![](images/graphics/blank.gif)
Không gian véctơ n chiều
-
Bài giảng Đại số tuyến tính: Chương 3 Không gian vectơ trình bày về những kiến thức chính: vectơ n chiều, không gian vectơ; tổ hợp tuyến tính; hạng của vectơ; không gian con; tạo độ trong không gian n chiều, công thức đổi tọa độ giữa các cơ sở.
33p
cheap_12
08-07-2014
287
43
Download
-
"Bài giảng Toán cho các nhà kinh tế 1: Bài 1: Đại cương về hệ phương trình tuyến tính và không gian véctơ n chiều" giúp sinh viên nắm được các khái niệm về hệ phương trình tuyến tính, nắm được phương pháp giải và các kết quả định tính đối với hệ phương trình tuyến tính; khái niệm véctơ n chiều, không gian véctơ n chiều và các khái niệm liên quan; tính toán thành thạo các phép toán tuyến tính đối với véctơ.
40p
nguathienthan9
11-12-2020
44
4
Download
-
"Bài giảng Toán cho các nhà kinh tế 1 - Bài 2: Các mối liên hệ tuyến tính trong không gian vectơ n chiều–cơ sở của không gian Rn" trình bày khái niệm tổ hợp tuyến tính và phép biểu diễn tuyến tính; sự phụ thuộc tuyến tính; cơ sở của không gian vectơ n chiều.
32p
nguathienthan9
11-12-2020
44
3
Download
-
Bài giảng Toán cao cấp 1 - Chương 2: Véc tơ. Chương này cung cấp cho học viên những kiến thức về: véc tơ n – chiều; phép toán trên véctơ; không gian véctơ; sự độc lập tuyến tính, sự phụ thuộc tuyến tính; hạng và cơ sở của hệ véctơ cơ sở của không gian ℝn;... Mời các bạn cùng tham khảo!
21p
hidetoshidekisugi
16-06-2022
29
3
Download
-
Bài giảng Toán cao cấp 1: Chương 2 cung cấp cho người học những kiến thức như: Vecto n chiều; sự độc lập tuyến tính, phụ thuộc tuyến tính; hạng và cơ sở của hệ vecto, cơ sở của không gian R. Mời các bạn cùng tham khảo!
28p
matroinho0804
17-11-2022
18
4
Download
-
"Bài giảng Toán cao cấp cho các nhà kinh tế 1 - Bài 1: Đại cương về hệ phương trình tuyến tính và không gian vectơ n chiều" cung cấp kiến thức hệ phương trình tuyến tính; không gian vectơ n chiều. Mời các bạn cùng tham khảo bài giảng để nắm chi tiết hơn kiến thức.
17p
cothumenhmong10
19-03-2021
80
5
Download
-
"Bài giảng Toán cho các nhà kinh tế 1 - Bài 2: Các mối liên hệ tuyến tính trong không gian vectơ N chiều – cơ sở của không gian Rn" trình bày khái niệm tổ hợp tuyến tính và phép biểu diễn tuyến tính; sự phụ thuộc tuyến tính; cơ sở của không gian vectơ n chiều.
12p
gaocaolon10
27-02-2021
60
2
Download
-
Véc tơ ngẫu nhiên 1. Phân phối đồng thời của các biến ngẫu nhiên Giả sử X1,X2,…,Xn là n biến ngẫu nhiên xác định trên cùng không gian xác suất ( , , P), nhận giá trị trong không gian đo (R, B(R). Định nghĩa 1.1. Ta gọi X = (X1, X2,…, Xn) là vectơ ngẫu nhiên n chiều với giá trị trong Rn. Định nghĩa 1.2. Với mỗi tập Bôren B con của Rn, P[ : X Bn, trong đó Bn là -đại số Bôren các tập B] được gọi là phân phối xác suất của vectơ ngẫu nhiên X= (X1, X2,…,...
7p
cnkbmt1
14-10-2011
840
45
Download
-
Định nghĩa 8.1. Một tập hợp gồm n số thực được sắp xếp có thứ tự có dạng: X = (x1, x2, x3,..., xn) được gọi là một vectơ dòng n chiều; hoặc có dạng...
20p
venus_s2_u
05-01-2011
390
95
Download
-
Hình học không gian về giải toán vectơ Trong toán học, một vectơ là một phần tử trong một không gian vectơ, được xác định bởi ba yếu tố: điểm đầu (hay điểm gốc), hướng (gồm phương và chiều) và độ lớn (hay độ dài). Vectơ hướng từ A đến B Ví dụ, đoạn thẳng AB có điểm gốc là A, hướng từ A đến B được gọi là một vectơ, kí hiệu là \overrightarrow{A B} hoặc \vec a, \vec b, \vec u, \vec v Trong giải tích, một vectơ trong không gian Euclid Rn là một bộ n số thực (x1,...
19p
trungtran2
08-08-2010
123
387
Download
-
Trong toán học, một vectơ là một phần tử trong một không gian vectơ, được xác định bởi ba yếu tố: điểm đầu (hay điểm gốc), hướng (gồm phương và chiều) và độ lớn (hay độ dài). Vectơ hướng từ A đến B Ví dụ, đoạn thẳng AB có điểm gốc là A, hướng từ A đến B được gọi là một vectơ, kí hiệu là hoặc , , , Trong giải tích, một vectơ trong không gian Euclid Rn là một bộ n số thực (x1, x2, ..., xn). Có thể hình dung một vectơ trong không gian Rn là đoạn...
4p
phungnhi2011
19-03-2010
459
82
Download
-
Số siêu phức Trong toán học, số siêu phức là khái niệm mở rộng của số phức từ dạng tổ hợp tuyến tính 2 chiều z = a + b.i với các hệ số thực a, b của hai đơn vị cơ sở 1 và i sang không gian vectơ n chiều với n hệ số thực x0, x1, x2, ..., xn-1, của n đơn vị cơ sở 1, e1, e2, e3, ..., en-1: z = x0.1 + x1.e1 + x2.e2 + ... + xn-1.en-1
6p
phungnhi2011
19-03-2010
405
86
Download
CHỦ ĐỀ BẠN MUỐN TÌM
![](images/graphics/blank.gif)