Bài giảng Tín hiệu và hệ thống: Chương 6 (Lecture 10) - Trần Quang Việt
lượt xem 13
download
Chương 6 cung cấp kiến thức về phân tích hệ thống liên tục dùng biến đổi Laplace. Bài này tập trung vào biến đổi Laplace với các nội dung chính sau: Biến đổi Laplace thuận, biến đổi Laplace của một số tín hiệu thông dụng, các tính chất của biến đổi Laplace, biến đổi Laplace ngược. Mời tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Tín hiệu và hệ thống: Chương 6 (Lecture 10) - Trần Quang Việt
- Ch-6: Phân tích hệ thống liên tục dùng biến đổi Laplace Lecture-10 6.1. Biến đổi Laplace Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1. Biến đổi Laplace 6.1.1. Biến đổi Laplace thuận 6.1.2. Biến đổi Laplace của một số tín hiệu thông dụng 6.1.3. Các tính chất của biến đổi Laplace 6.1.4. Biến đổi Laplace ngược Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 1
- 6.1.1. Biến đổi Laplace thuận Biến đổi Fourier cho phép phân tích tín hiệu thành tổng của các thành phần tần số phân tích hệ thống đơn giản & trực quan hơn trong miền tần số. Biến đổi Fourier là công cụ chủ yếu để phân tích TH & HT trong nhiều lĩnh vực (viễn thông, xử lý ảnh, …) Muốn áp dụng biến đổi Fourier thì tín hiệu phải suy giảm & HT với đáp ứng xung h(t) phải ổn định. ∞ ∞ ∫−∞ | f (t ) | dt < ∞ & ∫−∞ | h(t ) | dt < ∞ Để phân tích tín hiệu tăng theo thời gian (dân số, GDP,…) và hệ thống không ổn định dùng biến đổi Laplace (là dạng tổng quát của biến đổi Fourier) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.1. Biến đổi Laplace thuận Xét tín hiệu f(t) là hàm tăng theo thời gian tạo hàm mới φ(t) từ f(t) sao cho tồn tại biến đổi Fourier: φ(t)=f(t).e-σt; σ∈R Biến đổi Fourier của φ(t) như sau: ∞ ∞ Φ (ω ) = F [φ (t )] = ∫ f (t )e −σ t e − jωt dt = ∫ f (t )e − (σ + jω )t dt −∞ −∞ ∞ Đặt s=σ+jω: Φ (ω ) = ∫ −∞ f (t )e − st dt F(s)=Φ(ω) ∞ Hay: F(s)= ∫ f(t)e − st dt (Biến đổi Laplace thuận) −∞ Ký hiệu: F ( s) = L[ f (t )] f (t ) φ (t ) = f (t )e −σ t t t Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 2
- 6.1.1. Biến đổi Laplace thuận Miền hội tụ (ROC) của biến đổi Laplace: tập hợp các biến s trong mặt phẳng phức có σ=Re{s} làm cho φ(t) tồn tại biến đổi Fourier Ví dụ: tìm ROC để tồn tại F(s) của các tín hiệu f(t) sau: (a ) f (t ) = e − at u (t ); a > 0 (b) f (t ) = e− at u (−t ); a > 0 (c) f (t ) = u (t ) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.2. Biến đổi Laplace của một số tín hiệu thông dụng (a) f(t)=δ(t) ⇒ F ( s ) = 1; ROC: s-plane 1 (b) f(t)=e-at u(t); a>0 ⇒ F ( s ) = ; ROC : Re{s} > −a s+a 1 (c) f(t)=-e-at u(-t); a>0 ⇒ F ( s ) = ; ROC : Re{s} < −a s+a 1 (d) f(t)=u(t) ⇒ F ( s ) = ; ROC : Re{s} > 0 s Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3
- 6.1.3. Các tính chất của biến đổi Laplace Tính chất tuyến tính: f1 (t ) ↔ F1 ( s ) f 2 (t ) ↔ F2 ( s ) ⇒ a1 f1(t) + a2 f2 (t) ↔ a1F1(s) + a2 F2 (s) 2 1 Ex : 2e− t u (t ) + e−2t u (t ) ↔ + ; ROC : Re{s} > −1 s +1 s + 2 Dịch chuyển trong miền thời gian: f (t ) ↔ F ( s ) ⇒ f (t − t0 ) ↔ F(s)e−st0 t −4 1 −3 s −5 s Ex : rect = u (t − 3) − u (t − 5) ↔ ( e − e ) 2 s Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.3. Các tính chất của biến đổi Laplace Dịch chuyển trong miền tần số: f (t ) ↔ F ( s ) ⇒ f (t)es0t ↔ F(s − s0 ) s s+a Ex : cos ( bt ) u (t ) ↔ 2 2 ⇒e − at cos ( bt ) u (t ) ↔ s +b (s + a)2 + b 2 Đạo hàm trong miền thời gian: f (t ) ↔ F ( s ) d n f (t ) ⇒ n ↔ s n F ( s ) − s n −1 f (0 − ) − s n − 2 f (1) (0 − ) − ... − f ( n −1) (0 − ) dt δ (t ) ↔ 1 ⇒ δ (1) (t ) ↔ s ⇒ δ ( n ) (t ) ↔ s n t −4 d 2 f (t ) f (t ) = rect ⇒ ↔? 2 dt 2 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4
- 6.1.3. Các tính chất của biến đổi Laplace Tích phân miền thời gian: t F(s) f (t ) ↔ F ( s ) ⇒ ∫ − f (τ )dτ ↔ 0 s 0− t ∫ f (τ )dτ F(s) ∫−∞ f (τ )dτ ↔ −∞ s + s Tỷ lệ thời gian: f (at) ↔ F ; a > 0 1 s f (t ) ↔ F ( s ) ⇒ a a Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.3. Các tính chất của biến đổi Laplace Tích chập miền thời gian: f1 (t ) ↔ F1 ( s); f 2 (t ) ↔ F2 ( s) ⇒ f1(t) ∗ f2 (t) ↔ F1(s)F2 (s) Tích chập miền tần số: f1 (t ) ↔ F1 ( s); f 2 (t ) ↔ F2 ( s) ⇒ f1 (t ) f2 (t ) ↔ 2π j 1 [ F1(s) ∗ F2 (s)] Đạo hàm trong miền tần số: f (t ) ↔ F ( s ) ⇒ dF(s) tf (t) ↔− ds 1 1 e −t u (t ) ↔ ⇒ te− t u (t ) ↔ 2 s +1 ( s + 1) t 2u (t ) ↔ ? Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 5
- 6.1.4. Biến đổi Laplace ngược σt Tín hiệu f(t) được tổng hợp như sau: f (t ) = φ (t ).e f (t ) = F −1[Φ (ω )].eσ t = 21π ∫ F ( s )e jωt dω .eσ t ∞ −∞ σ + j∞ f (t ) = 2π1 j ∫ F ( s )e st ds (Biến đổi Laplace ngược) σ − j∞ Ký hiệu: f(t) = L-1 [ F ( s )] Chúng ta không tập trung vào việc tính trực tiếp tích phân trên!!! Mô tả F(s) về các hàm đơn giản mà đã có kết quả trong bảng các cặp biến đổi Laplace. Thực tế ta quan tâm tới các hàm hữu tỷ!!! Zero của F(s): các giá trị của s để F(s)=0 Pole của F(s): các giá trị của s để F(s)→∞ Nếu F(s)=P(s)/Q(s) Nghiệm của P(s)=0 là các zero & nghiệm của Q(s)=0 là các pole Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.4. Biến đổi Laplace ngược s2 − 2 1 1 1 Ví dụ: 3 2 =− + + s + 3s + 2s s s +1 s + 2 Dùng ? s2 − 2 1 1 1 ⇒ L-1 3 2 = L-1 − + + = ( −1 + e− t + e −2t ) u (t ) s + 3 s + 2 s s s + 1 s + 2 Dùng bảng Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6
- 6.1.4. Biến đổi Laplace ngược Xét hàm hữu tỷ sau: bm s m + bm−1s m−1 + ... + b1s + b0 P( s ) F ( s) = = s n + an−1s n−1 + ... + a1s + a0 Q( s) m≥n: improper; m
- 6.1.4. Biến đổi Laplace ngược Phương pháp hàm tường minh xác định các hệ số: • Nhân 2 vế với Q(s); sau đó cân bằng thu được hệ phương trình theo các hệ số cần tìm • Giải hệ phương trình tìm các hệ số It’s easy to understand and perform, but it needs so much work and time!!! s2 − 2 k k k • ví dụ: 3 2 = 1+ 2 + 3 s + 3s + 2s s s + 1 s + 2 ⇒ s 2 − 2 = k1 ( s + 1)( s + 2) + k2 s( s + 2) + k3 s ( s + 1) k1 + k2 + k3 = 1 k1 = −1 ⇒ 3k1 + 2k2 + k3 = 0 ⇒ k2 = 1 2k1 = −2 k3 = 1 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.4. Biến đổi Laplace ngược Phương Heaviside xác định các hệ số: • Các pole không lặp lại: k i = ( s − λi ) F ( s ) s = λ i ki 0 = (s − λi )r F ( s) s =λi • Các pole lặp lại: 1 dj kij = ( s − λi )r F (s) ; j ≠ 0 j j ! ds s =λi 8s + 10 k k20 k21 k • Ví dụ: F ( s ) = 3 = 1 + 3 + 2 + 22 ( s + 1)( s + 2) ( s + 1) ( s + 2) ( s + 2) ( s + 2) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 8
- 6.1.4. Biến đổi Laplace ngược Phương hổn hợp: phương pháp nhanh nhất!!! 8s + 10 k k20 k21 k • Ví dụ: F ( s ) = 3 = 1 + 3 + 2 + 22 ( s + 1)( s + 2) ( s + 1) ( s + 2) ( s + 2) ( s + 2) 8s + 10 8s + 10 k1 = 3 =2 k20 = =6 ( s + 2 ) s=−1 ( s + 1) s=−2 sF ( s ); s → ∞ : k1 + k22 = 0 ⇒ k22 = −2 k20 k21 k22 5 10 − 8k1 − k20 − 4k22 s = 0 : k1 + + + = ⇒ k21 = 8 4 2 4 2 10 − 16 − 6 + 8 ⇒ k21 = = −2 2 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.4. Biến đổi Laplace ngược Ví dụ: tìm biến đổi Laplace ngược của các hàm sau: 7s - 6 (a ) F(s)= 2 s −s−6 2s 2 + 5 (b) F(s)= s 2 + 3s + 2 6( s + 34) (c) F(s)= 2 s ( s + 10 s + 34) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 9
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Tín hiệu và hệ thống - Hoàng Minh Sơn
57 p | 1577 | 436
-
Bài giảng Tín hiệu và hệ thống: Chương 7 - Huỳnh Thái Hoàng
42 p | 22 | 6
-
Bài giảng Tín hiệu và hệ thống: Chương 1 - Huỳnh Thái Hoàng
64 p | 63 | 6
-
Bài giảng Tín hiệu và hệ thống: Chương 2 - Huỳnh Thái Hoàng
53 p | 31 | 5
-
Bài giảng Tín hiệu và hệ thống: Chương 3 - Huỳnh Thái Hoàng
58 p | 39 | 5
-
Bài giảng Tín hiệu và hệ thống: Chương 4 - Huỳnh Thái Hoàng
88 p | 32 | 4
-
Bài giảng Tín hiệu và hệ thống: Chương 3 - Lê Vũ Hà (Bài 2)
23 p | 29 | 4
-
Bài giảng Tín hiệu và hệ thống: Chương 1 - Lê Vũ Hà
28 p | 59 | 4
-
Bài giảng Tín hiệu và hệ thống: Chương 1 - Lê Vũ Hà (Bài 2)
13 p | 51 | 4
-
Bài giảng Tín hiệu và hệ thống: Chương 5 - Lê Vũ Hà
29 p | 48 | 3
-
Bài giảng Tín hiệu và hệ thống: Chương 3 - Lê Vũ Hà (Bài 1)
29 p | 37 | 3
-
Bài giảng Tín hiệu và hệ thống: Chương 2 - Lê Vũ Hà (Bài 2)
19 p | 59 | 3
-
Bài giảng Tín hiệu và hệ thống: Chương 2 - Lê Vũ Hà (Bài 1)
21 p | 55 | 3
-
Bài giảng Tín hiệu và hệ thống: Chương 4 - Lê Vũ Hà
29 p | 37 | 3
-
Bài giảng Tín hiệu và hệ thống: Chương 1 - Trần Thủy Bình
61 p | 4 | 2
-
Bài giảng Tín hiệu và hệ thống: Chương 2 - Trần Thủy Bình
50 p | 8 | 2
-
Bài giảng Tín hiệu và hệ thống: Chương 3 - Trần Thủy Bình
30 p | 6 | 1
-
Bài giảng Tín hiệu và hệ thống: Chương 4 - Trần Thủy Bình
21 p | 3 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn