm được tiến hành với các nồng độ vật liệu nano bạc lựa chọn tăng dần từ 0; 0,001; 0,005; 0,01; 0,05; 0,1; 1ppm trong 10 ngày. Các thông số đánh giá bao gồm: mật độ quang học (OD), hàm lượng chla và mật độ tế bào vào các ngày 0, 2, 6 và 10 (Hình 3.22a, b). Độc tính của vật liệu nano bạc đến sinh trưởng của VKL M. aeruginosa KG tính theo nồng độ vật liệu bổ sung vào môi trường nuôi cấy gây ảnh hưởng đến 50% số lượng cá thể (EC50) đạt 0,0075mg/L. Kết quả mật độ tế bào và hàm lượng chla cho thấy, mật độ tế bào và sinh khối trong mẫu đối chứng tăng tương ứng từ ngày D0 (110.741 ± 6.317 tế bào/mL và 1,98 ± 0,06 µg/L tương ứng) đến ngày kết thúc thúc thí nghiệm D10 (5.475.556 ± 541.274 tế bào/mL và 23,4 ±2,96 µg/L tương ứng) (hình 3.23 a). Cả năm dải nồng độ thử nghiệm đều gây độc tính cho tế bào tảo VKL M. aeruginosa KG. Hiệu suất ức chế sinh trưởng (hình 3.23b) > 75% chỉ xuất hiện ở 4 nồng độ thử nghiệm từ 0,01; 0,05; 0,1 và 1 ppm. Hình 3.22. Ảnh hưởng của vật Hình 3.23. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng liệu nano bạc tính theo mật độ của chủng VKL M. tế bào (a) và hiệu suất ức chế aeruginosa KG sau 10 ngày sinh trưởng chủng VKL M.
  13. 11 tính theo mật độ quang (a) và aeruginosa KG (b) hàm lượng chla (b) Kết quả chụp SEM cấu trúc bề mặt tế bào sau 48h tiếp xúc với vật liệu nano bạc ở nồng độ 1 ppm thể hiện trong hình 3.24a (mẫu đối chứng) và 3.24b (mẫu có bổ sung nano bạc với nồng độ 1ppm). Ở mẫu đối chứng, tế bào VKL M. aeruginosa KG hình tròn hoặc cầu với bề mặt ngoài tế bào trơn nhẵn, mịn màng (hình 3.24a). Tế bào trở lên méo mó, co cụm lại sau khi tiếp xúc với vật liệu nano bạc (hình 3.24b). Điều này chứng tỏ vật liệu a) bạc đã làmb)thay đổi đáng kể hình nano a) thái của tế b) bào. Hình 3.24. Kết quả chụp Hình 3.26. Ảnh TEM cấu SEM hình thái tế bào VKL M. trúc tế bào VKL M. aeruginosa KG aeruginosa KG Phương pháp kính hiển vi điện tử quét kết hợp EDX được dùng để phân tích thành phần, trọng lượng và vị trí nano bạc trên tế bào VLK M. aeruginosa KG. Kết quả ở hình 3.25 khẳng định rằng nano bạc xuất hiện và bám trên bề mặt vi tảo với tỷ lệ 0,37% về trọng lượng. Kết quả chụp TEM ở mẫu đối chứng (hình 3.26a) cho thấy, siêu cấu trúc tế bào M. aeruginosa KG có thành tế bào rõ ràng, các bào quan nằm gọn gàng trong tế bào. Khi tiếp xúc với vật liệu nano bạc với nồng độ 1ppm sau thời gian 48h, tế bào VKL đã bị phá huỷ (hình 3.26b). Điều này chứng tỏ vật liệu nano bạc đã gây ảnh hưởng đến cấu trúc tế bào VKL M. aeruginosa KG. Nguyên tố % trọng lượng % nguyên tử CK 38,69 55,90 OK 30,59 33,18 Na K 1,95 1,47 Al K 6,02 3,87 Cu L 11,82 3,23 Ag L 0,37 0,06
  14. 12 Totals 100,00 Hình 3.25. Phổ EDX và thành phần các nguyên tố xuất hiện trên bề mặt tế bào VKL M. aeruginosa KG sau 48h tiếp xúc với vật liệu nano bạc ở nồng độ 1ppm 3.2.2.2. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng và phát triển của tảo lục Chlorella vulgaris Các thí nghiệm được tiến hành các nồng độ vật liệu nano bạc lựa chọn tăng dần từ 0,005; 0,01; 0,05; 0,1; 1 và 5 ppm trong 10 ngày. Các thông số đánh giá bao gồm: mật độ quang học (OD), hàm lượng chla và mật độ tế bào vào các ngày 0, 2, 6 và 10 (Hình 3.27b). Độc tính của vật liệu nano bạc đến sinh trưởng của tảo lục C. vulgaris tính theo nồng độ vật liệu bổ sung vào môi trường nuôi cấy gây ảnh hưởng đến 50% số lượng cá thể (EC50) đạt 0,017mg/L. Hình 3.28. Ảnh hưởng của vật Hình 3.27. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng liệu nano bạc đến sinh trưởng của tảo lục C. vulgaris theo của tảo lục C. vulgaris: a) OD hiệu suất ức chế sinh trưởng và b) mật độ tế bào. (a) và chla (b) Sau 48h tiếp xúc với vật liệu nano bạc, mật độ tế bào giảm từ 195.925 ± 18.770 (D0) xuống còn 82.778 ± 41.384 (D10) tế bào/mL. Ở nồng độ 0,005 và 0,01 ppm, AgNPs không ảnh hưởng đến sự phát triển của C. vulgaris, mật độ tế bào sau 2, 6 và 10 ngày tăng tuyến tính với mẫu đối chứng. Kết quả phân tích hàm lượng chla (Hình 3.28b) cho thấy, ở các mẫu đối chứng và mẫu có bổ sung 0,005 và 0,01 ppm vật liệu nano bạc, hàm lượng chla tăng dần từ 2,0604 ± 0,3505 µg/L (D0) và đạt giá trị cao nhất ở ngày kết thúc thí nghiệm 27,285 ± 4,6893 µg/L (D10). Hiệu suất ức chế sinh trưởng của các nồng độ vật liệu nano bạc sau 10 ngày
  15. 13 được trình bày ở hình 3.28a. Ở các nồng độ thử nghiệm từ 0,05 đến 1 ppm hiệu suất ức chế đạt > 90%. Kết quả chụp SEM cấu trúc bề mặt tế bào sau 48h tiếp xúc với vật liệu nano bạc ở nồng độ 1 ppm thể hiện trong hình 3.29a (mẫu đối chứng) và 3.29b (mẫu có bổ sung nano bạc với nồng độ 1ppm). Ở mẫu đối chứng, tế bào tảo lục hình cầu hoặc elip, các tế bào nhẵn và bào quan trong tế bào nhìn rõ (hình 3.29a). Tế bào trở lên méo mó, bề ngoài tế bào sần sùi và co cụm sau khi tiếp xúc với vật liệu nano bạc (hình 3.29b). Điều này chứng tỏ vật liệu nano bạc đã làm thay đổi đáng kể hình thái của tế bào. a) b) a) b) Hình 3.31. Ảnh TEM Hình 3.29. Kết quả chụp SEM cấu trúc tế bào tảo lục hình thái tế bào tảo lục C. vulgaris C. vulgaris Kết quả chụp SEM-EDX ở hình 3.30 khẳng định nano bạc đã xuất hiện và bám trên bề mặt tảo lục với tỷ lệ 5,76% về trọng lượng. Ảnh TEM siêu cấu trúc tế bào tảo lục C. vulgaris (hình 3.31a) cho thấy, ở mẫu đối chứng tế bào hình cầu hoặc elip, các tế bào nhẵn và bào quan trong tế bào nhìn rõ. Khi tiếp xúc với vật liệu nano bạc ở nồng độ 1ppm sau 48h, các tế bào tảo lục C. vulgaris hơi méo, bề ngoài tế bào sần sùi và co cụm (hình 3.31b). Điều này chứng tỏ vật liệu nano bạc đã gây ảnh hưởng đến cấu trúc tế bào tảo lục C. vulgaris. Nguyên % trọng % nguyên tố lượng tử CK 41,56 50,84 OK 52,68 48,38 Ag L 5,76 0,78 Totals 100,00 Hình 3.30. Phổ EDX và thành phần các nguyên tố xuất hiện trên bề mặt tế bào tảo lục C. vulgaris sau 48h
  16. 14 3.2.3. Ảnh hưởng của vật liệu nano đồng đến sinh trưởng và phát triển của VKL M. aeruginosa KG và tảo lục C. Vulgaris 3.2.3.1. Ảnh hưởng của vật liệu nano đồng đến sinh trưởng và phát triển của VKL M. aeruginosa KG Các thí nghiệm tương tự được thực hiện với vật liệu nano đồng để khảo sát ảnh hưởng của vật liệu đến sinh trưởng và phát triển của VKL M. aeruginosa KG. Kết quả thể hiện trong hình 3.32. Hình 3.32. Sinh trưởng của chủng VKL M. aeruginosa KG ở các nồng độ dung dịch nano đồng khác nhau (0,01; 0,05; 0,1; 1 và 5 ppm): OD (a); chla (b); mật độ tế bào (c) Trong hai ngày đầu thử nghiệm, kết quả cho thấy không có sự khác biệt về sinh trưởng giữa mẫu đối chứng và năm mẫu có bổ sung vật liệu nano đồng. Đến ngày D10 ở các mẫu thực nghiệm ghi nhận sinh khối của VKL M. aeruginosa KG lớn hơn so với mẫu đối chứng (hình 3.32a, b). a) b) Hình 3.33. Hiệu suất ức chế Hình 3.34. Ảnh SEM VKL M. sinh trưởng của VKL M. aeruginosa KG: a) mẫu đối aeruginosa KG sau 10 ngày chứng và b) mẫu 1ppm vật liệu nano sau 48h. Giá trị đo chla (D0) ở mẫu thí nghiệm có bổ sung 1 và 5 ppm vật liệu nano đồng đạt 1,845 ± 0,1569 µg/L và 2,295 ± 0,1155 µg/L. Đến ngày cuối (D10), giá trị này chỉ còn 1,068 ± 1,001 µg/L và 0,1168 ± 0,0501 µg/L tương ứng. Ngược lại, hàm lượng chla trong mẫu đối chứng tăng từ 2,485 ± 0,135 µg/L (D0) lên 7,1501 ± 0,9766 µg/L (D10). Kết quả này cho thấy vật
  17. 15 liệu nano đồng không gây ảnh hưởng đến sinh trưởng của VKL M. aeruginosa KG ở nồng độ từ 0,01 đến 0,1 ppm. Hiệu suất ức chế của vật liệu nano đồng đối với sinh trưởng của VKL M. aeruginosa KG sau 10 ngày (Hình 3.33) ở nồng độ 1 và 5 ppm là 90,1% và 93,7% tương ứng. Kết quả tính toán nồng độ gây ảnh hưởng 50% (EC50) theo giá trị đo OD của vật liệu nano đồng tới sinh trưởng của VKL M. aeruginosa KG là 0,7159 mg/L. Ảnh SEM ở hình 3.34 cho thấy khi tiếp xúc với dung dịch nano đồng 1 ppm sau 48 giờ, các tế bào VKL M. aeruginosa KG hơi bị méo và co cụm. Kết quả đo SEM-EDX xác định các nguyên tố có trên bề mặt các tế bào VKL M. aeruginosa KG minh chứng nano đồng đã bám trên bề mặt tế bào tảo với 11,63% trọng lượng đồng (Hình 3.35). Nguyên % trọng % nguyên tố lượng tử CK 57,97 69,85 OK 30,40 27,50 Cu L 11,63 2,65 Totals 100.00 Hình 3.35. Phổ EDX và thành phần các nguyên tố xuất hiện trên bề mặt tế bào VKL M. aeruginosa KG sau 48h tiếp xúc với vật liệu Kết quả chụp TEM (Hình 3.36) cho thấy thành tế bào M. aeruginosa KG tiếp xúc với vật liệu nano đồng bị phá vỡ, các bào quan trong tế bào bị phá huỷ. Màng và thành tế bào không còn nguyên vẹn so với tế bào ở mẫu đối chứng. a) b) Hình 3.36. Ảnh TEM tế bào VKL M. aeruginosa KG: đối chứng (a) và mẫu có 1ppm nano đồng sau 48h (b) 3.2.3.2. Ảnh hưởng của vật liệu nano đồng đến sinh trưởng và phát triển của tảo lục C. vulgaris Các thí nghiệm tương tự được thực hiện để khảo sát ảnh hưởng của vật liệu nano đồng đến sinh trưởng và phát triển của
  18. 16 tảo lục C. vulgaris. Ba thông số: mật độ quang học (OD) ở bước sóng 680 nm, hàm lượng chla và mật độ tế bào đã được phân tích ở các ngày 0, 2, 6 và 10. Kết quả thể hiện trong hình 3.37. Hình 3.37. Sinh trưởng của tảo lục C. vulgaris ở các nồng độ nano đồng khác nhau: OD (a); chla (b); mật độ tế bào (c) Kết quả của ba thông số khảo sát là tương tự nhau. Ở tất cả nồng độ thử nghiệm, sinh khối tế bào tăng trưởng tuyến tính theo thời gian tiếp xúc với dung dịch vật liệu nano đồng và đạt giá trị lớn nhất tại thời điểm kết thúc thí nghiệm (D10). Giá trị mật độ quang OD trung bình đạt 0,012 ± 0,002 ở ngày (D0) và 0,514 ± 0,117 ở ngày (D10) (hình 3.37a). Hàm lượng chla tăng dần ở tất cả các mẫu thử nghiệm, mật độ sinh khối sau 10 ngày đã tăng từ 0,0121 ± 0,0019 µg/L (D0) lên 0,5137 ± 0,1171 µg/L (D10) (hình 3.38b). Thông số mật độ tế bào cũng cho kết quả tương tự (hình 3.37c). Hình 3.38a cho thấy ở mẫu đối chứng, các tế bào có thành tế bào rõ ràng, các bào quan nằm gọn gàng trong tế bào. Sau 48h tiếp xúc với vật liệu nano đồng ở nồng độ 1ppm, thành tế bào tảo lục C. vulgaris đã bị co lại, tuy nhiên tế bào không bị phá vỡ (hình 3.38b). Kết quả đo SEM-EDX xác định các nguyên tố có trên bề mặt các tế bào tảo lục C. vulgaris minh chứng nano đồng đã không bám trên bề mặt tế bào tảo với 0 % trọng lượng đồng (Hìnha) b 3.39). a) b) ) Hình 3.38. Ảnh SEM tảo lục C. Hình 3.40. Ảnh TEM tế vulgaris: a) đối chứng và b) mẫu bào tảo lục C. vulgaris: a) có 1ppm nano đồng sau 48h đối chứng và b) mẫu có 1ppm nano đồng sau 48h
  19. 17 Kết quả chụp TEM (Hình 3.40) cho thấy, ở mẫu đối chứng tế bào có dạng hình cầu hoặc elip, các tế bào nhẵn và các bào quan như lục lạp, thylakoid, các hạt và thành tế bào có thể nhìn thấy rõ bằng TEM (hình 3.40a) thì sau khi khi tiếp xúc với vật liệu nano đồng thành tế bào tảo lục C. vulgaris bị méo, bề ngoài tế bào sần sùi nhưng tế bào vẫn còn nguyên, không bị vỡ (hình 3.40b). Nguyên % trọng % nguyên tố lượng tử CK 51.48 58.56 OK 48.52 41.44 Cu L 0.00 0.00 