intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Tín hiệu và hệ thống: Lecture 7 – Trần Quang Việt

Chia sẻ: Lộ Minh | Ngày: | Loại File: PDF | Số trang:26

31
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng “Tín hiệu và hệ thống – Chương 4: Biểu diễn tín hiệu dùng biến đổi Fourier (Lecture 7)” cung cấp cho người học các kiến thức: Biểu diễn tín hiệu không tuần hoàn dùng biến đổi Fourier; các tính chất của biến đổi Fourier, biến đổi Fourier của tín hiệu tuần hoàn. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Tín hiệu và hệ thống: Lecture 7 – Trần Quang Việt

  1. Ch-4: Biểu diễn tín hiệu dùng biến đổi Fourier Lecture-7 4.1. Biểu diễn tín hiệu không tuần hoàn dùng biến đổi Fourier 4.2. Các tính chất của biến đổi Fourier 4.3. Biến đổi Fourier của tín hiệu tuần hoàn Signals & Systems – FEEE, HCMUT
  2. 4.1. Biểu diễn tín hiệu không tuần hoàn dùng biến đổi Fourier 4.1.1. Biến đổi Fourier 4.1.2. Điều kiện tồn tại biến đổi Fourier 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản Signals & Systems – FEEE, HCMUT
  3. 4.1.1. Biến đổi Fourier  Tín hiệu không tuần hoàn được xem như tín hiệu tuần hoàn có chu kỳ dài vô hạn Xét f(t) là tín hiệu không tuần hoàn: và fT0(t) là tín hiệu tuần hoàn được tạo thành do sự lặp lại f(t) với chu kỳ T0: Ta có quan hệ giữa f(t) và fT0(t) như sau: f(t)= lim f T0 (t) T0 Signals & Systems – FEEE, HCMUT
  4. 4.1.1. Biến đổi Fourier  Biểu diễn fT0(t) dùng chuỗi Fourier 1 T0 /2 -jnω0 t 1 S -jnω0 t 2 sinnω0S Dn = f (t)e dt= e dt= T0 -T0 /2 T0 T0 -S T0 nω0 T0 Dn 2sin S 2 n 0 n T0 n 0 0 2 / T0  Gấp đôi T0: T0 Dn 2sin S 2 n 0 n T0 n 0 0 2 / T0 Signals & Systems – FEEE, HCMUT
  5. 4.1.1. Biến đổi Fourier  Tiếp tục tăng T0 T0 Dn 2sin S 2 n 0 n T0 n 0 0 2 / T0  Khi T0 , T0Dn  hàm liên tục T0 /2 lim T0 .Dn = lim f T0 (t)e-jnω0t dt = f(t)e-jωt dt=F(ω) T0 T0 -T0 /2 -  Phổ của tín hiệu không tuần hoàn: F(nω0 ) 1 D(ω)= lim [D n ] lim F(ω) lim [Δω] 0 T0 T0 T0 2 Δω 0  Phổ của tín hiệu không tuần hoàn có tính chất phân bố  Hàm mật độ phổ tín hiệu, F( ), được xem là phổ tín hiệu Signals & Systems – FEEE, HCMUT
  6. 4.1.1. Biến đổi Fourier  Tích phân Fourier D n e jnω0t 1 ωt f(t) lim f T0 (t) T0 lim T0 lim F(n ω)e jn ω n 0 n 2 1 f(t) F(ω)e jωt dω 2π  Tóm lại ta có kết quả: f(t) F(ω) Phương trình phân tích – Biến F(ω)= f(t)e jωt dt đổi Fourier thuận 1 Phương trình tổng hợp – Biến f(t)= F(ω)e jωt dω đổi Fourier ngược 2π Cho phép phân tích/tổng hợp tín hiệu f(t) thành/từ các thành phần tần số, ej t Signals & Systems – FEEE, HCMUT
  7. 4.1.2. Điều kiện tồn tại biến đổi Fourier  Tín hiệu f(t) có năng lượng hữu hạn đều tồn tại F( ) hữu hạn và năng lượng sai số bằng 0.  Điều kiện Dirichlet:  Điều kiện 1: |f(t)|dt< T  Điều kiện 2: f(t) có hữu hạn cực đại và cực tiểu trong khoảng thời gian hữu hạn  Điều kiện 3: f(t) có hữu hạn số gián đoạn trong khoảng thời gian hữu hạn và gián đoạn phải có độ lớn là hữu hạn Signals & Systems – FEEE, HCMUT
  8. 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản  f(t)= (t): F(ω)= δ(t)e-jωt dt= δ(t)dt=1 δ(t) 1 (t ) 1 t 0 0  f(t)=e-atu(t); a>0: (a+jω)t 1 (a+jω)t 1 F(ω)= e u(t)e at jωt dt= e dt= e = 0 a+jω 0 a+jω at 1 e u(t); a>0 a+jω Signals & Systems – FEEE, HCMUT
  9. 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản 1 F( ) a2 2 F( ) tan 1 ( / a) F( ) F( ) 1/ a /2 /2 Signals & Systems – FEEE, HCMUT
  10. 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản  f(t)=u(t): j t j t 1 j t F( ) u (t )e dt e dt e ? 0 j 0 u (t ) 1 e at u (t ) u (t ) lim e at u (t ) a 0 t 0 at j t 1 a j F ( ) lim e u (t )e dt lim lim 2 2 a 0 a 0 a j a 0 a a 1 F ( ) lim a 0 a2 2 j Diện tích bằng 1 F( ) ( ) j u (t ) ( ) 1/ j Signals & Systems – FEEE, HCMUT
  11. 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản  f(t) xung cổng đơn vị: t 0 t /2 r e ct 1 t /2 /2 j t /2 j t 1 j t ej /2 e j /2 F( ) rect ( t )e dt e dt e /2 j /2 j j 2sin sin F( ) 2 2 sin c 2 rect ( t ) sin c 2 j 2 Signals & Systems – FEEE, HCMUT
  12. 4.2. Các tính chất của biến đổi Fourier  Tính chất tuyến tính: f1 (t) F1 (ω); f 2 (t) F2 (ω) a1f1 (t)+a 2f 2 (t) a1F1 (ω)+a 2 F2 (ω)  Phép dịch thời gian: f(t) F(ω)= f(t)e jωt dt f1 (t)=f(t t 0 ) F1 (ω)= f(t t 0 )e jωt dt jω( +t 0 ) jωt 0 = f( )e d =F(ω)e j t0 Linear phase shift f (t t0 ) F ( )e Signals & Systems – FEEE, HCMUT
  13. 4.2. Các tính chất của biến đổi Fourier Ví dụ: /2 Signals & Systems – FEEE, HCMUT
  14. 4.2. Các tính chất của biến đổi Fourier  Phép dịch tần số (điều chế): f(t) F(ω)= f(t)e jωt dt f1 (t)=f(t)e jω0t F1 (ω)= f(t)e jω0t e jωt dt = f(t)e j(ω ω0 )t dt F(ω ω0 ) jω0 t f(t)e F(ω ω0 ) 1 1 Ví dụ: f(t)cosω0 t F(ω 0) F(ω+ 0 ) 2 2 1 1 f(t)sinω0 t F(ω 0) F(ω+ 0 ) j2 j2 Signals & Systems – FEEE, HCMUT
  15. 4.2. Các tính chất của biến đổi Fourier  Tính đối ngẫu: f(t) F(ω)= f(t)e jωt dt 1 1 f(t)= F(ω)e jωt dω f( t)= F(ω)e jωt dω 2 2 1 f( ω)= F(t)e jωt dt 2πf( ω)= F(t)e jωt dt 2π F(t) 2πf( ω) Ví dụ: δ(t) 1 1 2πδ( ω)=2πδ(ω) t ωτ π ω rect τsinc sinc ω0 t rect τ 2 ω0 2ω0 Signals & Systems – FEEE, HCMUT
  16. 4.2. Các tính chất của biến đổi Fourier  Phép tỷ lệ thời gian: f(t) F(ω)= f(t)e jωt dt f1 (t)=f(at) F1 (ω)= f(at)e jωt dt ω 1 1 ωj τ a 0 : F1 (ω)= f(τ)e dτ = F a a a a 1 ω ω f(at) F 1 j τ 1 ω |a| a a 0 : F1 (ω)= f(τ)e dτ a = F a a a  Phép đảo thời gian: f(t) F(ω)= f(t)e jωt dt f( t) F( ω) a|t| 1 1 2a Ví dụ: e a j a j a2 2 Signals & Systems – FEEE, HCMUT
  17. 4.2. Các tính chất của biến đổi Fourier  Tích chập trong miền thời gian: f1 (t) F1 (ω); f 2 (t) F2 (ω) f(t)=f1 (t) f 2 (t) F(ω)= f1 (t) f 2 (t)e jωt dt F(ω)= f1 (τ)f 2 (t τ)dτ e jωt dt + = f1 (τ) f 2 (t τ)e jωt dt dτ f1 (τ)F2 (ω)e jωτ dτ - - F2 (ω) f1 (τ)e jωτ dτ F1 (ω)F2 (ω) f1 (t) f 2 (t) F1 (ω)F2 (ω) ωT Ví dụ: rect( 2tT ) T 2 sinc 4 T2 ωT Có: rect( 2tT ) rect( 2tT )= T2 t T 4 sinc2 4 ωT t T T 2 sinc 2 4 Signals & Systems – FEEE, HCMUT
  18. 4.2. Các tính chất của biến đổi Fourier  Tích chập trong miền tần số: f1 (t) F1 (ω); f 2 (t) F2 (ω) 1 f(t)= [F1 (ω) F2 (ω)]e jωt dω 2π 1 [ F1 (τ)F2 (ω-τ)dτ]e jωt dω 2π 1 F1 (τ)[ F2 (ω-τ)e jωt dω]dτ 2π 1 F1 (τ)e jτt [ F2 (x)e jxt dx]dτ 2π f 2 (t) F1 (τ)e jτt dτ 2πf1 (t)f 2 (t) 2πf1 (t)f 2 (t) F1 (ω) F2 (ω) Signals & Systems – FEEE, HCMUT
  19. 4.2. Các tính chất của biến đổi Fourier  Đạo hàm trong miền thời gian: f(t) F(ω) f(t) 1 2π F(ω)e jωt dω df(t) df(t) 1 2π jωF(ω)e jωt dω jωF(ω) dt dt n d f(t) n (jω) F(ω) n dt  Đạo hàm trong miền tần số: dF(ω) f(t) F(ω)= f(t)e jωt dt = -jtf(t)e jωt dt dω dF(ω) nd n F(ω) tf(t) j t n f(t) j dω dωn Signals & Systems – FEEE, HCMUT
  20. 4.2. Các tính chất của biến đổi Fourier  Tích phân trong miền thời gian: t f(t) u(t) f(τ)u(t τ)d f(τ)dτ f(t) u(t) F(ω)[πδ(ω)+1/jω] = πF(0)δ(ω)+F(ω)/jω t f(τ)dτ πF(0)δ(ω)+F(ω)/jω Ví dụ: Xác định biến đổi Fourier của các tín hiệu sau: f1 (t) f 2 (t) 2 -1 1 t t -1 1 -1 1 Signals & Systems – FEEE, HCMUT
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2