Bài giảng Đại số lớp 9 - Tiết 57: Hệ thức Vi-ét và ứng dụng
lượt xem 3
download
Bài giảng "Đại số lớp 9 - Tiết 57: Hệ thức Vi-ét và ứng dụng" được biên soạn nhằm giúp các em học sinh nắm được định lí Vi-ét và cách tìm hai số biết tổng và tích của chúng. Nắm vững cách nhẩm nghiệm trong các trường hợp đặc biệt: a + b + c = 0 và a – b + c = 0. Mời các bạn cùng tham khảo chi tiết nội dung bài giảng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Đại số lớp 9 - Tiết 57: Hệ thức Vi-ét và ứng dụng
- KIỂM TRA BÀI CŨ 2. Khi phương trình: ax2 + bx + c = 0 (a ≠ 0) có nghiệm: −b + ∆ −b − ∆ x1 = ; x2 = 2a 2a Hãy tính a) x1 + x2 b) x1.x2 Đáp án: b b b b 2b −b x x 1 2 2a 2a 2a = 2a a b b ( b )2 ( )2 b2 b 2 b 2 4 ac c xx 1. 2 2a . 2a 4a 2 4a 2 4a 2 = a
- TIẾT 57: ĐẠI SỐ 9 1. Hệ thức VI-ÉT: b * Định lí VI-ÉT: x1 + x2 = − Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì: a c x1. x2 = a Phrăng–xoa Vi-ét (sinh 1540 - mất 1603) tại Pháp. - Ông là người đầu tiên dùng chữ để kí hiệu các ẩn, các hệ số của phương trình và dùng chúng để biến đổi và giải phương trình nhờ cách đó mà nó thúc đẩy Đại số phát triển mạnh. - Ông là người phát hiện ra mối liên hệ giữa các nghiệm và các hệ số của phương trình. - Ông là người nổi tiếng trong giải mật mã. - Ông còn là một luật sư, một chính trị gia nổi tiếng.
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: b * Định lí VI-ÉT: x1 + x2 = − Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì: a c x1. x2 = a Bài tập 25(Sgk/52): Đối với mỗi phương trỡnh sau, kớ hiệu x1 và x2 là hai nghiệm (nếu cú). Khụng giải phương trỡnh, hóy điền vào những chỗ trống (…) a) 2x2 - 17x + 1 = 0 c) 8x2 - x + 1 = 0 (-17)2 – 4.2.1 = 281 > 0 Δ = ......... (-1)2 – 4.8.1= -31 < 0 Δ = ......... 17 x1+ x2 =.......... 2 Không có giá trị x1+ x2 =.......... 1 x1. x2 =........... Không có giá trị 2 x1. x2 =...........
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: b * Định lí VI-ÉT: x1 + x2 = − Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì: a c x1. x2 = *T.quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 a c thì PT có một nghiệm x1 = 1, còn nghiệm kia là x2 ? 2/SGK a 2 -5 a) Ta có: a = .... ; b = .... ; c = .... 3 Cho PT: 2x2 - 5x + 3 = 0 2–5+3 a + b + c = ........................ = 0 a) Xác định các hệ số a, b, c rồi b) Thay x1= 1 vào VT của PT ta có: tính a + b + c. 2.12 - 5.1 + 3 VT = ........................................= 0 =VP b) Chứng tỏ x1 = 1 là một nghiệm c của phương trình. c) Theo định lý Viột thỡ: x1.x2 = c) Dùng định lí Vi-ét để tìm x2. a c 3 Mà x1 = 1 x2 = = ...... a 2
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: b * Định lí VI-ÉT: x1 + x2 = − Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì: a c *T.quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 x1. x2 = c a thì PT có một nghiệm x1 = 1, còn nghiệm kia là x2 a ? 3/SGK 3 -7 a) Ta có: a = .... ; b = .... ; c = .... 4 Cho PT: 3x2 - 7x + 4 = 0 3–7+4 a b + c = ........................ = 0 a) Chỉ rõ các hệ số a, b, c rồi tính a - b + c. b) Thay x1= 1 vào VT của PT ta có: b) Chứng tỏ x1 = -1 là một nghiệm 3.(-1)2 + 7.(-1) + 4 VT = ........................................= 0 =VP của phương trình. c c) Tìm x2. c) Theo định lý Viột thỡ: x1.x2 = a c 4 Mà x1 = 1 x2 = − = ...... − a 3
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: * Định lí VI-ÉT: *T.quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 c thì PT có một nghiệm x1 = 1, còn nghiệm kia là x2 a *T.quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 c thì PT có một nghiệm x1 = -1, còn nghiệm kia là x2 a ? 4/SGK: Tính nhẩm nghiệm của các phương trình a) -5x2 + 3x + 2 = 0 b) 2004x2 + 2005x +1 = 0 Ta có: a + b + c = -5 + 3 + 2 = Ta có: a - b + c = 2004 - 2005 + 1 = 0 0 Vậy: PT có hai nghiệm phân biệt: Vậy: PT có hai nghiệm phân biệt 1 2 x1 = -1; x2 = x1 = 1; x2 = 2004 5
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: * Định lí VI-ÉT: *T.quát 1: *T.quát 2: 2. Tìm hai số biết tổng và tích của chúng: Bài toán: Tìm hai số biết tổng Giải: của chúng bằng S và tích của Gọi số thứ nhất là x thì số thứ hai là (S - x). chúng bằng P. x(S - x) = P Tích hai số bằng P nên:…………………. Sx - x2 = P ……………. x2 – Sx + P = 0 ……………………..
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: * Định lí VI-ÉT: *T.quát 1: *T.quát 2: 2. Tìm hai số biết tổng và tích của chúng: Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình: x2 – Sx + P = 0. (Điều kiện để có hai số đó là: S2 – 4P ≥ 0) Ví dụ 1: Tìm hai số biết tổng của chúng bằng 27, tích của chúng bằng 180. Giải: Hai số cần tìm là nghiệm của phương trình x2 – 27x + 180 = 0 = (-27)2 - 4.1.180 = 9 > 0 x1 = 15 ; x2 = 12. Vậy hai số cần tìm là 15 và 12.
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: * Định lí VI-ÉT: *T.quát 1: *T.quát 2: 2. Tìm hai số biết tổng và tích của chúng: Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình: x2 – Sx + P = 0. (Điều kiện để có hai số đó là: S2 – 4P ≥ 0) ? 5/SGK: Tìm hai số biết tổng của chúng bằng 1, tích của chúng bằng 5. Giải: Hai số cần tìm là nghiệm của PT: x2 – x + 5 = 0. = (-1)2 – 4.1.5 = - 19 < 0 Vậy không có hai số nào có tổng bằng 1, tích bằng 5.
- TIẾT ĐẠI SỐ 9 57: 1. Hệ thức VI-ÉT: * Định lí VI-ÉT: *T.quát 1: *T.quát 2: 2. Tìm hai số biết tổng và tích của chúng: Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình: x2 – Sx + P = 0. (Điều kiện để có hai số đó là: S2 – 4P ≥ 0) Ví dụ 2: Tính nhẩm nghiệm của PT: x2 – 5x + 6 = 0. Giải: Vì 2 + 3 = 5; 2.3 = 6 nên x1 = 2, x2 = 3 là hai nghiệm của PT đã cho.
- BÀI TẬP TRẮC NGHIỆM Chọn câu trả lời đúng : Hai số 2 và 5 là nghiệm của phương trình nào: A x2 2x + 5 = 0 B sai x + 2x – 5 = 0 2 C Đúng x2 7x + 10 = 0 D x2 + 7x + 10 = 0 Sai
- HƯỚNG DẪN VỀ NHÀ - Học thuộc định lí Vi-ét và cách tìm hai số biết tổng và tích của chúng. - Nắm vững cách nhẩm nghiệm trong các trường hợp đặc biệt: a + b + c = 0 và a – b + c = 0. - Bài tập về nhà: 25, 26, 27, 28 trang 52; 53/SGK.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Đại số lớp 9 - Tiết 9: Luyện tập
10 p | 19 | 9
-
Bài giảng Đại số Lớp 9 Tiết 4: Liên hệ giữa phép nhân và phép khai phương
18 p | 138 | 8
-
Bài giảng Đại số lớp 9 - Tiết 40: Luyện tập
16 p | 22 | 7
-
Bài giảng Đại số lớp 9 - Tiết 58: Luyện tập
7 p | 26 | 7
-
Bài giảng Đại số lớp 9 - Tiết 48: Luyện tập
12 p | 29 | 7
-
Bài giảng Đại số Lớp 9 Chương 1 Tiết 4: Liên hệ giữa phép nhân và phép khai phương
16 p | 146 | 6
-
Bài giảng Đại số lớp 9 - Tiết 9: Biến đổi đơn giản biểu thức chứa căn bậc hai (Tiếp)
12 p | 18 | 5
-
Bài giảng Đại số lớp 9 - Tiết 62: Giải bài toán bằng cách lập phương trình
15 p | 16 | 5
-
Bài giảng Đại số lớp 9: Hệ số góc của đường thẳng y = ax + b (a # 0)
12 p | 24 | 5
-
Bài giảng Đại số lớp 9 bài 6: Biến đổi đơn giản biểu thức chứa căn bậc hai
16 p | 20 | 4
-
Bài giảng Đại số lớp 9 - Tiết 39: Giải hệ phương trình bằng phương pháp cộng đại số
20 p | 21 | 4
-
Bài giảng Đại số lớp 9: Ôn tập học kì 1
11 p | 46 | 4
-
Bài giảng Đại số lớp 9 - Tiết 48: Hàm số y = ax2 (a ≠ 0)
10 p | 18 | 3
-
Bài giảng Đại số lớp 9 - Tiết 47: Hàm số y = ax2 (a # 0)
20 p | 19 | 3
-
Bài giảng Đại số lớp 9 bài 2: Căn thức bậc hai và hằng đẳng thức
21 p | 19 | 3
-
Bài giảng Đại số lớp 9 - Tiết 1: Căn bậc hai
12 p | 15 | 3
-
Bài giảng Đại số lớp 9 - Tiết 17: Ôn tập chương 1 (Tiết 2)
13 p | 18 | 3
-
Bài giảng Đại số lớp 9 bài 3: Đồ thị hàm số ax + b (a # 0)
16 p | 30 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn