Bài 1: Biến cố và Xác suất của biến cố
lượt xem 65
download
Phép thử ngẫu nhiên: Là sự thực hiện một số điều kiện xác định (thí nghiệm cụ thể hay quan sát hiện tượng nào đó), có thể cho nhiều kết quả khác nhau. Các kết quả này không thể dự báo chắc chắn được. Một phép thử thường được lặp lại nhiều lần.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài 1: Biến cố và Xác suất của biến cố
- Bài 1 Biến cố và Xác suất của biến cố
- Phép thử và biến cố Phép thử ngẫu nhiên Là sự thực hiện một số điều kiện xác định (thí nghiệm cụ thể hay quan sát hiện tượng nào đó), có thể cho nhiều kết quả khác nhau. Các kết quả này không thể dự báo chắc chắn được. Một phép thử thường được lặp lại nhiều lần.
- Phép thử và biến cố Không gian mẫu (KG biến cố sơ cấp) Tập hợp tất cả các kết quả có thể xảy ra khi thực hiện phép thử gọi là không gian mẫu (hay không gian biến cố sơ cấp), ký hiệu Ω. Mỗi kết quả của phép thử, ω , gọi là biến cố sơ cấp. Một tập con của không gian mẫu gọi là biến cố.
- Phép thử và biến cố Các ký hiệu - Ω: không gian mẫu. - ω : biến cố sơ cấp - A, B, C, …: biến cố - |A|: số phần tử của biến cố A
- Phép thử và biến cố Ví dụ - Tung đồng xu Ω ={S,N}; ω 1=“S”, ω 2=“N” - Tung con xúc sắc Ω ={ω 1,…, ω 6} ω i=“Xuất hiện mặt thứ i”, i=1,…,6 - Đo chiều cao (đv: cm) Ω = ( 0, 250 ) ⊂ ¡
- Quan hệ giữa các biến cố Tổng 2 biến cố Xét A và B là hai biến cố trong không gian mẫu Ω, thì biến cố tổng của A và B, ký hiệu A+B (hay A∪B), là tập chứa những kết quả trong Ω thuộc về A hoặc B. Ω A B A+B
- Quan hệ giữa các biến cố Tíchcủa hai biến cố Xét A và B là hai biến cố trong không gian mẫu Ω, thì biến cố tích của A và B, ký hiệu AB (hay A∩B), là tập chứa những kết quả trong Ω thuộc về A và B. Ω A AB B
- Quan hệ giữa các biến cố Biến cố xung khắc Hai biến cố A và B gọi là xung khắc với nhau nếu AB=∅. Ω AB= ∅ A B
- Quan hệ giữa các biến cố Biến cố đối lập Biến cố không xảy ra khi biến cố A xảy ra gọi là biến cố đối lập với biến cố A, ký hiệu A . Ω A A Biến cố chắc chắn - Ω. Biến cố không thể - ∅.
- Quan hệ giữa các biến cố Ví dụ. Tung một lần con xúc sắc cân đối và đồng chất. Không gian mẫu: Ω =[1,2,3,4,5,6] Đặt A = “ Xuất hiện mặt có số điểm chẵn” B = “ Xuất hiện mặt có số điểm ít nhất là 4” A = [2,4,6]; B=[4,5,6]
- Quan hệ giữa các biến cố Ω = [1, 2, 3, 4, 5, 6] A = [2, 4, 6] B = [4, 5, 6] Biến cố đối lập: A = [1, 3, 5] B = [1, 2, 3] Biến cố tích: AB = [4, 6] AB = [5] Biến cố tổng: A + B = [2, 4, 5, 6] A + A = [1, 2, 3, 4, 5, 6] = Ω
- Xác suất của biến cố 1 Chắc Xác suất chắn xảy ra Khả năng một biến cố sẽ xảy ra. 0 ≤ P(A) ≤ 1 với mọi biến cố A .5 0 Không thể xảy ra
- Định nghĩa theo quan điểm cổ điển Địnhnghĩa xác suất theo quan điểm cổ điển Xét phép thử ngẫu nhiên có không gian mẫu Ω. Giả sử tất cả các kết quả trong Ω đều đồng khả năng xảy ra, thì xác suất xảy ra biến cố A A Soá c khaû ng thoû ñieà kieä cuû A caù naê a u n a P( A) = = Ω Toåg soá naêg trong khoâg gian maã Ω n khaû n n u
- Định nghĩa theo quan điểm cổ điển Ví dụ 1. Tung 1 con xúc sắc cân đối và đồng chất, tính xác suất xuất hiện mặt lẻ. 2. Một lớp học có 300 sinh viên trong đó có 80 sinh viên nữ. Chọn ngẫu nhiên 1 sinh viên, tính xác suất chọn được sinh viên nữ. 2. Một hộp có 7 quả cầu đỏ và 4 quả cầu xanh. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất chọn được 2 quả cầu đỏ và 1 quả cầu xanh.
- Xác suất của biến cố - Định nghĩa theo quan điểm cổ điển Định nghĩa theo lối cổ điển có 2 nhược điểm sau: - Tất cả các kết quả phải đồng khả năng xảy ra. - Không gian mẫu Ω phải hữu hạn.
- Định nghĩa theo quan điểm Thống kê Định nghĩa theo quan điểm thống kê Xét phép thử ngẫu nhiên có không gian mẫu Ω và A ⊂ Ω. Thực hiện phép thử n lần độc lập, thấy biến cố A suất hiện n(A) lần. n(A) gọi là tần số suất hiện biến cố A, và n(A)/n là tần suất xảy ra A. Khi đó xác suất xảy ra A là n( A) Soá khaû ng trong toåg theå a ñieà kieä cuû A caû naê n thoû u n a P( A) = lim = n →∞ n Toåg soá naêg trong toåg theå n khaû n n Giới hạn của tần suất xảy ra biến cố A trong một số phép thử rất lớn, n.
- Định nghĩa theo quan điểm Thống kê Ví dụ. Tung đồng xu. Xác suất xuất hiện mặt S: P(S)=1/2 Xác suất xuất hiện mặn H: P(H)=1/2 Dùng định nghĩa theo quan điểm thống kê để kiểm chứng. Người thí nghiệm Số lần tung Số lần Tần suất sấp Buffon 4040 2048 0.5080 Pearson 12000 6019 0.5016 Pearson 24000 12012 0.5005
- Định nghĩa theo quan điểm Hình học Định nghĩa theo quan điểm hình học Xét một phép thử đồng khả năng, không gian mẫu có vô hạn phần tử và được biểu diễn thành một miền hình học Ω có độ đo xác định (độ dài, diện tích, thể tích). Biến cố A ⊂ Ω được biểu diễn bởi miền hình học A. Khi đó, xác suất xảy ra A mes ( A) Ñoä mieà A ño n P ( A) = = mes (Ω) Ñoä mieà Ω ño n
- Định nghĩa theo quan điểm Hình học Ví dụ. (Bài toán tàu cập bến) Hai tàu thủy cập bến 1 cách độc lập nhau trong một ngày đêm. Biết rằng thời gian tàu thứ nhất đỗ lại ở cảng để bốc hàng là 4 giờ, của tàu thứ hai là 6 giờ. Tìm xác suất để một trong hai tàu phải chờ cập bến.
- Định nghĩa theo quan điểm Hình học Ví dụ. (Bài toán tàu cập bến) x (giờ): thời điểm tàu thứ nhất cập bến. y (giờ): thời điểm tàu thứ hai cập bến. A = “Một trong hai tàu phải chờ cập bến” Nếu tàu 1 cập bến trước thì tàu 2 phải chờ y–x≤ 4 Nếu tàu 2 cập bến trước thì tàu 1 phải chờ x–y≤ 6 Vậy A xảy ra khi -4 ≤ x – y ≤ 6, thể hiện ở miền gạch chéo Vậy 1 2 24 − ( 18 + 202 ) 2 SA 2 P ( A) = = 2 = 0.3715 SΩ 24
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Xác suất thống kê - Chương 1: Biến cố và xác suất - GV. Lê Văn Minh
8 p | 258 | 30
-
Bài giảng Chương 1 Biến cố ngẫu nhiên và xác suất
25 p | 208 | 22
-
Bài giảng Bài 1: Biến cố và xác xuất của biến cố
45 p | 127 | 12
-
Bài giảng Xác suất thống kê ứng dụng: Lecture 1 - PGS.TS. Lê Sỹ Vinh
17 p | 54 | 9
-
Bài giảng Xác suất thống kê - Chương 1: Xác suất của biến cố
88 p | 123 | 7
-
Bài giảng lý thuyết xác suất và thống kê toán - Bài 1: Biến cố và xác suất
22 p | 71 | 6
-
Bài giảng Xác suất thống kê: Chương 1 - ThS. Nguyễn Phương (2014)
24 p | 94 | 6
-
Bài giảng Xác suất thống kê: Chương 1 - Nguyễn Văn Tiến (2019)
11 p | 71 | 6
-
Bài giảng Xác suất thống kê: Bài 1 - Biến cố và xác suất của biến cố
18 p | 159 | 4
-
Bài giảng Xác suất thống kê: Chương 1 – Nguyễn Văn Tiến
95 p | 71 | 4
-
Bài giảng Lý thuyết xác suất thống kê toán - Chương 1: Biến cố - Các công thức tính xác suất
58 p | 73 | 3
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 1 - TS. Nguyễn Mạnh Thế
28 p | 45 | 3
-
Bài giảng Xác suất thống kê: Chương 1 - ThS. Nguyễn Phương (ĐH Ngân hàng TP. Hồ Chí Minh)
24 p | 105 | 3
-
Bài giảng Xác suất thống kê: Tuần 2
24 p | 77 | 3
-
Bài giảng Lý thuyết xác suất - Chương 1: Biến cố ngẫu nhiên và xác suất
53 p | 19 | 3
-
Bài tập trắc nghiệm và tự luận môn Toán Trung học Phổ thông: Phần 1
198 p | 18 | 3
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 1 - ThS. Hoàng Thị Thanh Tâm
37 p | 36 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn