intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt Luận án tiến sĩ Vật lí: Nghiên cứu và phát triển nguồn giả vật đen cho hiệu chỉnh bất đồng nhất ảnh thu bởi camera ảnh nhiệt vùng 8 - 12 m

Chia sẻ: Phong Tỉ | Ngày: | Loại File: PDF | Số trang:14

35
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục đích của luận án là tạo các phương pháp và công cụ tính hiệu quả để thiết kế, chế tạo nguồn giả vật đen dựa trên hốc phát xạ dạng hình trụ - đáy nón lõm phục vụ cho kỹ thuật hiệu chỉnh bất đồng nhất cho camera ảnh nhiệt vùng phổ 8-14 µm (LWIR), phù hợp với điều kiện khai thác thực tế của các thiết bị này.

Chủ đề:
Lưu

Nội dung Text: Tóm tắt Luận án tiến sĩ Vật lí: Nghiên cứu và phát triển nguồn giả vật đen cho hiệu chỉnh bất đồng nhất ảnh thu bởi camera ảnh nhiệt vùng 8 - 12 m

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ……..….***………… NGUYỄN QUANG MINH Nghiên cứu và phát triển nguồn giả vật đen cho hiệu chỉnh bất đồng nhất ảnh thu bởi camera ảnh nhiệt vùng 8 - 12 m Chuyên ngành: Quang học Mã số: 9440110 TÓM TẮT LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội – 2017
  2. Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ - DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ Viện Hàn lâm Khoa học và Công nghệ Việt Nam 1. Nguyen Quang Minh, Nguyen Van Thanh, and Nguyen Ba Thi, "Non- Uniformity of Infrared Imaging Systems using FPA and some Its Correction Techniques," in Hội nghị Hội nghị Quang học, Quang phổ Toàn quốc lần thứ VII, Session C: Optics, Laser and Applications, C-24, HCMC, Vietnam, 2012. 2. Nguyen Quang Minh, Ta Van Tuan, and Nguyen Van Binh, "Design Người hướng dẫn khoa học 1: GS.TS. Nguyễn Đại Hưng Considerations of a Simple Optical LWIR Imaging System," in Hội nghị Quang học, Người hướng dẫn khoa học 2: TS. Tạ Văn Tuân Quang phổ Toàn quốc lần thứ VII, Session C: Lasers, Optics and Applications, C-32, HCMC, Vietnam, 2012. 3. Nguyễn Quang Minh and Tạ Văn Tuân, "Thiết kế ống kính tạo ảnh hồng ngoại xa cho một camera ảnh nhiệt không làm lạnh," Tạp chí Nghiên cứu khoa học và công nghệ quân sự, ISSN 1859-1043, (2013) pp. 104-112. 4. Tạ Văn Tuân and Nguyễn Quang Minh, "Phân tích một hệ quang vô tiêu vùng Phản biện 1: … hồng ngoại xa," Tạp chí Nghiên cứu khoa học và công nghệ quân sự, ISSN 1859- 1403, (2013) pp. 96-103. Phản biện 2: … Phản biện 3: …. 5. Nguyen Quang Minh and Ta Van Tuan, "Evaluation of the Emissivity of an Isothermal Diffuse Cylindro-Inner-Cone Blackbody Simulator Cavity" in Proceedings of The 3rd Academic Conference on Natural Science for Master and PhD Students from ASEAN Countries, CASEAN, Phnompenh, Cambodia, (2014) pp. 397-405. ISBN 978-604-913-088-5. 6. Nguyen Quang Minh and Ta Van Tuan, "Design of a Cylinder-Inner-Cone Blackbody Simulator Cavity based on Absorption of Reflected Radiation Model," in Luận án sẽ được bảo vệ trước Hội đồng chấm luận án tiến sĩ, họp tại Học viện Proceedings of The 3rd Academic Conference on Natural Science for Master and Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi PhD Students from Asean Countries, CASEAN, Phnompenh, Cambodia, (2014), … giờ ..’, ngày … tháng … năm 201…. pp.111-121. ISBN 978-604-913-088-5. 7. Ta Van Tuan and Nguyen Quang Minh, "Calculation of Effective Emissivity of the Conical Base of Isotherrmal Diffuse Cylindrical-Inner-Cone Cavity using Polynomial Interpolation Technique" Communications in Physics, vol. 26, no. 4, pp. 335-343, (2016). ISSN 0868-3166, Viện Hàn lâm KH&CN VN. 8. Nguyen Quang Minh and Nguyen Van Binh, "Evaluation of Average Directional Effective Emissivity of Isotherrmal Cylindrical-inner-cone Cavities Using Monte-Carlo Method" Communications in Physics, vol. 27, no. 4, pp.357-367, Có thể tìm hiểu luận án tại: (2017).ISSN 0868-3166. Viện Hàn lâm KH&CN VN. - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam
  3. 24 1 dụng nguồn phát nhiệt TE AC-027, được điều khiển bởi bộ điều khiển nhiệt độ MỞ ĐẦU Yamatake SDC15 và cảm biến nhiệt độ Omron E52-CA1DY. Camera ảnh nhiệt dựa trên cảm biến hồng ngoại dạng mảng tiêu diện phẳng Kết quả thực nghiệm cho thấy nguồn giả vật đen được thiết kế, chế tạo đáp (IR FPA) được sử dụng ngày càng rộng rãi cho các hệ thống quan sát ngày đêm. Trên ứng đầy đủ các yêu cầu kỹ thuật và yêu cầu sử dụng đặt ra. Kết quả NUC ảnh nhiệt thực tế, ảnh nhiệt chịu tác động tiêu cực của tạp kiểu hoa văn cố định (FPN). Giải vùng LWIR cho thấy giá trị NU của ảnh giảm khoảng 17 lầnso với trước khi hiệu pháp kỹ thuật thông dụng nhằm hạn chế ảnh hưởng của FPN và nâng cao chất lượng chỉnh, đạt 1,8%. Nguồn giả vật đen được ứng dụng cho NUC camera ảnh nhiệt ở điều ảnh nhiệt là hiệu chỉnh bất đồng nhất (NUC) bằng hiệu chuẩn tuyến tính dựa trên các kiện thực địa, không phụ thuộc điều kiện môi trường. nguồn giả vật đen. KẾT LUẬN Đối với các hệ thống quan sát ngày đêm, NUC ảnh nhiệt một cách chủ động là Xuất phát từ những yêu cầu thực tế trong nghiên cứu và ứng dụng camera ảnh một nhu cầu thực tiễn, đòi hỏi phải có các nguồn giả vật đen hoạt động được ở điều nhiệt ở Việt nam, luận án đã chọn đề tài "Nghiên cứu và phát triển nguồn giả vật đen kiện thực địa. Các nguồn giả vật đen nhập khẩu có giá thành khá cao, không phù hợp cho hiệu chỉnh bất đồng nhất ảnh thu bởi camera ảnh nhiệt vùng 8 - 12 m". với điều kiện trang bị trong nước. Luận án lựa chọn đề tài "Nghiên cứu và phát triển Luận án đã thu được các kết quả và có những đóng góp mới sau đây: nguồn giả vật đen cho hiệu chỉnh bất đồng nhất ảnh thu bởi camera ảnh nhiệt vùng 8 - - Đã sử dụng kỹ thuật đa thức nội suy cho các tích phân hệ số góc mô tả tương 12 µm" để giải quyết nhu cầu nói trên. Đây là vấn đề nghiên cứu mới ở trong nước. tác bức xạ trong hốc hình trụ - đáy nón lõm ở điều kiện khuếch tán và đẳng nhiệt, trên Mục đích của luận án là tạo các phương pháp và công cụ tính hiệu quả để thiết cơ sở đó tính toán hệ số phát xạ hiệu dụng của hốc ấy. Kết quả nhận được có độ kế, chế tạo nguồn giả vật đen dựa trên hốc phát xạ dạng hình trụ - đáy nón lõm phục chính xác xấp xỉ so với các kết quả của tác giả khác tính bằng phương pháp giải tích. vụ cho kỹ thuật hiệu chỉnh bất đồng nhất cho camera ảnh nhiệt vùng phổ 8-14 µm Cách tiếp cận này là khá mới mẻ trong tính toán đặc trưng của hốc phát xạ, chưa thấy (LWIR), phù hợp với điều kiện khai thác thực tế của các thiết bị này. công bố trong các công trình khoa học liên quan. Nội dung nghiên cứu chính của luận án: - Đã xây dựng được một giải thuật mô phỏng Monte Carlo cho hấp thụ bức xạ, - Nghiên cứu quá trình trao đổi bức xạ nhiệt trong hốc phát xạ thực và các đặc sử dụng mô hình phản xạ bề mặt khuếch tán theo hướng trên mặt phẳng hai chiều, trưng bức xạ của hốc. phục vụ thiết kế hốc vật đen dạng hình trụ - đáy nón lõm. Giải thuật có thể xác định - Nghiên cứu các phương pháp tính toán hệ số phát xạ hiệu dụng của hốc phát hệ số phát xạ hướng pháp tuyến hiệu dụng của hốc ở điều kiện đẳng nhiệt với các xạ và các phương pháp đặc trưng hóa nguồn bức xạ vật đen. tham số hệ thống hốc bất kỳ. Giải thuật được phát triển trên môi trường LabView gọn - Nghiên cứu xây dựng công cụ và kỹ thuật tính toán hệ số phát xạ hiệu dụng nhẹ, tính toán đơn giản và phù hợp với thực tiễn thiết kế hốc phát xạ. cho hốc phát xạ dạng hình trụ - đáy nón lõm. - Đã nghiên cứu thiết kế hốc dạng hình trụ - đáy nón lõm bằng cách sử dụng - Nghiên cứu thiết kế, chế tạo nguồn giả vật đen dựa trên hốc phát xạ dạng giải thuật Monte Carlo của luận án. Các tham số thiết kế của hốc được xác định bằng hình trụ - đáy nón lõm. Nghiên cứu ứng dụng nguồn giả vật đen được chế tạo thực phương pháp tối ưu dựa trên mô phỏng. Kết quả tính bằng mô phỏng được kiểm hiện NUC cho camera ảnh nhiệt. chứng bằng kỹ thuật đa thức nội suy, cho thấy độ tin cậy đạt yêu cầu. Ngoài mở đầu và kết luận, luận án bao gồm 4 chương như sau: - Đã chế tạo thiết bị nguồn giả vật đen dựa trên hốc phát xạ dạng hình trụ - đáy Chương 1: Cơ sở lý thuyết về bức xạ vật đen. nón lõm có thiết kế hệ thống đã được xác định. Thiết bị đã được đặc trưng hóa bằng Chương 2: Các phương pháp xác định đặc trưng bức xạ của hốc phát xạ vật đen. thực nghiệm, đáp ứng các yêu cầu kỹ thuật đặt ra. Nguồn giả vật đen được ứng dụng Chương 3: Nghiên cứu tính toán hệ số phát xạ hướng pháp tuyến hiệu dụng của trong NUC 2 điểm cho camera ảnh nhiệt trong điều kiện phòng và trên thực địa. hốc dạng hình trụ - đáy nón lõm. Hướng nghiên cứu tiếp theo: Chương 4: Nghiên cứu thiết kế, chế tạo và đánh giá đặc trưng nguồn giả vật - Nghiên cứu thiết kế, chế tạo nguồn giả vật đen phục vụ cho NUC camera ảnh đen dựa trên hốc dạng hình trụ - đáy nón lõm cho hiệu chỉnh bất đồng nhất ảnh của nhiệt vùng hồng ngoại trung (MWIR). camera ảnh nhiệt. - Phát triển và hoàn thiện giải thuật NUC 2 điểm cho camera ảnh nhiệt được Các nghiên cứu của luận án sử dụng phương pháp tính toán lý thuyết kết hợp nghiên cứu và phát triển tại Viện Ứng dụng Công nghệ. với nghiên cứu thực nghiệm. Những đóng góp chính của luận án về mặt khoa học và thực tiễn là: - Sử dụng kỹ thuật đa thức nội suy bậc 2 để tính hệ số phát xạ hiệu dụng của hốc phát xạ dạng hình trụ - đáy nón lõm trên cơ sở phương trình tích phân mô tả tương tác bức xạ trong hốc khuếch tán hoàn toàn và đẳng nhiệt. Phương pháp tiếp cận
  4. 2 23 này chưa thấy công bố trong các công trình khoa học liên quan tới tính toán thiết kế và chế tạo các hốc phát xạ vật đen. - Mô phỏng tương tác bức xạ trong hốc dạng hình trụ - đáy nón lõm đẳng nhiệt trên cơ sở mô hình phản xạ khuếch tán theo hướng trên mặt phẳng hai chiều để xây dựng giải thuật tính hệ số phát xạ hướng pháp tuyến hiệu dụng dựa trên mô phỏng Monte Carlo. Đây là một đóng góp mới trong mô phỏng Monte Carlo để tính toán, thiết kế hệ thống cho các hốc phát xạ vật đen. - Thiết kế và chế tạo được một thiết bị nguồn giả vật đen dựa trên hốc phát xạ dạng hình trụ - đáy nón lõm cho bức xạ ra ở vùng 8-12 m và đạt các yêu cầu kỹ thuật đề ra. (a) (b) - Kết quả nghiên cứu của luận án là cơ sở để thiết kế, chế tạo các nguồn giả Hình 4.29: Ảnh bức xạ hốc vật đen ở 20C trước (a) và sau khi NUC (b). vật đen dạng vật lý, phục vụ các nghiên cứu về kỹ thuật NUC cho camera ảnh nhiệt trong điều kiện phòng thí nghiệm cũng như trong điều kiện khai thác thực tế của các thiết bị này. Đây là vấn đề có ý nghĩa thực tiễn và có nhu cẩu rất cao trong nghiên cứu - phát triển, ứng dụng và đảm bảo kỹ thuật cho các camera ảnh nhiệt chuyên dụng ở điều kiện Việt nam. - Các kết quả và nội dung nghiên cứu của luận án còn được thể hiện ở các công trình được công bố trong các tạp chí và các hội nghị khoa học chuyên ngành trong nước và quốc tế. CHƯƠNG 1: CƠ SỞ LÝ THUYẾT VỀ BỨC XẠ VẬT ĐEN 1.1. Các đại lượng đặc trưng bức xạ nhiệt Bức xạ nhiệt phát ra bởi một bề mặt bao gồm một dải bước sóng liên tục, với (a) (b) đặc trưng cơ bản là năng lượng bức xạ phân bố phụ thuộc bước sóng và hướng Hình 4.30: Biểu độ phân bố mức xám của ảnh bức xạ hốc vật đen ở 20C trước (a) và [26,28,43]. Bức xạ nhiệt lan truyền trong không gian và tương tác với các môi trường sau NUC(b). quang tuân thủ các định luật của quang học. Các đại lượng đặc trưng bức xạ nhiệt Bảng 4.10: Đánh giá bất đồng nhất ảnh. như công suất (thông lượng) bức xạ , độ trưng bức xạ , độ thoát xạ , cường độ bức xạ và độ rọi xạ được trình bày. Trong đó, độ trưng bức xạ phổ trong hệ tọa độ Nhiệt độ nguồn giả NU(/mean),(%) cầu được định nghĩa là [26,43-45,47]: STT vật đen TPV (C) Trước NUC Sau NUC (1.3) 1 27 28,6 1,9 2 25 29,1 1,9 với là công suất phát xạ bởi một đơn vị diện tích bề mặt vào một đơn vị góc khối 3 22 29,8 1,7 xung quanh hướng ,  là bước sóng, và là các tọa độ góc trong hệ tọa độ cầu. 4 20 30,3 1,5 1.2. Hấp thụ, phản xạ, truyền qua bức xạ 5 18 30,9 1,9 Ở trạng thái cân bằng bức xạ trong môi trường quang học, theo luật bảo toàn 6 15 31,7 1,8 năng lượng [44,45]: 7 12 32,6 1,9 (1.12) NU Trung bình 30,4 1,8 trong đó , , và lần lượt là thông lượng của bức xạ tới, phản xạ, bức 4.6. Kết luận Chương 4 xạ bị hấp thụ, và bức xạ truyền qua môi trường; là hệ số phản xạ, hệ số hấp Các tham số thiết kế hệ thống của hốc phát xạ được xác định bằng phương thụ và hệ số truyền qua bức xạ phổ (hay các hệ số bức xạ đơn sắc) của môi trường pháp tối ưu dựa trên mô phỏng thông qua khảo sát quy luật phân bố của đại lượng đang xét, tương ứng. theo các tham số hốc. Kết quả tính bằng mô phỏng được đánh giá bằng kỹ thuật đa thức nội suy, cho thấy độ tin cậy đạt yêu cầu.Nguồn giả vật đen được chế tạo sử
  5. 22 3 1.3. Bức xạ của vật đen tuyệt đối Vật đen tuyệt đối có khả năng hấp thụ hoàn toàn năng lượng mọi bức xạ điện từ tới nó ở mọi nhiệt độ, bất kể bước sóng và hướng tới. Phổ bức xạ của vật đen tuyệt đối chỉ phụ thuộc vào nhiệt độ của nó (phân bố Plank). Độ trưng bức xạ phổ của vật đen tuyệt đối được mô tả là [26,50]: (1.15) với c1 và c2 là các hằng số bức xạ, và là độ thoát xạ phổ và độ trưng bức xạ phổ của vật đen tuyệt đối ở nhiệt độ T. Bức xạ của vật đen tuyệt đối còn được mô tả bởi định luật Stefan - Boltzmann (năng lượng bức xạ của vật đen tuyệt đối phụ thuộc vào lũy thừa bậc 4 của nhiệt độ) và định luật Wien (cực đại bước sóng tỷ lệ nghịch với nhiệt độ). Hình 4.22: Khảo sát đặc trưng bức xạ nguồn giả vật đen được chế tạo. 1.4. Cơ sở lý thuyết bức xạ nguồn giả vật đen 4.5. Xử lý bất đồng nhất ảnh nhiệt 1.4.1. Phát xạ của vật thực Giá trị số hóa của mỗi điểm ảnh lối ra của camera ảnh nhiệt có thể được biểu Khả năng phát xạ của vật thực được đặc trưng bởi đại lượng hệ số phát diễn bởi quan hệ tuyến tính [5,18,20,29,122,123]: xạ , được định nghĩa là tỷ số giữa các đại lượng đặc trưng bức xạ của vật thực (4.10) ở nhiệt độ T và các đại lượng đặc trưng bức xạ tương ứng của vật đen tuyệt đối ở trong đó là dữ liệu ảnh đầu vào tại vị trí (r,c), là các hệ số nhân và cùng nhiệt độ, cho biết “độ đen” vật thực so với vật đen tuyệt đối [26,28,47]: hệ số cộng. Để hiệu chỉnh bất đồng nhất, cần giải quyết bài toán cập nhật các hệ số nhân và hệ số bù trong (4.10) để chuẩn hóa các giá trị ảnh đầu ra. (1.20) Mô hình hệ camera ảnh nhiệt bao gồm module thu không làm lạnh IR118 (384 x 288 a-Si microbolometer FPA), hệ quang vô tiêu hồng ngoại [35], cửa điều Đặc trưng bức xạ của các vật thực chỉ gần giống với đặc trưng bức xạ của vật chỉnh độ mở ống kính (1,0...41,3 mm), và ống kính dựng ảnh hồng ngoại [36] được đen tuyệt đối ở những dải bước sóng và nhiệt độ nhất định [51,52]. xây dựng trong phòng thí nghiệm. Độ đồng nhất ảnh được đánh giá qua tiêu chí NU. 1.4.2. Hốc phát xạ của nguồn bức xạ giả vật đen Ảnh video ra của IR118 được số hóa bởi bo mạch frame grabber PX610 Hiện có hai kiểu nguồn bức xạ thông dụng: (i) Nguồn giả vật đen dựa trên hốc (CyberOptic) được biểu diễn: phát xạ, và (ii) nguồn bức xạ dạng tấm phẳng [26,28,30,43,50]. 1.4.2.1. Kiểu dạng hốc phát xạ (4.12) Các hốc phát xạ đẳng nhiệt có thể tạo ra bức xạ có đặc trưng gần giống với bức Nguồn giả vật đen đặt đối diện khẩu độ quang của camera ảnh nhiệt để thí xạ của vật đen tuyệt đối [26,30,47]. Hốc dạng hình trụ - đáy nón lõm cho bức xạ tại nghiệm đánh giá hiệu quả NUC hai điểm, sử dụng hai bức xạ và ở hai khẩu độ ra có tính chuẩn trực tương đối, có tính chất bức xạ của hốc hình trụ nhưng nhiệt độ T1T2. Với là các giá trị mức xám chuẩn hóa, với góc mở nhỏ hơn và hệ số phát xạ cao hơn, độ đồng đều bức xạ tốt hơn hốc dạng nón, có thể chế tạo với kích thước gọn nhẹ, khẩu độ ra lớn với chiều dài ống trụ và tìm được bằng cách giải phương trình: ngắn[26,41,53], thích hợp với mục đích của luận án. 1.4.2.2. Dòng bức xạ từ một bề mặt hốc phát xạ (4.13) Độ trưng bức xạ thoát ra từ bề mặt theo hướng (Hình 1.6) là Ảnh có tạp FPN ở 20C và phân bố mức xám của ảnh trình bày trên Hình 4.29(a) tổng của độ trưng thành phần phát xạ thuần và độ trưng thành phần phản và Hình 4.30 (a). Kết quả NUC trình bày trên Hình 4.29(b), 4.30(b) và Bảng 4.10. xạ của bề mặt ấy [26]: Nguồn giả vật đen đã được ứng dụng để thực hiện NUC cho các camera ảnh nhiệt (1.21) chuyên dụng trên thực địa, không phụ thuộc điều kiện thời tiết. với (1.22)
  6. 4 21 4.4. Đánh giá đặc trưng nguồn bức xạ giả vật đen (1.23) Nguồn giả vật đen được chế tạo bao gồm 2 bộ phận: 1) Khối điều khiển bao gồm nguồn điện, bộ điều khiển nhiệt độ SDC15 và bảng điều khiển; và 2) Khối trong đó là hệ số phát xạ thuần của bề mặt, là hàm phân bố độ nguồn bức xạ bao gồm hốc phát xạ, module phát nhiệt AC-027, cảm biến nhiệt độ phản xạ bề mặt (hàm phân bố độ phản xạ lưỡng hướng - BRDF) [26,28,54- E52-CA1DY, cơ khí gá và bao che. 56], là độ trưng phổ của bức xạ vật đen ở nhiệt độ T, là độ trưng bức Bảng 4.7: Phân bố nhiệt độ bề mặt đáy nón. xạ rọi, là góc tới, là góc đặc xung quanh hướng bức xạ rọi.Nếu bề mặt là khuếch tán hoàn toàn, các bức xạ rọi tới bề mặt có thể được biểu diễn thông qua các hệ số TSV (C) TP1 (C) TP2 (C) TP3 (C) TTB (C) góc, đặc trưng cho góc đặc mà bề mặt đang xét “nhìn” các bề mặt khác trong hốc 28 28,5 (+0,3/-0,1) 28,4 (+0,1/-0,2) 28,4 (+0,3/-0,2) 28,4 [26,28,39,40,45,50]. Bức xạ thoát ra từ bề mặt hốc luôn lớn hơn phát xạ thuần của bề 26 26,5 (+0,1/-0,2) 26,5 (+0,1/-0,2) 26,4 (± 0,2) 26,5 mặt phát xạ phẳng ở cùng điều kiện (hiệu ứng hốc) [26,28]. 24 24,5 (+0,1/-0,2) 24,5 (+0,2/-0,1) 24,3 (± 0,2) 24,4 22 22,4 (± 0,2) 22,3 (± 0,2) 22,3 (± 0,1) 22,3 20 20,5 (+0/-0,1) 20,4 (± 0,2) 20,4 (± 0,2) 20,4 A1 18 18,7 (± 0,2) 18,6 (+0,2/-0,1) 18,5(± 0,2) 18,6 16 16,7 (+0,2/-0,1) 16,6 (± 0,1) 16,5 (± 0,2) 16,6 14 14,8 (± 0,2) 14,7 (+0,3/-0,1) 14,6 (+0,3/-0,2) 14,7 12 13,0 (+0,1/-0,2) 12,9 (± 0,2) 12,7 (± 0,2) 12,9 10 11,2 (+0,1/-0,2) 11,1(± 0,2) 10,9 (+0,1/-0,3) 11,1 Nguồn giả vật đen làm việc được trong dải nhiệt độ từ 10C-50C. Sử dụng máy đo nhiệt độ bức xạ hồng ngoại cầm tay kiểu IT-545 của hãng Horiba đo đại diện nhiệt độ trên 3 vùng của đáy nón: vùng cận đỉnh nón (P1), vùng giữa khối hình nón (P2) và vùng cận đáy nón (P3).Trên bảng 4.7, chênh lệch nhiệt độ giữa các vùng Hình 1.6: Bức xạ thoát ra từ bề mặt của hốc phát xạ vật đen. trong khoảng 0,1C...0,3C, phân bố nhiệt độ trên bề mặt đáy nón được đánh giá là 1.4.2.3. Hệ số phát xạ hiệu dụng khá đồng đều. Nhiệt độ TTB cao hơn TSV do sự khác biệt của mật độ dòng dẫn nhiệt tại Bức xạ của nguồn giả vật đen dựa trên hốc phát xạ được đặc trưng bởi hệ số các vùng khác nhau của đáy nón, đáng kể khi chênh lệch nhiệt độ giữa hai bề mặt phát xạ hiệu dụng, ký hiệu là để phân biệt với hệ số phát xạ thuần của vật liệu (). khối đáy nón lớn. Sự chênh lệch nằm trong sai lệch cho phép (1K [16]). Do hốc trụ Hệ số phát xạ phổ địa phương theo hướng hiệu dụng là đại lượng đặc trưng ngắn và có màn chắn, bức xạ của phần vách trụ có trọng số nhỏ, có thể bỏ qua. quan trọng nhất cho nguồn giả vật đen [26,28,47]: Đặc trưng bức xạ của nguồn giả vật đen được đánh giá bằng thiết bị phổ kế bức xạ SR-5000 (CI Systems). Dữ liệu ra của SR-5000 là độ trưng phổ bức xạ của (1.25) mẫu đo (Hình 4.22) (TSV =16, bước sóng đỉnh  =10,2m), tương ứng với nhiệt độ tham chiếu của vật đen T = 290K, max = 10 m. Ở vùng phổ 5,5m  8,0 m và trong đó là độ trưng bức xạ phổ địa phương theo hướng của một diện  12,0 m, độ trưng bức xạ đo trên thực nghiệm giảm mạnh, có thể liên quan tới sự tích bề mặt hốc phát xạ vật đen ở tọa độ ; là độ trưng bức xạ phổ của hấp thụ của hơi nước trong quá trình thực nghiệm. Hệ số phát xạ hiệu dụng hướng nguồn vật đen tuyệt đối ở nhiệt độtham chiếu . pháp tuyến trung bình của hốc nghiên cứu được tính bởi: Các đại lượng đặc trưng bức xạ khác như hệ số phát xạ địa phương tổng theo hướng hiệu dụng , hệ số phát xạ phổ bán cầu địa phương hiệu (4.8) dụng , và hệ số phát xạ bán cầu địa phương tổng hiệu dụng có thể tính được từ định nghĩa (1.25) Tại lân cận =10m, hệ số phát xạ hiệu dụng đạt 0,999, phù hợp với tính toán 1.4.2.4. Nhiệt độ bức xạ lý thuyết. Trên dải phổ , đạt 0,973, thỏa Nhiệt độ của độ trưng bức xạ của hốc phát xạ [28]: mãn yêu cầu (Bảng 4.1).
  7. 20 5 càng trở nên đáng kể, ngược lại nếu càng lớn , e,n càng ít thay đổi trong một dải rộng các giá trị của . (1.30) Để đáp ứng tiêu chí về đặc trưng bức xạ, giá trị các tham số thiết kế được chọn sao cho e,n có giá trị lớn (≥0,97). Đồng thời, trên cơ sở các kết quả khảo sát phân bố Trong thực tế, khái niệm nhiệt độ bức xạ được sử dụng phổ biến hơn [28]: giá trị e,n, các tham số thiết kế còn phải thỏa mãn tiêu chí gọn nhẹ của nguồn giả vật (1.31) đen: - Do khẩu độ ra phải đạt  110mm, tỷ số R/r không được quá lớn. 1.4.2.5. Tính bất đẳng nhiệt của hốc phát xạ thực - Bán kính trụ R phải đủ nhỏ và có tỷ số L/R nhỏ nhất có thể. Các hốc phát xạ thực thường có tính chất bất đẳng nhiệt, có hệ số phát xạ phổ - Góc  cần được chọn để khối lượng phần đáy nón nhỏ nhất có thể. địa phương theo hướng hiệu dụng được mô tả dưới dạng [28,57,58]: - Hệ số phát xạ thuần nên được chọn lớn nhất có thể. (1.32) Kết quả tối ưu nhận được : r = 60 mm, R = 65 mm (R/r = 1,08), L = 195 mm, là hệ số phát xạ phổ địa phương theo hướng hiệu dụng của hốc phát xạ ở (L/R = 3),  = 55,  > 0,9. điều kiện đẳng nhiệt, là lượng hiệu chỉnh ở điều kiện bất đẳng Tính e,n của hốc phát xạ có các tham số hệ thống như trên bằng kỹ thuật đa nhiệt, phụ thuộc nhiệt độ vách hốc. thức nội suy, ta thấy sai lệch so với kết quả tính bằng mô phỏng Monte Carlo trong Các đại lượng hệ số phát xạ hiệu dụng của một hốc phụ thuộc cấu tạo (kiến khoảng 10-4. Có thể cho rằng kết quả nhận được bởi hai cách tính là như nhau, nếu trúc hình học, đặc trưng quang học của vật liệu) và phân bố nhiệt độ của hốc.Trong chúng ta làm tròn số đến 10-3 (Bảng 4.6). Các tham số hệ thống được xác định được quá trình thiết kế hốc phát xạ, các đặc trưng bức xạ luôn được xem xét trước tiên ở đánh giá là đạt yêu cầu đặt ra. điều kiện đẳng nhiệt. Để đảm bảo hệ số phát xạ thuần của vách hốc >0,9, giải pháp kỹ thuật được 1.5. Kết luận Chương 1 áp dụng là sử dụng vật liệu bằng kim loại có độ dẫn nhiệt cao được phủ một lớp vật Chương 1 trình bày tổng lược về các khái niệm cơ bản của nhiệt bức xạ, bức xạ liệu (sơn đen) có độ phát xạ thuần cao (= 0,90-0,95). của vật đen tuyệt đối và bức xạ của vật thực, đặc biệt là bức xạ của hốc phát xạ. Bảng 4.6: Hệ số phát xạ hiệu dụng của hốc phát xạ (L/R =3; R/r =1,08;  = Nguồn giả vật đen dựa trên hốc phát xạ hình trụ - đáy nón lõm cho bức xạ ra có 55) với các giá trị = 0,7; 0,8; 0,9 và 0,92. tính định hướng, hệ số phát xạ cao và phân bố bức xạ đồng đều, phù hợp với ứng Hệ số phát xạ e,n tính bằng giải thuật mô phỏng (y0)tb tính bằng kỹ thuật nội dụng chuẩn hóa ảnh nhiệt. thuần của Monte Carlo (D = 1) suy đa thức bậc 2 Dòng bức xạ thoát ra từ bề mặt hốc phát xạ bao gồm thành phần phát xạ thuần vách hốc và thành phần phản xạ. Do hiệu ứng này, hốc phát xạ được đặc trưng bởi các đại 0,7 0,971202 (=3,34E-05) 0,971476 lượng hệ số phát xạ hiệu dụng. Hệ số phát xạ phổ theo hướng hiệu dụng là đại lượng 0,8 0,9823652(=2,74889E-05) 0,982244 đặc trưng bức xạ quan trọng nhất của một hốc phát xạ vật đen, có tính chất phụ thuộc 0,9 0,9919636 ((=1,2063E-05) 0,991752 vào kiến trúc hình học, đặc trưng quang học của vật liệu làm vách và phân bố nhiệt 0,92 0.9936954 (=1.05001E-05) 0,993502 độ của bề mặt hốc phát xạ. Trong quá trình thiết kế một hốc phát xạ vật đen, việc tính toán hệ số phát xạ phổ theo hướng hiệu dụng ở điều kiện hốc đẳng nhiệt là một bước 4.3. Giải pháp cấp nhiệt và điều khiển nhiệt độ bắt buộc. Nhiệt độ làm việc của nguồn bức xạ nghiên cứu nằm trong khoảng 10-50C, Bằng cách tạo ra các hốc phát xạ có kiến trúc hình học và phân bố nhiệt độ bề tương ứng với cực đại bước sóng trong dải LWIR, như nêu trong yêu cầu kỹ thuật (Bảng mặt của hốc hợp lý, người ta có thể nhận được bức xạ ra của hốc ấy có đặc trưng xấp 4.1). Để cung cấp nhiệt độ thấp hơn môi trường cho đáy nón, luận án sử dụng máy phát xỉ đặc trưng của bức xạ vật đen tuyệt đối, đáp ứng được yêu cầu ứng dụng cụ thể. nhiệt dựa trên nguyên lý điện - nhiệt Peltier (TE). Các tham số làm việc của máy phát CHƯƠNG 2: CÁC PHƯƠNG PHÁP XÁC ĐỊNH ĐẶC TRƯNG BỨC XẠ CỦA nhiệt TE được tính dựa trên phương pháp phần tử hữu hạn [112], kết quả là luận án lựa HỐC PHÁT XẠ VẬT ĐEN chọn máy nhiệt TE AC-027 của Hãng TE Technology [114] với các thông số kỹ thuật Để xác định hệ số phát xạ phổ theo hướng hiệu dụng của một hốc phát xạ, phù hợp yêu cầu. Nhiệt độ của đáy nón được điều khiển tự động, dựa trên bộ điều khiển người ta có thể sử dụng các phương pháp [26,28]: tỷ lệ P.I.D thương mại (Yamatake SDC15) và cảm biến cặp nhiệt điện (TC) kiểu K - Phương pháp tính toán; (Omron E52-CA1DY). - Phương pháp đo lường thực nghiệm. Phương pháp thực nghiệm sử dụng hệ thống thiết bị phức tạp, được sử dụng để đo lường các đại lượng đăc trưng bức xạ của nguồn giả vật đen [28,63]. Các phương
  8. 6 19 pháp tính toán hệ số phát xạ hiệu dụng sử dụng trong thiết kế cũng như trong đánh giá đặc trưng bức xạ của hốc phát xạ vật đen bao gồm: i) Phương pháp tính toán tất định,và ii) Phương pháp tính toán không tất định (mô phỏng bức xạ bằng phương pháp Monte Carlo) [26,28,31,39,40,43,56,60,61,64]. 2.1. Phương pháp tính toán tất định 2.1.1. Các biểu thức tính toán gần đúng Phương pháp tính gần đúng có đặc điểm là đơn giản và tiện dụng, cho phép đánh giá được hệ số phát xạ hiệu dụng của một hốc thông qua kiến trúc hình học của hốc như: kích thước khẩu độ ra, tỷ lệ diện tích bề mặt khẩu độ và diện tích bề mặt hốc, tỷ lệ giữa chiều dài hốc trụ và bán kính khẩu độ ra. Trong mọi biểu thức tính gần đúng, sự phụ thuộc của hệ số phát xạ hiệu dụng vào tính chất bức xạ của bề mặt hốc (hệ số phát xạ thuần và hệ số phản xạ thuần của bề mặt) được mô tả. Các biểu thức tính toán gần đúng chỉ cho phép đánh giá sơ bộ hệ số phát xạ hiệu dụng của một Hình 4.5: Phân bố của e,n như là hàm của tỷ số L/R (R/r =1). số hốc phát xạ có kiến trúc tiêu chuẩn với độ chính xác ở mức chấp nhận được. 2.1.2. Phương pháp giải tích 2.1.2.1. Phương trình tích phân cơ bản Hệ số phát xạ hiệu dụng của hốc phát xạ có thể tính bằng phương pháp giải tích, dựa trên việc giải các hệ phương trình tích phân mô tả trao đổi nhiệt bức xạ giữa các bề  mặt, trong trường hợp hốc đẳng nhiệt khuếch tán hoàn toàn và định luật Kirchhoff áp dụng được cho các đặc trưng bức xạ của bề mặt hốc [48]. Theo (1.21), dòng bức xạ của diện tích bề mặt hốc có tọa độ được tính [68]: (2.8) Nếu đặc trưng bức xạ không phụ thuộc phổ và nhiệt độ, (2.8) trở thành: (2.9) Độ rọi được biểu diễn qua các hệ số góc : Hình 4.7: Phân bố của e,nnhư là hàm của (L/R =3, R/r =1). (2.11) Tất cả các kích thước còn lại của hốc phát xạ phải được xác định theo trị số của bán kính khẩu độ r. Với xác định, tăng dần tới xấp xỉ đơn vị khi Thay (2.11) vào (2.9), thay (định luật Kirchhoff), chia cả hai vế cho tỷ số tăng, tốc độ tăng lớn nhất trong khoảng từ 1 đến 2 (Hình 4.2). Kết quả (định luật Stefan - Boltzmann), ta có: khảo sát cũng cho thấy, có giá trị càng cao, nếu các tham số càng lớn. Riêng đối với góc , có sự phụ thuộc không tuyến tính. (2.13) Với không đổi, xác định, giá trị tăng khi tăng (Hình 4.5). Tồn tại những giá trị "tới hạn", tại đó tiệm cận giá trị lớn nhất có Hay trong điều kiện đẳng nhiệt (2.13) được rút gọn thành: thể. Giá trị có sự phụ thuộc vào tỷ số , góc và hệ số phát xạ thuần . Góc nhỏ sẽ cho phép lựa chọn giá trị bé. Hệ số càng lớn, tỷ số có thể (2.14) lựa chọn càng nhỏ nhưng vẫn đảm bảo giá trị đáp ứng yêu cầu (Hình 4.5). Trên Hình 4.7 quan sát thấy có hai dải giá trị của góc cho giá trị cao:  = Phương trình (2.14) là phương trình cơ bản cho hệ số phát xạ địa phương hiệu 33... 40 và  = 50...60. Góc  lớn không mang lại giá trị cao, hay sự tồn tại dụng của một hốc phát xạ, có dạng của phương trình tích phân Fredholm loại hai. của đáy nón trong hốc hình trụ làm tăng đáng kể hệ số phát xạ hiệu dụng. Trường hợp còn ghi nhận cực tiểu của lân cận giá trị = 45. Hàm có sự phụ thuộc vào các tham số và : càng nhỏ, sự phụ thuộc của e,n vào 
  9. 18 7 được các nhu cầu công việc liên quan tới thiết kế hệ thống cho hốc hình trụ - đáy nón 2.1.2.2. Các phương trình tính toán hệ số phát xạ hiệu dụng của hốc hình trụ - lõm, phục vụ hiệu quả cho quá trình chế tạo nguồn giả vật đen của luận án. đáy nón lõm CHƯƠNG 4: NGHIÊN CỨU THIẾT KẾ, CHẾ TẠO VÀ ĐÁNH GIÁ ĐẶC Nếu hốc phát xạ khuếch tán hoàn toàn, đóng kín và đẳng nhiệt, mọi diện tích TRƯNG NGUỒN GIẢ VẬT ĐEN DỰA TRÊN HỐC DẠNG HÌNH TRỤ - ĐÁY vách hốc sẽ phát xạ giống hệt vật đen tuyệt đối với cường độ là . Theo De Vos NÓN LÕM CHO HIỆU CHỈNH BẤT ĐỒNG NHẤT ẢNH CỦA CAMERA [70], dòng phản xạ từ một diện tích sẽ thiếu hụt: i) phần phát xạ từ diện tích ẢNH NHIỆT khẩu độ rọi tới nó, và ii) phần phát xạ từ bị phản xạ bởi các diện tích 4.1. Các yêu cầu đối với nguồn giả vật đen rồi [60]: Nguồn giả vật đen được chế tạo có vai trò là nguồn bức xạ chuẩn dùng cho kỹ thuật NUC ảnh nhiệt, có kích thước xách tay được và hoạt động được ở điều kiện (2.16) thực địa. Bảng 4.1: Yêu cầu kỹ thuật hệ thồng. phần trong ngoặc vế phải của phương trình (2.16) chính là độ phát xạ hiệu dụng STT Yêu cầu kỹ thuật Đơn vị đo Cần đạt của hốc phát xạ theo (1.25), và là các hệ số góc. 1 Kiến trúc hình học Hình trụ, đáy nón lõm y ds=rdrd 2 Dải phổ hoạt động m 8-12 3 Đường kính khẩu độ ra,  mm  110 4 Hệ số phát xạ hướng pháp tuyến  hiệu dụng  0,9650,005 r O  R0 R 1.0 5 Dải nhiệt độ điều khiển C 10 ...50 ( 1C) 6 Nguồn nuôi VDC 12 x X = 2R/tan 4.2. Nghiên cứu thiết kế hốc phát xạ L Hình 2.3: Kiến trúc hình học hốc hình trụ, đáy nón lõm [39]. Xét hốc phát xạ dạng hình trụ - đáy nón lõmkhuếch tán và đẳng nhiệt, thỏa mãn (Hình 2.3). Dựa trên (2.16), Z. Chu [39] đã xây dựng các phương trình tính hệ số phát xạ địa phương hiệu dụng tại 3 phần khác nhau của hốc. Cụ thể, phương trình hệ số phát xạ địa phương hiệu dụng cho đáy nón có dạng [39]: (2.17) Bài toán tìm hệ số phát xạ hiệu dụng trước tiên trở thành bài toán xác định các hệ số góc như trong (2.17). Do hốc có kiến trúc hình học phức Hình 4.2: Phân bố của e,n như là hàm của R/r (L/R= 6,  = 60). tạp, việc xác định các hệ số góc là rất khó khăn với khối lượng tính toán lớn. Các tính Các tham số thiết kế hệ thống của hốc phát xạ nghiên cứu (Hình toán của Z. Chu [39] cho thấy: 3.2) được xác định bằng kỹ thuật tối ưu hóa dựa trên mô phỏng [107,108], sử dụng - Để tăng hệ số phát xạ hiệu dụng của hốc phát xạ dạng hình trụ, không nhất công cụ tính dựa trên mô phỏng Monte Carlo để khảo sát phân bố của như là hàm thiết phải kéo dài ống trụ, nếu có sự có mặt của đáy nón lõm. Điều này cũng sẽ làm của các kích thước tỷ lệ , của góc và hệ số phát xạ thuần . Các tiêu chí đơn giản hóa việc duy trì phân bố nhiệt độ đều trên phần ống trụ. đánh giá quan trọng nhất là : i) Yêu cầu về độ gọn nhẹ của nguồn giả vật đen, và ii) - Hệ số phát xạ hiệu dụng trên đáy nón là khá đồng nhất cho các trường hợp Yêu cầu về giá trị của hệ số phát xạ theo hướng pháp tuyến hiệu dụng e,n của hốc hốc phát xạ thực tế, nghĩa là có hệ số phát xạ vật liệu bề mặt cao, khẩu độ ra đủ nhỏ phát xạ. và độ dài trụ đủ lớn.
  10. 8 17 - Trị số của hệ số phát xạ hiệu dụng trên đáy nón có thể đạt xấp xỉ đơn vị khi giữa quỹ đạo bức xạ và bề mặt hốc và ii) xác định hướng của phản xạ. Số lượng tia bức lựa chọn các tham số hình học phù hợp. xạ cần mô phỏng để đảm bảo sai số thống kê < 10-4 [28,90]. Xác suất xảy ra Các tính toán giải tích cũng được thực hiện cho các điều kiện khác nhau của phản xạ khuếch tán hoặc phản xạ kiểu gương được xác định bằng tỷ số khuếch tán hốc phát xạ có bề mặt không khuếch tán hoàn toàn nhưng với những khó khăn nhất . Hướng của phản xạ được xác định theo các hàm mật độ phân bố định trong quá trình tính toán [39,40,56,60,61]. tương ứng. Quỹ đạo bức xạ được coi là chấm dứt nếu giao cắt với khẩu độ hoặc trọng 2.2. Phương pháp mô phỏng Monte Carlo số thống kê của nó sau k lần phản xạ rất nhỏ cho trước. Giải thuật được xây Mô phỏng Monte Carlo hoàn toàn có thể được áp dụng trong nghiên cứu các dựng trên môi trường LabView. quá trình quang bức xạ như là các quá trình có tính ngẫu nhiên [73,75,76]. Đối với mỗi tổ hợp tham số của hốc, thuật toán mô phỏng MC tính 2.2.1. Phương pháp Monte Carlo trong đo lường bức xạ được một giá trị theo (3.30) và (3.31). So sánh kết quả tính cho hốc đẳng 2.2.1.1. Mô hình hóa ngẫu nhiên các tính chất quang học của bề mặt nhiệt ở cùng điều kiện bằng thuật toán mô phỏng của luận án và phần mềm STEEP3 Tính chất phản xạ của bề mặt được mô hình hóa bởi hàm phân bố phản xạ của Virial Inc. trong [41] (Bảng 3.4), ta thấy sai khác trung bình nằm trong khoảng lưỡng hướng (BRDF) như đề cập tại (1.23),có tính chất tuân thủ nguyên tắc thuận 10-4, cho thấy giải thuật mô phỏng đủ tin cậy để sử dụng trong tính toán đặc trưng nghịch quang học [57,58,64,68,72,77], và trong hệ tọa độ cầu (Hình 2.4) có dạng bức xạ và thiết kế hốc phát xạ vật đen. Điểm mạnh của công cụ tính này là thời gian [28,54,55]: tính rất nhanh và cho kết quả trực quan, có ý nghĩa thực tiễn trong việc thiết kế hốc phát xạ quan tâm. (2.21) Bảng 3.4: Hệ số phát xạ theo hướng pháp tuyến hiệu dụng của hốc hình trụ - đáy nón lõm (L/R = 6, R/r =1,  = 60). Hệ số phát xạ Hệ số phát xạ theo hướng pháp tuyến hiệu dụng, thuần của Kết quả của J.Wang (2013) Kết quả tính toán bằng mô phỏng vách hốc, ( ) [41] MC của luận án 0.7 0.99125 0.991084 ( = 2.62E-05) 0.8 0.99475 0.994903 ( = 1.79E-05) 0.9 0.99757 0.997723 ( = 1.44E-05) 3.3. Kết luận Chương 3 Luận án đã sử dụng kỹ thuật đa thức nội suy bậc 2 để tính hệ số phát xạ hiệu dụng hướng pháp tuyến cho hốc hình trụ - đáy nón lõm dựa trên các biểu thức hệ số góc đã được xử lý, biến đổi và đưa về dạng tường minh. Kết quả tính có độ chính xác Hình 2.4: Hàm phân bố độ phản xạ lưỡng hướng BRDF [77]. phù hợp với các kết quả nhận được bằng phương pháp giải tích số với sai lệch trung Không có bề mặt thực nào có tính chất phản xạ khuếch tán hoặc phản xạ gương bình nằm trong khoảng 10-4. lý tưởng [26]. Tính chất phản xạ của bề mặt có thể được phân loại dựa trên độ nhám Luận án đã nghiên cứu, xây dựng công cụ tính toán hệ số phát xạ theo hướng bề mặt [54,77,78,79,80]. Các bề mặt thực thường có tính chất phản xạ khuếch tán - pháp tuyến hiệu dụng của hốc hình trụ - đáy nón lõm trên cơ sở một giải thuật mô gương, phản xạ bề mặt có thể được mô hình hóa như là tổ hợp tuyến tính của các phỏng Monte Carlo dựa trên hấp thụ bức xạ. Trong giải thuật này, tính chất phản xạ phản xạ thành phần. khuếch tán theo hướng của bề mặt hốc được mô hình hóa dựa trên mô hình phản xạ Mô hình phản xạ khuếch tán - gương đồng nhất (USD) khá phổ biến, nhưng có bề mặt của B.T. Phong sửa đổi và sự lan truyền bức xạ theo hướng bên trong hốc nhiều hạn chế. BRDF của mô hình USD được viết là [21,57,58,81]: được mô phỏng và khảo sát trên mặt phẳng 2 chiều. Điều này cho phép giảm thiểu (2.25) được khối lượng và độ phức tạp tính toán trong quá trình theo dấu bức xạ bằng kỹ thuật vẽ sơ đồ tia. Kết quả nhận được là phù hợp với kết quả tính của tác giả khác Mô hình BRDF 3 thành phần (3C BRDF) mô tả gần đúng tính chất phản xạ của [41], với sai lệch nằm trong khoảng 10-4. bề mặt thực hơn so với mô hình USD, tuy nhiên khối lượng tính toán là rất lớn [64,77]: Với ưu điểm là thời gian tính toán nhanh, độ chính xác và độ tin cậy đạt yêu (2.26) cầu, các kỹ thuật tính toán được nghiên cứu trong nội dung của Chương 3 đáp ứng
  11. 16 9 dụng mô hình phản xạ khuếch tán theo hướng (Mô hình Phong sửa đổi) để mô tả với là BRDF của thành phần phản xạ khuếch tán (Diffuse), gương phân bố phản xạ bề mặt (Hình 3.3) [101]: (Specular), kiểu gương (Quasi-Specular) và bóng (Ghost). (3.27) Phản xạ gương với và , số mô tả dạng búp phản xạ kiểu gương, là hàm BRDF của bề mặt. y A(0, R) B(L,R) C(L,r) i(,b) (0,0) G(R/tan,0) y0 (X’,Y’) x Hình 2.8: Mô hình phản xạ kiểu gương do chiếu sáng của Phong [86].  r(,,s) B.T.Phong (1975) đề xuất mô hình phản xạ bề mặt dựa trên kinh nghiệm, thành D(L,-r) F(0,-R)  E(L,-R) phần phản xạ gương trong (2.25) được mô tả dưới dạng (Hình 2.8) [83]: (2.29) Hình 3.2: Mô hình hốc phát xạ hình trụ - đáy nón lõm nghiên cứu. trong đó là tỷ số giữa phần phản xạ gương và bức xạ rọi, số mũ k mô hình hóa kích thước búp phản xạ kiểu gương, được điều chỉnh sao cho khớp với dữ liệu thực nghiệm [54,79,83-85]. Năng lượng của phản xạ có tính chất phụ thuộc góc. Mô hình Phong rất được ưa chuộng trong đồ họa máy tính bởi tính đơn giản và hiệu quả của Búp phản nó. i s xạ gương Phân bố của một dòng bức xạ theo không gian và tọa độ góc còn được thay thế Phản xạ g bằng các hàm mật độ xác suất (PDF) đối với biến ngẫu nhiên tương ứng [28]. khuếch tán 2.2.1.2. Xác suất các quá trình lan truyền và tương tác bức xạ r Tương tác giữa bức xạ và môi trường quang học có quy luật (1.12). Trong mô phỏng Monte Carlo, các trị số là xác suất xảy ra các hiện Hình 3.3: Mô hình phản xạ khuếch tán theo hướng [101]. tượng hấp thụ, phản xạ, hay truyền qua của bức xạ trong tương tác của nó với môi trường. Nếu trong (2.25) kd + ks =1 và trong (2.26) kd + kqs + kg =1 (0 kd , kqs ,kg Hệ số hấp thụ hướng pháp tuyến hiệu dụng của hốc được tính nếu thực hiện mô ,1), thì cũng như được sử dụng như là các xác suất xảy ra dạng phỏng N tia bức xạ có trọng số thống kê ban đầu : phản xạ tương ứng trong các mô hình đã nêu. (3.30) 2.2.1.3. Vẽ sơ đồ tia Trong mô phỏng Monte Carlo thường sử dụng kỹ thuật vẽ sơ đồ tia nghịch đảo với k = 1,2,...,m là số lần phản xạ của tia thứ i. Trọng số được tính là: để khảo sát quỹ đạo và tương tác của bức xạ với các bề mặt trong không gian. Tại mỗi điểm tương tác, dạng tương tác của bức xạ tới và bề mặt được xác định theo các (3.31) xác suất biết trước và hướng của phản xạ trong hệ tọa độ cầu xác định được dựa trên các hàm BRDF. Quá trình vẽ sơ đồ tia được thực hiện lặp lại một cách liên tục cho trong đó: và là hàm mật độ phân bố của đến khi quỹ đạo tia kết thúc. phản xạ khuếch tán và phản xạ gương tương ứng. Áp dụng (3.22), ta tính được . 2.2.1.4. Kỹ thuật gán trọng số thống kê Mô phỏng và khảo sát lan truyền bức xạ trong hốc phát xạ được thực hiện dựa Theo nguyên tắc bảo toàn năng lượng thì sau mỗi lần tương tác với bề mặt, trên kỹ thuật vẽ sơ đồ tia ngược thông qua hai bước cơ bản: i) dò tìm các điểm giao cắt năng lượng bức xạ ban đầu sẽ bị hấp thụ một phần và phần còn lại bị phản xạ [70].
  12. 10 15 Nếu bức xạ có năng lượng ban đầu là E, sau phản xạ k lần trên bề mặt , năng lượng Bảng 3.3: Hệ số phát xạ trung bình hiệu dụng của đáy nón (e)tb của hốc phát còn lại của nó là [78]: xạ hình trụ - đáy nón lõm có hệ số phát xạ bề mặt = 0,7. (2.34) Kết quả tính bằng đa thức Kết quả dùng các giá trị tính Nếu thì , tương ứng với bức xạ được coi là bị hấp thụ hoàn toàn. L R0  nội suy bậc 2 trong luận án toán của Z.Chu [39] Trong mô phỏng bức xạ, nếu mỗi bức xạ nguyên phát được gán một trọng số thống 8 0,25 30o 0,99980951470 0,999793 kê , quá trình vẽ sơ đồ tia cho bức xạ đó được dừng lại nếu sau k lần phản xạ, 8 0,25 60o 0,99970362889 0,999694 trọng số của bức xạ ( rất nhỏ cho trước). Điều này có ý nghĩa lớn 8 0,5 20o 0,99938567800 0,999283 trong việc kiểm soát tính hội tụ của giải thuật mô phỏng [75]. 8 0,5 60o 0,99882927670 0,998815 2.2.2. Mô phỏng Monte Carlo trong tính toán đặc trưng bức xạ của hốc 12 0,25 20o 0,99994055869 0,999931 phát xạ 12 0,25 30o 0,99992127221 0,999901 2.2.2.1. Phương pháp mô phỏng dựa trên phát xạ 12 0,5 30o 0,99969312250 0,999673 Phương pháp này dựa trên định nghĩa về thông lượng dòng bức xạ thoát ra khỏi 12 0,5 60o 0,99950666248 0,999484 bề mặt phát xạ khuếch tán (1.17). Việc xác định dòng bức xạ thoát ra khỏi một bề mặt Các giá trị của dFy0,ap tính trực tiếp và tính bằng đa thức nội suy là tương đương trở thành việc xác định số lượng các phản xạ 1 lần, 2 lần, 3 lần,... tại bề mặt ấy [89]: nhau với sai số trong khoảng 10-7 đến 10-8 (Bảng 3.2). So sánh với kết quả của Z.Chu [39], các giá trị dFy0,ap và tích phân dF2y0,ap dFx,ap tính bằng đa thức nội suy được cho (2.36) là trùng khớp trong khoảng 4.10-4. Kết quả tính hệ số phát xạ trung bình hiệu dụng của đáy nón bằng kỹ thuật đa Nếu mỗi bề mặt phát xạ năng lượng và là năng lượng dòng bức xạ ra thức nội suy được so sánh với kết quả tính theo phương pháp của [39], với sai lệch [53], ta cũng có thể tính được: nằm trong khoảng 10-4 (Bảng 3.3). Kỹ thuật đa thức nội suy bậc 2 cho phép tính được hệ số phát xạ hiệu dụng của (2.38) đáy nón một cách nhanh chóng và tiện dụng, có tính ứng dụng cao trong quá trình trong đó S là tổng diện tích bề mặt trong hốc, s là diện tích khẩu độ, N là tổng số thiết kế hốc phát xạ hình trụ - đáy nón lõm, mặc dù vẫn đòi hỏi những kỹ năng tính “hạt” bức xạ được phát xạ bởi toàn bộ bề mặt hốc, Nout là tổng số "hạt" thoát ra khỏi nhất định [98]. khẩu độ. 3.2. Nghiên cứu tính toán hệ số phát xạ theo hướng pháp tuyến hiệu dụng của Mô phỏng dựa trên phát xạ cho phép xác định được hệ số phát xạ địa phương hốc hình trụ - đáy nón lõm bằng phương pháp mô phỏng Monte Carlo hiệu dụng của hốc bất đẳng nhiệt một cách trực tiếp, rất có ý nghĩa trong thiết kế Xây dựng giải thuật mô phỏng Monte Carlodựa trên hấp thụ bức xạ dùng để phân bố nhiệt độ của hốc phát xạ. Hạn chế của phương pháp là đòi hỏi phải tính toán tính hệ số phát xạ phổ theo hướng pháp tuyến hiệu dụng của hốc dạng hình trụ - các hàm phân bố phát xạ cho từng bề mặt, khối lượng tính toán chung là rất lớn và có đáy nón lõm ở điều kiện đẳng nhiệt. độ phức tạp cao. Trên Hình 3.2 mô tả một hốc dạng hình trụ - đáy nón lõm, L là độ dài phần 2.2.2.2. Phương pháp mô phỏng dựa trên hấp thụ bức xạ hình trụ, R là bán kính trong hình trụ, r là bán kính khẩu độ ra (r
  13. 14 11 [97,98], giải được bằng các phương pháp tính số hay tính tích phân bằng phương pháp tính số, nhưng vẫn phức tạp và mất nhiều thời gian. (2.42) 3.1.2. Tính toán hệ số phát xạ địa phương hiệu dụng của đáy nón bằng kỹ thuật đa thức nội suy Nếu là số lượng "hạt" bức xạ bị hấp thụ hoàn toàn, ta cũng có thể tính hệ số Tích phân số hạng bậc 2 của (2.17) có dạng phức tạp, mặc dù các hệ số góc đã được phát xạ hiệu dụng của hốc thông qua hệ số hấp thụ hiệu dụng [90]: đưa về dạng tường minh (3.5) và (3.7). Nếu đặt liên tục với (2.45) , ta luôn tìm được một hàm đa thức duy nhất có dạng [98]: So với mô phỏng dựa trên phát xạ, phương pháp hấp thụ bức xạ đơn giản hơn (3.12) nhiều, khối lượng tính toán nhỏ, thời gian tính nhanh. Tuy nhiên, phương pháp này không thể cung cấp thông tin về phân bố nhiệt độ của hốc. trong đó là đa thức Newton bậc m nội suy các giá trị của hàm nằm giữa 2.3. Phương pháp đo lường thực nghiệm các điểm nút biết trước, m được xác định dựa trên sai số nội suy [98,99]. Với sai số Hiện có 2 phương pháp đo lường thực nghiệm chính là phương pháp đo phản nội suy < 10-5 thì m = 2 là đạt yêu cầu. Các hệ số của đa thức (3.12) xạ dựa trên các phản xạ kế và đo lường trắc xạ dựa trên các bức xạ kế [63]. tìm được dựa trên 3 giá trị (Bảng 3.1). Phân bố nhiệt độ của các hốc phát xạ được xác định bằng các nhiệt kế. Có hai Bảng 3.1: Đa thức nội suy của hàm tích phân d2Fyo,x dFx,ap với hệ số phát xạ bề phương pháp đo nhiệt độ phổ biến là: phương pháp đo tiếp xúc và phương pháp đo mặt  = 0,7. không tiếp xúc (nhiệt kế bức xạ). 2.4. Kết luận Chương 2 L R0  Các phương pháp tính toán, bao gồm tính tất định và không tất định, được áp dụng phổ biến trong quá trình thiết kế hốc phát xạ, trong một số trường hợp cũng 8 0,25 30o 0,00020418 (1-y0 tan)2- 0,00057577 (1-y0 tan)+ 0,00054582 được sử dụng để đánh giá đặc trưng bức xạ của một hốc phát xạ có sẵn. 8 0,5 60o - 0,0000502749 (1-y0 tan)2 - 0,000648663 (1-y0 tan) + 0,0017787 Trong các phương pháp tính toán tất định cho nghiên cứu hốc vật đen, phương 12 0,25 20o 0,0000547286 (1-y0 tan)2- 0,000143944 (1-y0 tan) + 0,00013545 pháp tính gần đúng và phương pháp giải tích dựa trên phương trình tích phân được đề 12 0,5 45o 0,00001404 (1-y0 tan)2- 0,00018342 (1-y0 tan)+ 0,00044535 cập. Tính gần đúng cho phép xác định các giá trị trung bình của các hệ số phát xạ hiệu dụng của một số hốc phát xạ đẳng nhiệt và khuếch tán có hình dạng tiêu chuẩn Bảng 3.2: So sánh các giá trị trung bình của hàm số dFy0,ap và của tích phân một cách sơ bộ. Phương pháp giải tích cho phép tính toán được hầu hết các đại lượng dF y0,ap dFx,ap, được tính bằng kỹ thuật đa thức nội suy áp dụng trong luận án và được 2 đặc trưng bức xạ của hốc phát xạ với độ chính xác rất cao, với đặc điểm là phần lớn tính bằng phương pháp giải tích ở cùng điều kiện (=0,7). khối lượng tính tập trung vào việc xác định các hệ số góc mô tả trao đổi bức xạ giữa các bề mặt trong hốc khuếch tán. Đây là công việc có độ phức tạp cao, tốn rất nhiều thời gian cho dù có sự trợ giúp của máy tính. Phương pháp giải tích cũng rất khó áp L R0  Kết quả của luận án Kết quả tính nội Z.Chu[39 dụng cho tính các hốc vật đen có dạng hình học phức tạp, bề mặt hốc không khuếch Z.Chu[39] Tích phân Nội suy suy của luận án ] tán. 8 0,25 30o 0,00054976 0,000549766 0,0006 0,00028397 0,0003 Phương pháp tính không tất định dựa trên mô phỏng Monte Carlo ngày càng 8 0,25 60o 0,00086890 0,000868895 0,0009 0,000396679 0,0004 chiếm ưu thế trong tính toán thiết kế các hốc phát xạ vật đen, trong đó các đặc trưng 8 0,5 20o 0,0016611 0,00166115 0,0020 0,0012888 0,0013 bức xạ của hốc phát xạ được xác định thông qua các mô hình mô tả quá trình phát xạ 8 0,5 60o 0,0034652 0,00346522 0,0035 0,00145737 0,0015 hoặc hấp thụ bức xạ của hốc. Đối với các hốc có kiến trúc hình học phức tạp và bề 12 0,25 20o 0,00016967 0,000169667 0,0002 0,0000948923 0,0001 mặt không khuếch tán thì phương pháp mô phỏng MC gần như là phương pháp duy 12 0,25 30o 0,00023417 0,000234167 0,0003 0,0000941865 0,0001 nhất và có tính chất vạn năng để khảo sát đặc trưng bức xạ của chúng. Mặc dù vậy, 12 0,5 30o 0,00093534 0,000935335 0,0010 0,00029195 0,0003 các phương pháp tính tất định vẫn có vị trí nhất định trong nghiên cứu các đại lượng 12 0,5 60o 0,0015318 0,00153181 0,0016 0,000375528 0,0004 bức xạ của hốc phát xạ, cung cấp cơ sở lý thuyết chặt chẽ cho phương pháp mô phỏng Monte Carlo và kiểm định các kết quả mô phỏng. Các phương pháp thực nghiệm để đặc trưng hóa các nguồn giả vật đen có cùng đặc điểm chung là đòi hỏi bố trí thiết bị và phương pháp đo lường phức tạp, tốn kém,
  14. 12 13 chỉ thực hiện được trong các phòng thí nghiệm đo lường bức xạ được trang bị tốt. Tuy nhiên, đây là phương pháp tin cậy nhất để xác định trực tiếp các đặc trưng của nguồn bức xạ vật lý. CHƯƠNG 3: NGHIÊN CỨU TÍNH TOÁN HỆ SỐ PHÁT XẠ THEO HƯỚNG HIỆU DỤNG CỦA HỐC HÌNH TRỤ - ĐÁY NÓN LÕM Chương 3 trình bày các nghiên cứu tính toán,xác định hệ số phát xạ hướng pháp tuyến hiệu dụng của hốc phát xạ hình trụ - đáy nón lõm dựa trên kỹ thuật đa thức nội suy và kỹ thuật mô phỏng Monte Carlo. 3.1. Nghiên cứu tính toán hệ số phát xạ theo hướng hiệu dụng của hốc phát xạ hình trụ - đáy nón lõm bằng kỹ thuật đa thức nội suy Theo định nghĩa dòng bức xạ (1.21), có thể đánh giá hệ số phát xạ theo hướng pháp tuyến hiệu dụng của hốc dạng hình trụ - đáy nón lõm thông qua hệ số phát xạ địa phương hiệu dụng của đáy nón (2.17) [97,98]. Để giải (2.17) cần xác định được tất cả các hệ số góc có trong phương trình. (3.7) 3.1.1. Xác định các hệ số góc trong phương trình hệ số phát xạ địa phương hiệu dụng của đáy nón Các công thức tính hệ số góc trong công thức (2.17) [39]: (3.1) (3.2) (3.3) Các mẫu số có trong (3.7) là: trong (3.3) , giới hạn tích phân có dạng: x ≥ 2/tanθ (3.8) 1/tanθ
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2