Totals 100.00 Hình 3.39. Phổ EDX và thành phần các nguyên tố xuất hiện trên bề mặt tế bào tảo lục C. vulgaris sau 48h tiếp xúc với vật liệu nano đồng ở nồng độ 1ppm Kết quả EC50 của hai loại vật liệu (Bảng 3.2) cho thấy, cả hai dạng vật liệu nano bạc và nano đồng đều có tác động ức chế sinh trưởng đối với vi tảo. Tuy nhiên vật liệu nano đồng có khả năng diệt tảo có chọn lọc hơn so với vật liệu nano bạc. Vật liệu này có độc tính với VKL M. aeruginosa KG nhưng lại có ảnh hưởng không đáng kể tới sự phát triển của tảo lục có ích C. vulgaris (Bảng 3.2). Nên vật liệu nano đồng được lựa chọn cho các nghiên cứu tiếp theo. Bảng 3.2. Độc tính của vật liệu nano bạc và đồng đến sinh trưởng của VKL M.aeruginosa KG và tảo lục C.vulgaris Vật liệu nano Vật liệu nano Ag (mg/L) Cu (mg/L) C. vulgaris (EC50) 0,017 - M. aeruginosa (EC50) 0,0075 0,7159 3.2.3.3. Ảnh hưởng của kích thước nano đồng đến sinh trưởng của VKL M. aeruginosa KG
  20. 18 Kết quả thử nghiệm ảnh hưởng sinh trưởng của chủng VKL M. aeruginosa KG dưới tác động của các nồng độ dung dịch vật liệu nano đồng (0; 0,01; 0,05; 0,1; 1 và 5 ppm) với 3 dạng kích thước hạt khác nhau (50 nm) ở các ngày D0, D1, D3, D6 và D10 được trình bày ở hình 3.41. Hình 3.41. Sinh trưởng của VKL M. aeruginosa KG dưới tác động của các nồng độ dung dịch và các kích thước hạt đồng khác nhau (nm) a) kích thước 50 Ở cả ba loại kích thước hạt khả năng ức chế mạnh nhất được ghi nhận ở các nồng độ 1 ppm và 5 ppm, sinh trưởng của VKL giảm dần theo thời gian và theo nồng độ nano bổ sung vào môi trường. Mật độ quang (OD) tăng không đáng kể và đạt 13÷18% (ở nồng độ 1ppm) hoặc giảm nhiều lần so với giá trị ban đầu - 42% ÷ -66% (ở nồng độ 5 ppm). Ngoài ra, không có sự khác biệt về sinh trưởng và sinh khối VKL ở mẫu thí nghiệm có bổ sung các hạt nano có kích thước 25-40 và kích thước >50 nm. Kiểm tra khả năng ức chế sinh trưởng VKL của vật liệu CuSO4, kết quả cho thấy tế bào VKL bị chết ngay sau khi tiếp xúc với dung dịch đồng, sinh khối tế bào giảm dần theo thời gian so với ngày đầu tiên D0 (0,63  0,21g/L) và đạt giá trị thấp nhất ở ngày D10 (0,48  0,075 g/L). Trong các thí nghiệm sử dụng vật liệu nano Cu kích thước lớn (30 nm ÷ 40 nm và ≥ 50 nm), mật độ quang và hàm lượng chla đo được tăng dần theo thời gian với các giá trị đo được khi kết thúc thí nghiệm. Giá trị này tăng tương ứng khoảng 5÷6 lần so với ban đầu và cao hơn 20% ÷ 30% lần so với mẫu đối chứng. Trong khi đó, ở kích thước hạt ≤ 10 nm các giá trị này có cùng xu hướng với hai kích thước trên song khả năng ức chế M. aeruginosa KG được thể hiện rõ hơn khi các thông số OD và
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2