Bài tập phương trình bậc 2 và các hàm số lượng giác
lượt xem 8
download
Phần này các bạn chú ý các thầy cô giảng bài để hiểu rõ. Đảm bảo sẽ nhớ lâu ! Nhưng mà chứng minh được rồi thì bạn cũng nên học thuộc để phản ứng nhạy bén trong các bài toán nhé.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập phương trình bậc 2 và các hàm số lượng giác
- LƯỢNG GIÁC CHÖÔNG III: PHÖÔNG TRÌNH BAÄ C HAI VÔÙ I CAÙ C HAØ M SOÁ LÖÔÏ N G GIAÙ C a sin2 u + b sin u + c = 0 ( a ≠ 0) a cos2 u + b cos u + c = 0 ( a ≠ 0) atg 2 u + btgu = c = 0 ( a ≠ 0) a cot g 2 u + b cot gu + c = 0 ( a ≠ 0) Caù c h giaû i: Ñaët : t = sin u hay t = cos u vôù i t ≤ 1 π t = tgu (ñieà u kieä n u ≠ + kπ ) 2 t = cot gu (ñieà u kieä n u ≠ kπ ) Caù c phöông trình treâ n thaø n h: at 2 + bt + c = 0 Giaû i phöông trình tìm ñöôïc t, so vôù i ñieà u kieä n ñeå nhaä n nghieä m t. Töø ñoù giaû i phöông trình löôï n g giaù c cô baû n tìm ñöôï c u. Baø i 56: (Ñeà thi tuyeån sinh Ñaï i hoï c khoá i A, naê m 2002) Tìm caù c nghieä m treâ n ( 0, 2π ) cuû a phöông trình ⎛ cos 3x + sin 3x ⎞ 5 ⎜ sin x + ⎟ = 3 + cos 2x ( * ) ⎝ 1 + 2 sin 2x ⎠ 1 Ñieà u kieä n : sin 2x ≠ − 2 ( ) ( Ta coù : sin 3x + cos 3x = 3sin x − 4 sin 3 x + 4 cos3 x − 3 cos x ) ( = −3 ( cos x − sin x ) + 4 cos3 x − sin3 x ) ( = ( cos x − sin x ) ⎡ −3 + 4 cos2 x + cos x sin x + sin 2 x ⎤ ⎣ ⎦ ) = ( cos x − sin x )(1 + 2 sin 2x ) ( Luù c ñoù : (*) ⇔ 5 ⎡sin x + ( cos x − sin x ) ⎤ = 3 + 2 cos2 x − 1 ⎣ ⎦ ) ⎛ 1⎞ ⎜ do sin 2x ≠ − ⎟ ⎝ 2⎠ ⇔ 2 cos2 x − 5 cos x + 2 = 0
- ⎡ 1 cos x = ⇔⎢ 2 ⎢ ⎢cos x = 2 ( loaïi ) ⎣ π 3 1 ⇔ x = ± + k2π (nhaä n do sin 2x = ± ≠− ) 3 2 2 π 5π Do x ∈ ( 0, 2π ) neâ n x = ∨ x = 3 3 Baø i 57: (Ñeà thi tuyeån sinh Ñaï i hoï c khoái A, naê m 2005) Giaû i phöông trình: cos2 3x.cos 2x − cos2 x = 0 ( *) 1 + cos 6x 1 + cos 2x Ta coù : (*) ⇔ .cos 2x − =0 2 2 ⇔ cos 6x.cos 2x − 1 = 0 (**) ( ) Caù c h 1: (**) ⇔ 4 cos3 2x − 3 cos 2x cos 2x − 1 = 0 ⇔ 4 cos4 2x − 3 cos2 2x − 1 = 0 ⎡cos2 2x = 1 ⇔⎢ 2 ⎢cos 2x = − 1 ( voâ nghieäm ) ⎢ ⎣ 4 ⇔ sin 2x = 0 kπ ⇔ 2x = kπ ⇔ x = ( k ∈ Z) 2 1 Caù c h 2: (**) ⇔ ( cos 8x + cos 4x ) − 1 = 0 2 ⇔ cos 8x + cos 4x − 2 = 0 ⇔ 2 cos2 4x + cos 4x − 3 = 0 ⎡cos 4x = 1 ⇔⎢ ⎢cos 4x = − 3 ( loaïi ) ⎣ 2 kπ ⇔ 4x = k2π ⇔ x = ( k ∈ Z) 2 Caù c h 3: phöông trình löôï n g giaù c khoâ n g maã u möï c : ⎡cos 6x = cos 2x = 1 (**) ⇔ ⎢ ⎣cos 6x = cos 2x = −1 Caù c h 4: cos 8x + cos 4x − 2 = 0 ⇔ cos 8x + cos 4x = 2 ⇔ cos 8x = cos 4x = 1 ⇔ cos 4x = 1 Baø i 58: (Ñeà thi tuyeån sinh Ñaï i hoï c khoái D, naê m 2005) ⎛ π⎞ ⎛ π⎞ 3 Giaû i phöông trình: cos4 x + sin 4 x + cos ⎜ x − ⎟ sin ⎜ 3x − ⎟ − = 0 ⎝ 4⎠ ⎝ 4⎠ 2
- Ta coù : (*) 1⎡ π⎞ ⎤ 3 ( ) 2 ⎛ ⇔ sin2 x + cos2 x − 2 sin2 x cos2 x + ⎢sin ⎜ 4x − 2 ⎟ + sin 2x ⎥ − 2 = 0 2⎣ ⎝ ⎠ ⎦ 1 1 3 ⇔ 1 − sin2 2x + [ − cos 4x + sin 2x ] − = 0 2 2 2 1 1 1 1 2 2 ( 2 ) ⇔ − sin2 2x − 1 − 2 sin2 2x + sin 2x − = 0 2 2 ⇔ sin 2x + sin 2x − 2 = 0 ⎡sin 2x = 1 ⇔⎢ ⎣sin 2x = −2 ( loaïi ) π ⇔ 2x = + k2π, k ∈ 2 π ⇔ x = + kπ, k ∈ 4 Baø i 59: (Ñeà th i tuyeån sinh Ñaï i ho ï c khoá i B, naê m 2004) Giaû i phöông trình: 5 sin x − 2 = 3 (1 − sinx ) tg 2 x ( *) Ñieà u kieä n : cos x ≠ 0 ⇔ sin x ≠ ±1 sin2 x Khi ñoù: (*) ⇔ 5 sin x − 2 = 3 (1 − sin x ) cos2 x sin2 x ⇔ 5sin x − 2 = 3 (1 − sin x ) 1 − sin2 x 3sin2 x ⇔ 5 sin x − 2 = 1 + sin x 2 ⇔ 2 sin x + 3sin x − 2 = 0 ⎡ 1 ⇔ ⎢sin x = 2 ( nhaän do sin x ≠ ±1) ⎢ ⎢sin x = −2 ( voâ nghieäm ) ⎣ π 5π ⇔x= + k2π ∨ x = + k2π ( k ∈ Z) 6 6 1 1 Baø i 60: Giaûi phöông trình: 2 sin 3x − = 2 cos 3x + ( *) sin x cos x Ñieà u kieä n : sin 2x ≠ 0 1 1 Luù c ñoù : (*) ⇔ 2 ( sin 3x − cos 3x ) = + sin x cos x
- 1 1 ⎣ ( ) ⇔ 2 ⎡3 ( sin x + cos x ) − 4 sin3 x + cos3 x ⎤ = + ⎦ sin x cos x sin x + cos x ⎣ ( ) ⇔ 2 ( sin x + cos x ) ⎡3 − 4 sin2 x − sin x cos x + cos2 x ⎤ = ⎦ sin x cos x ⎡ 1 ⎤ ⇔ ( sin x + cos x ) ⎢ −2 + 8 sin x cos x − =0 ⎣ sin x cos x ⎥ ⎦ ⎡ 2 ⎤ ⇔ ( sin x + cos x ) ⎢4 sin 2x − − 2⎥ = 0 ⎣ sin 2x ⎦ ⎡sin x + cos x = 0 ⎡ tgx = −1 ⇔⎢ 2 ⇔⎢ ⎢sin 2x = 1 ∨ sin 2x = −1 ( nhaän so vôùi ñieàu kieän ) ⎣4 sin 2x − 2sin 2x − 2 = 0 ⎣ 2 π π π 7π ⇔x=− + kπ ∨ 2x = + k2π ∨ 2x = − + k2π ∨ 2x = + k2π, k ∈ 4 2 6 6 π π 7π ⇔ x = ± + kπ ∨ x = − + kπ ∨ x = + kπ, k ∈ 4 12 12 Baø i 61: Giaûi phöông trình: ( ) cos x 2 sin x + 3 2 − 2 cos2 x − 1 =1 ( *) 1 + sin 2x π Ñieà u kieä n : sin 2x ≠ −1 ⇔ x ≠ − + mπ 4 Luù c ñoù : (*) ⇔ 2 sin x cos x + 3 2 cos x − 2 cos2 x − 1 = 1 + sin 2x ⇔ 2 cos2 x − 3 2 cos x + 2 = 0 2 ⇔ cos x = hay cos x = 2 ( voâ nghieäm ) 2 ⎡ π ⎢ x = 4 + k2π ⇔⎢ ⎢ x = − π + k '2π ( loaïi do ñieàu kieän ) ⎢ ⎣ 4 π ⇔ x = + k2π 4 Baø i 62: Giaûi phöông trình: x 3x x 3x 1 cos x.cos .cos − sin x sin sin = ( *) 2 2 2 2 2 1 1 1 Ta coù : (*) ⇔ cos x ( cos 2x + cos x ) + sin x ( cos 2x − cos x ) = 2 2 2 2 ⇔ cos x.cos 2x + cos x + sin x cos 2x − sin x cos x = 1 ⇔ cos 2x ( cos x + sin x ) = 1 − cos2 x + sin x cos x ⇔ cos 2x ( cos x + sin x ) = sin x ( sin x + cos x )
- ⇔ ( cos x + sin x )( cos 2x − sin x ) = 0 ( * * ) ( ) ⇔ ( cos x + sin x ) 1 − 2 sin 2 x − sin x = 0 ⎡ cos x = − sin x ⇔⎢ 2 ⎣ 2 sin x + sin x − 1 = 0 ⎡ π ⎡ ⎢ x = − 4 + kπ ⎢ tgx = −1 ⎢ ⎢ π ⇔ ⎢sin x = −1 ⇔ ⎢ x = − + k2π ( k ∈ Z) ⎢ 2 ⎢ 1 ⎢ ⎢sin x = ⎣ 2 ⎢ x = π + k2π ∨ x = 5π + k2π ⎢ ⎣ 6 6 ⎛π ⎞ Caù c h khaù c: (**) ⇔ tgx = −1 ∨ cos 2x = sin x = cos ⎜ − x ⎟ ⎝2 ⎠ Baø i 63: Giaûi phöông trình: 4 cos3 x + 3 2 sin 2x = 8 cos x ( *) Ta coù : (*) ⇔ 4 cos3 x + 6 2 sin x cos x − 8 cos x = 0 ( ⇔ cos x 2 cos2 x + 3 2 sin x − 4 = 0 ) ( ) ⇔ cos x ⎡ 2 1 − sin 2 x + 3 2 sin x − 4 ⎤ = 0 ⎣ ⎦ 2 ⇔ cos x = 0 ∨ 2 sin x − 3 2 sin x + 2 = 0 ⎡cos x = 0 ⎢ 2 ⇔ ⎢sin x = ⎢ 2 ⎢ ⎢sin x = 2 ( voâ nghieäm ) ⎣ π 2 π ⇔x= + kπ ∨ sin x = = sin 2 2 4 π π 3π ⇔ x = + kπ ∨ x = + k2π ∨ x = + k2π ( k ∈ Z ) 2 4 4 Baø i 64 : Giaûi phöông trình: ⎛ π⎞ ⎛ π⎞ cos ⎜ 2x + ⎟ + cos ⎜ 2x − ⎟ + 4 sin x = 2 + 2 (1 − sin x ) ( *) ⎝ 4⎠ ⎝ 4⎠ π (*) ⇔ 2 cos 2x.cos + 4 sin x = 2 + 2 (1 − sin x ) 4 ⇔ ( ) ( ) 2 1 − 2 sin2 x + 4 + 2 sin x − 2 − 2 = 0 ( ) ⇔ 2 2 sin2 x − 4 + 2 sin x + 2 = 0
- ⎡sin x = 2 ( loaïi ) ( ) ⇔ 2 sin x − 2 2 + 1 sin x + 2 = 0 ⇔ ⎢ 2 ⎢sin x = 1 ⎢ ⎣ 2 π 5π ⇔ x = + k2π hay x = + k2π, k ∈ 6 6 ( ) Baø i 65 : Giaû i phöông trình : 3 cot g 2 x + 2 2 sin 2 x = 2 + 3 2 cos x ( * ) Ñieà u kieä n : sin x ≠ 0 ⇔ cos x ≠ ±1 Chia hai veá (*) cho sin 2 x ta ñöôï c : cos2 x cos x (*) ⇔ 3 sin x 4 +2 2 = 2+3 2 ( ) sin2 x vaø sin x ≠ 0 cos x Ñaët t = ta ñöôï c phöông trình: sin 2 x ( ) 3t 2 − 2 + 3 2 t + 2 2 = 0 2 ⇔t= 2∨t= 3 2 cos x 2 * Vôù i t = ta coù : 2 = 3 sin x 3 ( ⇔ 3 cos x = 2 1 − cos2 x ) ⇔ 2 cos2 x + 3 cos x − 2 = 0 ⎡cos x = −2 ( loaïi ) ⇔⎢ ⎢cos x = 1 ( nhaän do cos x ≠ ±1) ⎢ ⎣ 2 π ⇔ x = ± + k2π ( k ∈ Z ) 3 cos x * Vôù i t = 2 ta coù : = 2 sin2 x ( ⇔ cos x = 2 1 − cos2 x ) ⇔ 2 cos2 x + cos x − 2 = 0 ⎡cos x = − 2 ( loaïi ) ⎢ ⇔⎢ 2 ⎢cos x = ( nhaän do cos x ≠ ±1) ⎣ 2 π ⇔ x = ± + k2π, k ∈ 4 4 sin2 2x + 6 sin 2 x − 9 − 3 cos 2x Baø i 66 : Giaûi phöông trình: = 0 ( *) cos x
- Ñieà u kieä n : cos x ≠ 0 Luù c ñoù : (*) ⇔ 4 sin2 2x + 6 sin2 x − 9 − 3 cos 2x = 0 ( ) ⇔ 4 1 − cos2 2x + 3 (1 − cos 2x ) − 9 − 3 cos 2x = 0 ⇔ 4 cos2 2x + 6 cos 2x + 2 = 0 1 ⇔ cos 2x = −1 ∨ cos 2x = − 2 1 ⇔ 2 cos2 x − 1 = −1 ∨ 2 cos2 x − 1 = − 2 ⎡cos x = 0 ( loaïi do ñieàu kieän ) ⇔⎢⎢cos x = ± 1 nhaän do cos x ≠ 0 ⎢ ( ) ⎣ 2 π 2π ⇔ x = ± + k2π ∨ x = ± + k2π ( k ∈ Z ) 3 3 1 2 Baø i 67: Cho f ( x ) = sin x + sin 3x + sin 5x 3 5 Giaû i phöông trình: f ' ( x ) = 0 Ta coù : f '(x) = 0 ⇔ cos x + cos 3x + 2 cos 5x = 0 ⇔ ( cos x + cos 5x ) + ( cos 3x + cos 5x ) = 0 ⇔ 2 cos 3x cos 2x + 2 cos 4x cos x = 0 ( ) ( ) ⇔ 4 cos3 x − 3 cos x cos 2x + 2 cos2 2x − 1 cos x = 0 ( ) ⇔ ⎡ 4 cos2 x − 3 cos 2x + 2 cos2 2x − 1⎤ cos x = 0 ⎣ ⎦ ⎡ ⎡ 2 (1 + cos 2x ) − 3⎤ cos 2x + 2 cos2 2x − 1 = 0 ⇔ ⎢⎣ ⎦ ⎢cos x = 0 ⎣ ⎡4 cos2 2x − cos 2x − 1 = 0 ⇔⎢ ⎣cos x = 0 1 ± 17 ⇔ cos 2x = ∨ cos x = 0 8 1 + 17 1 − 17 ⇔ cos 2x = = cos α ∨ cos 2x = = cos β ∨ cos x = 0 8 8 α β π ⇔ x = ± + kπ ∨ x = ± + kπ ∨ x = + kπ ( k ∈ Z ) 2 2 2
- 17 Baø i 68: Giaûi phöông trình: sin8 x + cos8 x = cos2 2x ( *) 16 Ta coù : ( ) 2 sin 8 x + cos8 x = sin4 x + cos4 x − 2 sin 4 x cos4 x 2 1 ( ) 2 = ⎡ sin 2 x + cos2 x ⎢ − 2 sin 2 x cos2 x ⎤ − sin4 2x ⎥ ⎣ ⎦ 8 2 ⎛ 1 ⎞ 1 = ⎜ 1 − sin2 2x ⎟ − sin 4 2x ⎝ 2 ⎠ 8 1 = 1 − sin2 2x + sin4 2x 8 Do ñoù : 1 ( *) ⇔ 16 ⎛ 1 − sin2 2x + ⎜ ⎝ 8 ⎞ ( sin4 2x ⎟ = 17 1 − sin2 2x ⎠ ) ⇔ 2 sin4 2x + sin2 2x − 1 = 0 ⎡sin2 2x = −1 ( loaïi ) 1 1 ⇔⎢ ⎢sin2 2x = 1 ⇔ (1 − cos 4x ) = 2 2 ⎢ ⎣ 2 π ⇔ cos 4x = 0 ⇔ x = ( 2k + 1) , ( k ∈ Z ) 8 5x x Baø i 69 : Giaûi phöông trình: sin = 5 cos3 x.sin ( *) 2 2 x Nhaän xeù t thaáy : cos = 0 ⇔ x = π + k2π ⇔ cos x = −1 2 Thay vaø o (*) ta ñöôï c : ⎛ 5π ⎞ ⎛π ⎞ sin ⎜ + 5kπ ⎟ = − 5. sin ⎜ + kπ ⎟ , khoâ n g thoû a ∀k ⎝ 2 ⎠ ⎝2 ⎠ x Do cos khoâ n g laø nghieä m cuû a (*) neâ n : 2 5x x x x x ( *) ⇔ sin . cos = 5 cos2 x. sin cos vaø cos ≠ 0 2 2 2 2 2 1 5 x ⇔ ( sin 3x + sin 2x ) = cos3 x.sin x vaø cos ≠ 0 2 2 2 x ⇔ 3sin x − 4 sin3 x + 2 sin x cos x = 5 cos3 x.sin x vaø cos ≠0 2 ⎧ x ⎪cos ≠ 0 ⇔⎨ 2 ⎪3 − 4 sin2 x + 2 cos x = 5 cos3 x ∨ sin x = 0 ⎩
- ⎧ x ⎪ cos ≠ 0 ⎪ 2 ⇔ ⎨ ⎪5 cos3 x − 4 cos2 x − 2 cos x + 1 = 0 ∨ sin x = 0 ⎪ ⎩ 2 ⎧cos x ≠ −1 ⎪ ⇔ ⎨ x ( ) ⎪( cos x − 1) 5 cos x + cos x − 1 = 0 ∨ sin 2 = 0 ⎩ 2 ⎧cos x ≠ −1 ⎪ ⎪⎡ ⎪ ⎢cos x = 1 ⎪⎢ ⇔ ⎨⎢ −1 + 21 ⎪ ⎢cos x = 10 = cos α ⎪⎢ ⎪⎢ −1 − 21 ⎪ ⎣cos x = ⎢ 10 = cos β ⎩ ⇔ x = k2π hay x = ±α + k2π hay x = ±β + k2π, ( k ∈ Z ) Baø i 70: Giaûi phöông trình: sin 2x ( cot gx + tg2x ) = 4 cos2 x ( *) Ñ ieà u kieä n : cos 2x ≠ 0 vaø sin x ≠ 0 ⇔ cos 2x ≠ 0 ∧ cos 2x ≠ 1 cos x sin 2x Ta coù : cot gx + tg2x = + sin x cos 2x cos 2x cos x + sin 2x sin x = sin x cos 2x cos x = sin x cos 2x ⎛ cos x ⎞ 2 Luù c ñoù : (*) ⇔ 2 sin x.cos x ⎜ ⎟ = 4 cos x ⎝ sin x cos 2x ⎠ 2 cos x ⇔ = 2 cos2 x cos 2x ⇔ ( cos 2x + 1) = 2 cos 2x ( cos 2x + 1) ⇔ ( cos 2x + 1) = 0 hay 1 = 2 cos 2x 1 ⇔ cos 2x = −1 ∨ cos 2x = ( nhaän do cos 2x ≠ 0 vaø cos 2x ≠ 1) 2 π ⇔ 2x = π + k2π ∨ 2x = ± + k2π, k ∈ 3 π π ⇔ x = + kπ ∨ x = ± + kπ, k ∈ 2 6 6x 8x Baø i 71 : Giaûi phöông trình: 2 cos2 + 1 = 3 cos ( *) 5 5
- ⎛ 12x ⎞ ⎛ 2 4x ⎞ Ta coù : (*) ⇔ ⎜ 1 + cos ⎟ + 1 = 3 ⎜ 2 cos − 1⎟ ⎝ 5 ⎠ ⎝ 5 ⎠ 4x 4x ⎛ 4x ⎞ ⇔ 2 + 4 cos3 − 3 cos = 3 ⎜ 2 cos2 − 1⎟ 5 5 ⎝ 5 ⎠ 4 Ñaë t t = cos x ( ñieàu kieän t ≤ 1) 5 Ta coù phöông trình : 4t 3 − 3t + 2 = 6t 2 − 3 ⇔ 4t 3 − 6t 2 − 3t + 5 = 0 ⇔ ( t − 1) ( 4t 2 − 2t − 5 ) = 0 1 − 21 1 + 21 ⇔ t = 1∨ t = ∨t = ( loïai ) 4 4 Vaä y 4x 4x • cos =1⇔ = 2kπ 5 5 5kπ ⇔x= ( k ∈ Z) 2 4x 1 − 21 • cos = = cos α ( vôùi 0 < α < 2 π ) 5 4 4x ⇔ = ±α + l 2 π 5 5α l 5π ⇔x=± + ,(l ∈ Z) 4 2 ⎛ π⎞ Baø i 72 : Giaûi phöông trình tg3 ⎜ x − ⎟ = tgx − 1 ( *) ⎝ 4⎠ π π Ñaë t t = x − ⇔ x = + t 4 4 ⎛π ⎞ 1 + tgt (*) thaø n h : tg3 t = tg ⎜ + t ⎟ − 1 = − 1 vôùi cos t ≠ 0 ∧ tgt ≠ 1 ⎝4 ⎠ 1 − tgt 2tgt ⇔ tg3 t = 1 − tgt ⇔ tg3 t − tg 4 t = 2tgt ⇔ tgt ( tg3 t − tg 2 t + 2 ) = 0 ⇔ tgt ( tgt + 1) ( tg 2 t − 2tgt + 2 ) = 0 ⇔ tgt = 0 ∨ tgt = −1( nhaän so ñieàu kieän ) π ⇔ t = kπ ∨ t = − + kπ, k ∈¢ 4 Vaä y (*)
- π ⇔x= + kπ hay x = kπ, k ∈¢ 4 sin 4 2x + cos4 2x Baø i 73 : Giaûi phöông trình = cos4 4x (*) ⎛π ⎞ ⎛π ⎞ tg ⎜ − x ⎟ tg ⎜ + x ⎟ ⎝4 ⎠ ⎝4 ⎠ Ñieà u kieä n ⎧ ⎛π ⎞ ⎛π ⎞ ⎧ ⎛π ⎞ ⎪sin ⎜ 4 − x ⎟ cos ⎜ 4 − x ⎟ ≠ 0 ⎪sin ⎜ 2 − 2x ⎟ ≠ 0 ⎪ ⎝ ⎠ ⎝ ⎠ ⎪ ⎝ ⎠ ⎨ ⇔⎨ ⎪sin ⎛ π + x ⎞ cos ⎛ π + x ⎞ ≠ 0 ⎪sin ⎛ π + 2x ⎞ ≠ 0 ⎪ ⎝ ⎜4 ⎟ ⎜4 ⎟ ⎪ ⎜2 ⎟ ⎩ ⎠ ⎝ ⎠ ⎩ ⎝ ⎠ ⇔ cos 2x ≠ 0 ⇔ sin 2x ≠ ±1 Do : ⎛π ⎞ ⎛π ⎞ 1 − tgx 1 + tgx tg ⎜ − x ⎟ tg ⎜ + x ⎟ = . =1 ⎝4 ⎠ ⎝4 ⎠ 1 + tgx 1 − tgx Khi cos2x ≠ 0 thì : (*) ⇔ sin 4 2x + cos4 2x = cos4 4x ⇔ 1 − 2 sin 2 2x cos2 2x = cos4 4x 1 ⇔ 1 − sin 2 4x = cos4 4x 2 1 ⇔ 1 − (1 − cos2 4x ) = cos4 4x 2 ⇔ 2 cos4 4x − cos2 4x − 1 = 0 ⎡ cos2 4x = 1 ⇔⎢ 2 ⇔ 1 − sin 2 4x = 1 ⎢ cos 4x = − 1 ( voâ nghieäm ) ⎢ ⎣ 2 ⇔ sin 4x = 0 ⇔ 2 sin 2x cos 2x = 0 ⇔ sin 2x = 0 ( do cos 2x ≠ 0 ) π ⇔ 2x = kπ, k ∈¢ ⇔ x = k , k ∈¢ 2 1 2 Baø i 74 :Giaû i phöông trình: 48 − − 2 (1 + cot g2x cot gx ) = 0 ( *) cos x sin x 4 Ñieà u kieä n : sin 2x ≠ 0 Ta coù :
- cos 2x cos x 1 + cot g2x cot gx = 1 + . sin 2x sin x sin 2x sin x + cos 2x cos x = sin x sin 2x cos x 1 = = ( do cos x ≠ 0 ) 2 sin x cos x 2 sin 2 x 2 1 1 Luù c ñoù (*) ⇔ 48 − − 4 =0 cos x sin x 4 1 1 sin 4 x + cos4 x ⇔ 48 = + 4 = cos4 x sin x sin 4 x cos4 x ⇔ 48sin 4 x cos4 x = sin 4 x + cos4 x ⇔ 3sin 4 2x = 1 − 2 sin 2 x cos2 x 1 ⇔ 3sin 4 2x + sin 2 2x − 1 = 0 2 ⎡ 2 2 ⎢sin x = − 3 ( loïai ) ⇔⎢ ⎢sin 2 x = 1 ( nhaän do ≠ 0 ) ⎢ ⎣ 2 1 1 ⇔ (1 − cos 4x ) = 2 2 ⇔ cos 4x = 0 π ⇔ 4x = + kπ 2 π kπ ⇔ x = + ( k ∈ Z) 8 4 Baø i 75 : Giaû i phöông trình 5 ( ) sin 8 x + cos8 x = 2 sin10 x + cos10 x + cos 2x ( *) 4 Ta coù : (*) 5 ( ) ( ⇔ sin8 x − 2 sin10 x + cos8 x − 2 cos10 x = ) 4 cos 2x 5 ⇔ sin 8 x (1 − 2 sin 2 x ) − cos8 x ( −1 + 2 cos2 x ) = cos 2x 4 5 ⇔ sin 8 x.cos 2x − cos8 x cos 2x = cos 2x 4 ⇔ 4 cos 2x ( sin x − cos x ) = 5 cos 2x 8 8
- ⇔ cos 2x = 0 hay 4 ( sin 8 x − cos8 x ) = 5 ⇔ cos 2x = 0 hay 4 ( sin 4 x − cos4 x )( sin 4 x + cos4 x ) = 5 ⎛ 1 ⎞ ⇔ cos 2x = 0 hay 4 ⎜ 1 − sin 2 2x ⎟ = 5 ⎝ 2 ⎠ ⇔ cos 2x = 0 hay − 2 sin 2x = 1(Voâ nghieäm ) 2 π ⇔ 2x = + kπ, k ∈¢ 2 π kπ ⇔x= + , k ∈¢ 4 2 Caù c h khaù c: Ta coù 4 ( sin 8 x − cos8 x ) = 5 voâ nghieä m Vì ( sin 8 x − cos8 x ) ≤ 1, ∀ x neâ n 4 ( sin 8 x − cos8 x ) ≤ 4 < 5, ∀x Ghi chuù : Khi gaë p phöông trình löôï n g giaùc daï n g R(tgx, cotgx, sin2x, cos2x, tg2x) vôù i R haø m höõ u tyû thì ñaë t t = tgx 2t 2t 1 − t2 Luù c ñoù tg2x = , sin 2x = , cos 2x = 1 − t2 1 + t2 1 + t2 Baø i 76 : (Ñeå thi tuyeån sinh Ñaïi hoï c khoái A, naêm 2003) Giaû i phöông trình cos 2x 1 cot gx − 1 = + sin2 x − sin 2x ( *) 1 + tgx 2 Ñieà u kieä n : sin 2x ≠ 0 vaø tgx ≠ −1 Ñaët t = tgx thì (*) thaø nh : 1 − t2 1 1 + t 2 + 1 ⎡1 − 1 − t ⎤ − 1 . 2t 2 −1 = ⎢ ⎥ t 1+t 2⎣ 1 + t2 ⎦ 2 1 + t2 1−t 1 − t 1 2t 2 t ⇔ = + . − ( do t ≠ −1) t 1+t 2 2 1+t 2 1 + t2 2 1 − t t 2 − 2t + 1 (1 − t ) ⇔ = = t 1 + t2 1 + t2 ⇔ ( 1 − t ) (1 + t 2 ) = ( 1 − t ) t 2 ⎡1 − t = 0 ⎡ t = 1 ( nhaän do t ≠ −1) ⇔⎢ ⇔⎢ 2 ⎣1 + t = (1 − t ) t ⎢2t − t + 1 = 0 ( voâ nghieäm ) 2 ⎣ π Vaä y (*) ⇔ tgx = 1 ⇔ x = + kπ ( nhaän do sin 2x = 1 ≠ 0) 4 Baø i 77 : Giaûi phöông trình: sin 2x + 2tgx = 3 ( * ) Ñieà u kieä n : cos x ≠ 0 Ñ aët t = tgx thì (*) thaøn h :
- 2t + 2t = 3 1 + t2 ⇔ 2t + ( 2t − 3) (1 + t 2 ) = 0 ⇔ 2t 3 − 3t 2 + 4t − 3 = 0 ⇔ ( t − 1) ( 2t 2 − t + 3) = 0 ⎡t = 1 ⇔⎢ 2 ⎣2t − t + 3 = 0 ( voâ nghieäm ) π Vaäy (*) ⇔ tgx = 1 ⇔ x = + kπ ( k ∈ Z ) 4 Baø i 78 : Giaû i phöông trình 2 cot gx − tgx + 4 sin 2x = ( *) sin 2x Ñieà u kieä n : sin 2x ≠ 0 2t Ñaë t t = tgx thì : sin 2x = do sin 2x ≠ 0 neân t ≠ 0 1 + t2 1 8t 1 + t2 1 (*) thaø n h : − t + = = +t t 1 + t2 t t 8t ⇔ = 2t 1 + t2 4 ⇔ = 1 ( do t ≠ 0 ) 1 + t2 ⇔ t 2 = 3 ⇔ t = ± 3 ( nhaän do t ≠ 0 ) ⎛ π⎞ Vaäy (*) ⇔ tgx = tg ⎜ ± ⎟ ⎝ 3⎠ π ⇔ x = ± + kπ, k ∈ 3 Baø i 79 : Giaû i phöông trình (1 − tgx )(1 + sin 2x ) = 1 + tgx ( * ) Ñieà u kieä n : cos x ≠ 0 Ñaët = tgx thì (*) thaø nh : 2t ⎞ (1 − t ) ⎛ 1 + ⎜ ⎟ =1+t ⎝ 1 + t2 ⎠ ( t + 1) = 1 + t 2 ⇔ (1 − t ) 1 + t2 ⎡ t = −1 ⎡ t = −1 ⇔ ⎢ (1 − t )(1 + t ) ⇔ ⎢ ⎢ =1 ⎣1 − t = 1 + t 2 2 ⎢ ⎣ 1+t 2 ⇔ t = −1 ∨ t = 0
- ⎡ tgx = −1 π Do ñoù (*) ⇔ ⎢ ⇔ x = − + kπ hay x = kπ, k ∈ ⎣ tgx = 0 4 Baø i 80 : Cho phöông trình cos 2x − ( 2m + 1) cos x + m + 1 = 0 ( * ) 3 a/ Giaû i phöông trình khi m = 2 ⎛ π 3π ⎞ b/ Tìm m ñeå (*) coù nghieä m treâ n ⎜ , ⎟ ⎝2 2 ⎠ Ta coù (*) 2 cos x − ( 2m + 1) cos x + m = 0 2 ⎧t = cos x ([ t ] ≤ 1) ⎪ ⇔⎨ 2 ⎪2t − ( 2m + 1) t + m = 0 ⎩ ⎧ t = cos x ([ t ] ≤ 1) ⎪ ⇔⎨ 1 ⎪t = ∨ t = m ⎩ 2 3 a/ Khi m = , phöông trình thaønh 2 1 3 cos x = ∨ cos x = ( loaïi ) 2 2 π ⇔ x = ± + k2π ( k ∈ Z ) 3 ⎛ π 3π ⎞ b/ Khi x ∈ ⎜ , ⎟ thì cos x = t ∈ [−1, 0) ⎝2 2 ⎠ 1 Do t = ∉ [ −1, 0] neân 2 π 3π ( *) coù nghieäm treân ⎛ , ⎞ ⇔ m ∈ ⎡ −1, 0) ⎜ ⎟ ⎣ ⎝2 2 ⎠ Baø i 81 : Cho phöông trình ( cos x + 1)( cos 2x − m cos x ) = m sin 2 x ( *) a/ Giaû i (*) khi m= -2 ⎡ 2π ⎤ b/ Tìm m sao cho (*) coù ñuù n g hai nghieä m treâ n ⎢0, ⎥ ⎣ 3⎦ Ta coù (*) ⇔ ( cos x + 1) ( 2 cos2 x − 1 − m cos x ) = m (1 − cos2 x ) ⇔ ( cos x + 1) ⎡2 cos2 x − 1 − m cos x − m (1 − cos x ) ⎤ = 0 ⎣ ⎦ ⇔ ( cos x + 1) ( 2 cos2 x − 1 − m ) = 0 a/ Khi m = -2 thì (*) thaø nh :
- ( cos x + 1) ( 2 cos2 x + 1) = 0 ⇔ cosx = -1 ⇔ x = π + k2π ( k ∈ Z ) ⎡ 2π ⎤ ⎡ 1 ⎤ b / Khi x ∈ ⎢ 0, ⎥ thì cos x = t ∈ ⎢ − ,1⎥ ⎣ 3⎦ ⎣ 2 ⎦ ⎡ 1 ⎤ Nhaä n xeù t raè n g vôù i moãi t treâ n ⎢ − ,1⎥ ta chæ tìm ñöôï c duy nhaá t moä t x treâ n ⎣ 2 ⎦ ⎡ 2π ⎤ ⎢0, ⎥ ⎣ 3⎦ ⎡ 1 ⎤ Yeâ u caà u baø i toaù n ⇔ 2t 2 − 1 − m = 0 coù ñu ù n g hai n ghieä m treâ n ⎢ − ,1⎥ ⎣ 2 ⎦ Xeù t y = 2t 2 − 1 ( P ) vaø y = m ( d ) Ta coù y’ = 4t ⎡ 2π ⎤ Vaä y (*) coù ñuù ng hai nghieä m treâ n ⎢0, ⎥ ⎣ 3⎦ ⎡ 1 ⎤ ⇔ (d) caé t (P) taï i hai ñieå m phaân bieä t treâ n ⎢ − ,1⎥ ⎣ 2 ⎦ 1 ⇔ −1 < m ≤ 2 2 Baø i 82 : Cho phöông trình (1 − a ) tg 2 x − + 1 + 3a = 0 (1) cos x 1 a/ Giaû i (1) khi a = 2 ⎛ π⎞ b/ Tìm a ñeå (1) coù nhieà u hôn moä t nghieä m treâ n ⎜ 0, ⎟ ⎝ 2⎠ π Ñieà u kieä n : cos x ≠ 0 ⇔ x ≠ + kπ 2
- (1) ⇔ (1 − a ) sin2 x − 2 cos x + (1 + 3a ) cos2 x = 0 ⇔ (1 − a ) (1 − cos2 x ) − 2 cos x + (1 + 3a ) cos2 x = 0 ⇔ 4a cos2 x − 2 cos x + 1 − a = 0 ⇔ a ( 4 cos2 x − 1) − ( 2 cos x − 1) = 0 ⇔ ( 2 cos x − 1) ⎡a ( 2 cos x + 1) − 1⎤ = 0 ⎣ ⎦ 1 ⎛ 1⎞ a/ Khi a = thì (1) thaø n h : ( 2 cos x − 1) ⎜ cos x − ⎟ = 0 2 ⎝ 2⎠ 1 π ⇔ cos x = = cos ( nhaän do cos x ≠ 0 ) 2 3 π ⇔ x = ± + k2π ( k ∈ Z ) 3 ⎛ π⎞ b/ Khi x ∈ ⎜ 0, ⎟ thì cos x = t ∈ ( 0,1) ⎝ 2⎠ ⎡ 1 cos x = t = ∈ ( 0,1) Ta coù : (1) ⇔ ⎢ 2 ⎢ ⎢2a cos x = 1 − a ( 2 ) ⎣ ⎧ ⎪a ≠ 0 ⎪ ⎧1 ⎫ ⎪ 1−a Yeâ u caà u baø i toaù n ⇔ (2) coù nghieä m treâ n ( 0,1) \ ⎨ ⎬ ⇔ ⎨0 < 0 ⎧1 ⎪ 2a ⎪ ⎪ 1 ⎪3 < a < 1 ⎪ ⇔⎨ ⇔ ⎨a < 0 ∨ a > ⇔ ⎨ ⎪ 1 − 3a ⎪ 3 ⎪a ≠ 1
- ⎧t = sin 2x ( t ≤ 1) ⎪ ⇔⎨ 2 ⎪2t − 3t + m − 1 = 0 ( 2 ) ⎩ a/ Khi m = 1 thì (1) thaø nh ⎧t = sin 2x ( t ≤ 1) ⎧ t = sin 2x ( t ≤ 1) ⎪ ⎪ ⎨ 2 ⇔⎨ 3 ⎪2t − 3t = 0 ⎩ ⎪t = 0 ∨ t = ( loaïi ) ⎩ 2 kπ ⇔ sin 2x = 0 ⇔ x = 2 ⎡ π⎤ b/ Khi x ∈ ⎢0, ⎥ thì sin 2x = t ∈ [ 0,1] ⎣ 4⎦ Nhaän thaáy raè n g moãi t tìm ñöôïc treâ n [ 0,1] ta chæ tìm ñöôïc duy nhaá t moä t ⎡ π⎤ x ∈ ⎢ 0, ⎥ ⎣ 4⎦ Ta coù : (2) ⇔ −2t 2 + 3t + 1 = m Xeù t y = −2t 2 + 3t + 1 treân [ 0,1] Thì y ' = −4t + 3 Yeâ u caà u baø i toaù n ⇔ (d) y = m caé t taï i hai ñieå m phaâ n bieä t treâ n [ 0,1] 17 ⇔2 ≤ m < 8 Caù c h khaù c :ñaët f (x) = 2t 2 − 3t + m − 1 . Vì a = 2 > 0, neâ n ta coù ⎧Δ =17 − 8m > 0 ⎪ f (0) = m −1≥ 0 ⎪ ⎪ 17 Yeâ u caà u baø i toaù n ⇔ ⎨ f (1) = m − 2 ≥ 0 ⇔ 2 ≤ m < ⎪ 8 S 3 ⎪ 0 ≤ = ≤1 ⎪ ⎩ 2 4 Baø i 84 : Cho phöông trình 4 cos5 x.sin x − 4 sin 5 x cos x = sin 2 4x + m (1 ) a/ Bieát raè ng x = π laø nghieäm cuûa (1). Haõ y giaûi (1) trong tröôøn g hôï p ñoù . π b/ Cho bieá t x = − laø moä t nghieä m cuû a (1). Haõ y tìm taá t caû nghieä m cuû a (1) thoû a 8 x − 3x + 2 < 0 4 2
- (1) ⇔ 4 sin x cos x ( cos4 x − sin 4 x ) = sin2 4x + m ⇔ 2 sin 2x ( cos2 x − sin2 x )( cos2 x + sin 2 x ) = sin 2 4x + m ⇔ 2 sin 2x.cos 2x = sin 2 4x + m ⇔ sin 2 4x − sin 4x + m = 0 (1) a/ x = π laø nghieä m cuû a (1) ⇒ sin2 4π − sin 4π + m = 0 ⇒m = 0 Luù c ñoù (1) ⇔ sin 4x (1 − sin 4x ) = 0 ⇔ sin 4x = 0 ∨ sin 4x = 1 π ⇔ 4x = kπ ∨ 4x = + k2π 2 kπ π kπ ⇔x = ∨x= + ( k ∈ Z) 4 8 2 ⎧t = x2 ≥ 0 ⎪ ⎧t = x2 ≥ 0 b/ x 4 − 3x 2 + 2 < 0 ⇔ ⎨ 2 ⇔⎨ ⎪t − 3t + 2 < 0 ⎩ ⎩1 < t < 2 ⇔ 1 < x2 < 2 ⇔ 1 < x < 2 ⇔ − 2 < x < −1 ∨ 1 < x < 2 ( *) π ⎛ π⎞ x=− thì sin 4x = sin ⎜ − ⎟ = −1 8 ⎝ 2⎠ π x = − laø nghieäm cuûa (1) ⇒ 1 + 1 + m = 0 8 ⇒ m = −2 Luù c ñoù (1) thaø nh : sin2 4x − sin 4x − 2 = 0 ⎧t = sin 4x ( vôùi t ≤ 1) ⎪ ⇔⎨ ⎪t − t − 2 = 0 2 ⎩ ⎧t = sin 4x ( vôùi t ≤ 1) ⎪ ⇔⎨ ⎪t = −1 ∨ t = 2 ( loaïi ) ⎩ ⇔ sin 4x = −1 π ⇔ 4x = − + k2π 2 π kπ ⇔x = − + 8 2 Keá t hôï p vôù i ñi eà u kieä n (*) suy ra k = 1 π π 3π Vaä y (1) coù n ghieä m x = − + = thoû a x4 − 3x2 + 2 < 0 8 2 8 Baø i 85 : Tìm a ñeå hai phöông trình sau töông ñöông 2 cos x.cos 2x = 1 + cos 2x + cos 3x (1 ) 4 cos2 x − cos 3x = a cos x + ( 4 − a )(1 + cos 2x ) ( 2)
