intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Vectơ trong không gian - Hình học 11 - GV. Trần Thiên

Chia sẻ: Trần Văn Thiên | Ngày: | Loại File: PPT | Số trang:14

223
lượt xem
44
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Vectơ trong không gian giúp học sinh nắm được điều kiện đồng phẳng, không đồng phẳng của ba vectơ trong không gian. Biểu thị một vectơ qua ba vectơ không đồng phẳng. Xác định được ba vectơ đồng phẳng hay không đồng phẳng trong không gian.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Vectơ trong không gian - Hình học 11 - GV. Trần Thiên

  1. BÀI GIẢNG HÌNH HỌC 11 CHƯƠNG III : VECTƠ TRONG KHÔNG GIAN QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN BÀI 1: VECTƠ TRONG KHÔNG GIAN
  2. 1.Vectơ trong không gian ĐỊNH NGHĨA VECTƠ 2 VECTƠ CÙNG PHƯƠNG V E C T Ơ 2 VECTƠ BẰNG NHAU VEC TƠ-KHÔNG
  3. PHÉP CỘNG CÁC VEC TƠ PHÉP TRỪ HAI VECTƠ CÁC PHÉP TOÁN VECTƠ PHÉP NHÂN VÉC TƠ VỚI MỘT SỐ TÍCH VÔ HƯỚNG CỦA HAIVÉC TƠ
  4. MỘT SỐ TÍNH CHẤT QUAN TRỌNG • Qui tắc 3 điểm. uuu uuu uuu r r r Với ba điểm A,B,C bất kì luôn có: AB + BC = AC uuu uuu uuu r r r • Qui tắc hình bình hành. BC − BA = AC uuu uuu uuu r r r Nếu ABCD là hình bình hành thì: AB + AD = AC • Tính chất trung điểm đoạn thẳng: uuu uuu r r r GA + GB = 0 G là trung điểm đoạn thẳng AB uuu 1 uuu uuu r r r ( Với O bất kì: OG = OA + OB • Tính chất trọng tâm tam giác: uuu uuu r 2 ) uuu r r r GA + GB + GC = 0 G là trọng tâm ∆ ABC uuu 1 uuu uuu uuu r r r r Với O bất kì: OG = (OA + OB + OC ) • Tính chất trọng tâm tứ diện. 3 uuu uuu uuu uuu r r r r r G là trọng tâm tứ diện ABCD GA + GB + GC + GD = 0 uuu 1 uuu uuu uuu uuu r r r r r Với O bất kì: ( OG = OA + OB + OC + OD 4 )
  5. • Chứng minh tính chất trọng tâm tứ diện. uuu uuu uuu uuu r r r r r GA + GB + GC + GD = 0 G là trọng tâm tứ diện ABCD uuu 1 uuu uuu uuu uuu r r r r r ( Với O bất kì: OG = OA + OB + OC + OD 4 ) A •Nếu gọi P,Q lần lượt là trung điểm của hai cạnh AB và CD thì: P uuu uuu uuu r r r GA + GB = 2GP G uuu uuu r r uuu r B GC + GD = 2GQ D Khi đó: Q C uuu uuu uuu uuu r r r r r uuu uuu r r r uuu uuu r r r GA + GB + GC + GD = 0 ⇔ 2GP + 2GQ = 0 ⇔ GP + GQ = 0 G là trung điểm đoạn thẳng PQ G là trọng tâm của tứ diện ABCD
  6. • Chứng minh tính chất trọng tâm tứ diện. uuu uuu uuu uuu r r r r r GA + GB + GC + GD = 0 G là trọng tâm tứ diện ABCD uuu 1 uuu uuu uuu uuu r r r r r ( ) Với O bất kì: OG = OA + OB + OC + OD 4 •Với điểm O bất kì ta có: A uuu uuu uuu r r r GA = OA − OG uuu uuu uuu r r r P GB = OB − OG uuu uuu uuu r r r G GC = OC − OG B D uuu uuu uuu r r r GD = OD − OG Q Bởi vậy: C uuu uuu uuu uuu r r r r r uuu uuu uuu uuu uuu r r r r r r GA + GB + GC + GD = 0 ⇔ − 4OG + OAuuu uuu +uuu = uuu uuu 1 r r + OB + OC OD 0 r r r ⇔ OG = (OA + OB + OC + OD ) 4
  7. 2.Các véc tơ đồng phẳng Định nghĩa r a r Ba vectơ gọi là đồng phẳng nếu ba r b đường thẳng chứa chúng cùng song c song với một mặt phẳng Nhận xét: B r r A Nếu ta vẽ: r b a uuu r uuu r uuu r r r r C c OA = a; OB = b; OC = c α O r r r Thì: Ba véc tơ a , b, c đồng phẳng khi và chỉ khi bốn điểm O,A,B,C cùng nằm trên một mặt phẳng
  8. Ví dụ1. Cho hình lập phương ABCD.A’B’C’D’ Hãy xác định rõ ba véc tơ nào sau đây đồng phẳng hoặc không đồng phẳng. uuu uuuu r r ruuuu 1) DA, DC , DD ' (Không đồng phẳng) A B uuu uuuu r ruuuuu r 2) DA, DC , D ' B ' (Đồng phẳng) D C uuur uuuu u ruuuu r 3) BC , CB , D C (Không đồng phẳng) ' ' ' ' uuur uuuuruuuu r A’ B’ 4) AA ', CC ', DB ' ( đồng phẳng) D’ C’
  9. Định lí 1. r r r r r Cho ba vectơ a , b, c trong đó a , b r r r không cùng phương.Khi đó ba véc tơ a , b, c đồng phẳng nếu và chỉ nếu có các số k và l sao cho r r r c = a+ k lb C r r B c b O r a A
  10. r r r Định lí 2. Nếu ba vectơ a , b, c không đồng phẳng r r r r r thì với mọi vectơ x đều có: x = k a +lb +mc ta Trong đó bộ 3 số k,l, m là duy nhất. C Chứng minh: Từ O vẽ r uuu r uuu r uuu r uuu r r r r r c OA = a, OB = b, OC = c, OX = x r X Vẽ XX’ song song (hoặc trùng) xr với OC cắt mp(OAB) tại X’ O b uuu uuuu uuuuu r r r B Ta có: OX = OX ' + X ' X ( 1) r uuuuur r X ' X = mc ( 2 ) A a X’ r r uuuu' r r r Vì a, b, OX đồng phẳng, a, bkhông cùng phương uuuu r r r ⇒ OX ' = k a + lb ( 3) r uuu r r r r Từ (1),(2),(3) ta có: x = OX = k a + lb + mc
  11. Chứng minh bộ ba số k,l,m là duy nhất. Nếu còn có bộ ba số k’, l’ , m’ sao cho: r r r r x = k a +l b +m c ' ' ' r r r r r r Thì: k a +lb +mc = k ' a +l ' b +m ' c r r r r ⇔( k − k ') a + (l −l ')b + ( m − m ')c = 0(*) r l ' −l r m ' −m r Nếu k’ ≠ kthì (*) ⇔a = b+ c r r r k −k ' k −k ' Suy ra a , b, c đồng phẳng ( trái với giả thiết) Vậy : k’ = k Chứng minh tương tự ta cũng có l’ = l, m’ = m Vậy bộ ba số k,l,m là duy nhất.
  12. Ví dụ 2. Cho hình lập phương ABCD.A’B’C’D’ cạnha. Gọi M, N lần lượt uuu r uuu r uuuu' r r r r là trung điểm của AD và BB’.Đặt AB = a, AD = b, AA = c uuuu uuur r ' r r r a)Biểu diễn MN , A C theo a , b, c r b)Chứng minh: MN⊥A’C A a uuuu uuu uuu uuu r r r r r B Giải: a) MN = MA + AB + BN M b −1 r r 1 r D r C = b+a+ c c N uuuu uuuu uuu 2 uuu r 2 r r r A ' C = A 'r + r + BC A AB r A’ B’ = −c + a + b rr rr rr D’ C’ b)Ta có: a.b = 0, b.c = 0, c.a = 0 r r −1 r r 1 r r r r uuuu uuuu 1 r2 r2 1 r2 MN . A ' C = ( b + a + c) (−c + a + b) = − b + a − c 2 2 2 2 2 2 a a =− +a2 − = 0 .Như vậy: MN⊥A’C 2 2
  13. BÀI TẬP VỀ NHÀ Bài 1, 2, 4, 6, 7 (SGK trang 59)
  14. Xin chân thành cảm ơn sự chú ý theo dõi của các thày giáo, cô giáo và các em h ọc sinh!
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2