- Ta coù : (1) ⇔ cos 3x + cos x = 1 + cos 2x + cos 3x ( ⇔ cos x = 1 + 2 cos2 x − 1 ) ⇔ cos x (1 − 2 cos x ) = 0 1 ⇔ cos x = 0 ∨ cos x = 2 ( ) Ta coù : (2) ⇔ 4 cos x − 4 cos x − 3 cos x = a cos x + ( 4 − a ) 2 cos2 x 2 3 ⇔ 4 cos3 x + ( 4 − 2a ) cos2 x ( a − 3) cos x = 0 ⎡cos x = 0 ⇔⎢ ⎢4 cos x + 2 ( 2 − a ) cos x + a − 3 = 0 2 ⎣ ⎛ 1⎞ ⇔ cos x = 0 hay ⎜ cos x − ⎟ [ 2 cos x + 3 − a ] = 0 ⎝ 2⎠ 1 a−3 ⇔ cos x = 0 ∨ cos x = ∨ cos x = 2 2 Vaä y yeâ u caà u baø i toaù n ⎡a − 3 ⎢ 2 =0 ⎢ ⎡a = 3 ⇔ ⎢a − 3 = 1 ⇔ ⎢a = 4 ⎢ 2 2 ⎢ ⎢a − 3 a−3 ⎣a < 1 ∨ a > 5 ⎢ ⎢ < −1 ∨ >1 ⎣ 2 ⎢ 2 Baø i 86 : Cho phöông trình : cos4x = cos 2 3x + asin 2 x (*) a/ Giaû i phöông trì nh khi a = 1 ⎛ π ⎞ b/ Tìm a ñeå (*) coù nghieä m treâ n ⎜ 0, ⎟ ⎝ 12 ⎠ 1 a Ta coù : ( *) ⇔ cos 4x = (1 + cos 6x ) + (1 − cos 2x ) 2 2 ( ) ⇔ 2 2 cos 2x − 1 = 1 + 4 cos 2x − 3 cos 2x + a (1 − cos 2x ) 2 3 ⎧t = cos 2x ⎪ ( t ≤ 1) ⇔⎨ ⎩ ( 2 ) ⎪2 2t − 1 = 1 + 4t − 3t + a (1 − t ) 3 ⎧t = cos 2x ⎪ ( t ≤ 1) ⇔⎨ ⎪−4t + 4t + 3t − 3 = a (1 − t ) 3 2 ⎩ ⎧1 = cos 2x ⎪ ( t ≤ 1) ⇔⎨ ( ) ⎪( t − 1) −4t + 3 = a (1 − t ) ( * *) ⎩ 2 a/ Khi a = 1 thì (*) thaø nh :
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập bất phương trình bậc 2
3 p | 3349 | 388
-
Bài toán phương trình bậc 2 có tham số
2 p | 822 | 95
-
BÀI TẬP PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
6 p | 1316 | 57
-
BÀI TẬP PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC
2 p | 890 | 55
-
Để học tốt toán 8 (tập 2): phần 1
131 p | 166 | 38
-
Bài giảng Giải tích 12 chương 4 bài 4: Phương trình bậc hai với hệ số thực
11 p | 188 | 20
-
Bài tập phương trình bậc nhất theo sin và cos
11 p | 205 | 13
-
hướng dẫn giải các dạng bài tập từ các đề thi tuyển sinh vào lớp 10 môn toán của các sở gd&Đt: phần 1
179 p | 90 | 12
-
Vấn đề 3: Phương trình bậc 2
6 p | 88 | 8
-
Bài tập trắc nghiệm môn Toán lớp 9
30 p | 114 | 7
-
Giải bài tập Phương trình bậc nhất một ẩn và cách giải SGK Đại số 8 tập 2
6 p | 155 | 5
-
Giải bài tập Phương trình quy về phương trình bậc hai Đại số 9 tập 2
10 p | 176 | 5
-
Giải bài tập Phương trình bậc hai một ẩn Đại số 9 tập 2
4 p | 135 | 2
-
Giải bài tập Phương trình bậc nhất hai ẩn SGK Toán 9 tập 2
7 p | 157 | 2
-
Hướng dẫn giải bài 34,35,36,37,38,39,40 trang 56,57 Đại số 9 tập 2
10 p | 191 | 2
-
Chuyên đề phương trình bậc 2 và ứng dụng hệ thức vi-ét
101 p | 16 | 2
-
Giải bài tập Hệ hai phương trình bậc nhất hai ẩn SGK Toán 9 tập 2
10 p | 138 | 1
-
Giải bài tập Ôn tập chương 4 Đại số 9 tập 2
10 p | 214 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn