Bất đẳng thức tích phân- Nguyễn Phú Khánh ĐH Đà Lạt - 2
lượt xem 11
download
Tham khảo tài liệu 'bất đẳng thức tích phân- nguyễn phú khánh đh đà lạt - 2', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bất đẳng thức tích phân- Nguyễn Phú Khánh ĐH Đà Lạt - 2
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Ta coù : α α ∫ ∫ 0 x tgx dx xdx 0 0 ∏ ∏ β β 0 < ∫ x tgx dx < ∫ xdx ⇒ 0 ∫ x tgx dx < ∫ 4 4 xdx α α 0 0 ∏ ∏ 0 ∫ x tgx dx ∫ xdx 4 4 β β ∏ 2 ∏ ⇒ 0 < ∫ 4 x tgx dx < 32 0 α β Chuù yù : (α , β ) ⊂ [ a, b ] thì b b ∫ f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx + ∫ f( x ) dx α β a b Tuy nhieân neáu : m M thì : f( x ) b b b b M ∫ dx ⇒ m ( b − a ) M (b − a ) m ∫ dx ∫ ∫ f( x ) dx f( x ) dx a a a a Nhöng (α , β ) ⊂ [ a, b ] thì m ∫ dx < ∫ f( x ) dx < M ∫ f( x ) dx b b b a a a (Ñaây laø phaàn maéc phaûi sai laàm phoå bieán nhaát )Do chöa hieåu heát yù nghóa haøm soá f( x ) chöùa (α , β ) lieân tuïc [ a, b ] maø (α , β ) ⊂ [ a, b ] ) 1 cos nx cos nx cos nx 1 1 1 1 1 ∫0 1 + x dx ∫ dx = ∫ ∫0 1 + x = ln 1 + x 0 = ln 2 2. dx 1+ x 0 1+ x 0 cos nx 1 ∫ ⇒ dx ln 2 0 1+ x e − x e −1 = 1 e 3⇒ 3. 1 x sin x 1 1 e− x .sin x e − x .sin x 3 3 3 e dx ∫ ∫ ∫ ⇒ dx dx 1 + x2 1 + x2 1 + x2 1 1 e− x .sin x 1 1 3 3 vôùi I = ∫ ∫ ⇒ dx .I dx 1 + x2 1 + x2 e 1 1 Ñaët x = tgt ⇒ dx = (1 + tg 2t ) dt (1 + tg t )dt = 2 ∏ ∏ ∏ x 1 3 ⇒ Ι = ∫∏ ∫ dt = 3 3 ∏ ∏ 4 1 + tg t ∏ 2 12 t 4 4 3 −x ∏ 3 e .sin x (*) (Caùch 2 xem baøi 4 döôùi ñaây ) ⇒∫ dx 1+ x 12e 1 Ñaúng thöùc xaûy ra khi : 12
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân x = 1 e − x = e −1 ⇒ x ∈ ∅, ∀x ∈ 1, 3 ⇔ sin x = 1 sin x = 1 −x ∏ 3 e .sin x Vaäy : ∫ dx < 1+ x 2 12e 1 Xem laïi chuù yù treân , ñaây laø phaàn sai laàm thöôøng maéc phaûi khoâng ít ngöôøi ñaõ voäi keát luaän ñaúng thöùc (*) ñuùng . Thaät voâ lyù e− x cos x e − x cos x e− x 3 3 3 ∫ ∫ ∫ 4. dx dx dx 1 + x2 1 + x2 1 + x2 1 1 1 Do y = e− x giaûm ⇒ max ( e− x ) = e −1 = 1 e e− x cos x ∏ 1 1 3 3 ;do I baøi 3 ∫ ∫1 1 + x 2 dx = 12e ⇒ dx 1 + x2 e 1 Daáu ñaúng thöùc : x = 1 e− x = e −1 ⇔ x ∈ ∅, ∀x ∈ 1, 3 ⇔ cos x = 1 cos x = 1 e − x cos x ∏ 3 Vaäy ∫ dx < 1+ x 2 12e 1 u = 1 du = − 1 x 2 dx 5. Ñaët x ⇒ dv = cos xdx v = sin x 200 ∏ 200 ∏ cos x 1 200 ∏ sin x ⇒∫ +∫ dx = sin x dx x2 100 ∏ 100 ∏ x x 100 ∏ 200 ∏ cos x 200 ∏ 1 1 1 200 ∏ ⇒∫ dx ∫ dx = − = x 100 ∏ 200 ∏ 2 100 ∏ 100 ∏ x x 200 ∏ cos x 1 Vaäy ∫ dx 200 ∏ x 100 ∏ Baøi toaùn naøy coù theå giaûi theo phöong phaùp ñaïo haøm . 13
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ex 1 e 1⇒1 e⇒ ex 6. 0 x (1 + x ) (1 + x ) (1 + x ) n n n ex 1 1 1 1 1 ⇒∫ ∫ (1 + x ) e∫ dx dx dx (1 + x ) (1 + x ) n n n 0 0 0 1− n 1 1− n 1 ( x + 1) ( x + 1) ex 1 ∫ (1 + x ) ⇔ dx e. 1− n 1− n n 0 0 0 1 1 x e 1 e 1 Vaäy : ∫ (1 + x ) 1 − n −1 1 − n −1 ; n > 1 dx n −1 2 n −1 2 n 0 Baøi toaùn naøy coù theå giaûi theo phöông phaùp nhò thöùc Newton . Chöùng minh raèng : neáu f(x) vaø g(x) laø 2 haøm soá lieân tuïc vaø x xaùc ñònh treân [a,b] , thì ta coù : ) (∫ 2 b b b ∫ f 2( x ) dx . ∫ g 2( x ) dx f ( x ) .g( x ) .dx a a a Caùch 1 : ( ) Cho caùc soá α1 , tuyø yù i ∈ 1, n ta coù : (α + α 2 2 + ... + α 2 n ) ( β 21 + β 2 2 + ... + β 2 n ) (α1β1 + α 2 β 2 + ... + α n β n ) (1) 2 1 α α1 α 2 Ñaúng thöùc (1) xaûy ra khi : = = ... n β1 β 2 βn Thaät vaäy : phaân hoaïch [a,b] thaønh n ñoaïn nhoû baèng nhau bôûi caùc ñieåm chia : a = x0 < x1 < x2 < ….
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ) (∫ 2 b b b Töø (5) ⇒ ∫ f 2 ( x)dx . ∫ g 2 ( x)dx f ( x).g ( x)dx a a a Caùch 2 : ∀t ∈ R + ta coù : 0 [tf ( x) − g ( x) ] = t 2 f 2 ( x) − 2.t. f ( x).g ( x) + g 2 ( x) 2 b b b ⇒ h(t ) = t 2 ∫ f 2 ( x)dx − 2t ∫ f ( x).g ( x)dx + ∫ g 2 ( x)dx 0 a a a h(t) laø 1 tam thöùc baäc 2 luoân khoâng aâm neân caàn phaûi coù ñieàu kieän : ah = t > 0 2 ⇔ ∆ 'h 0 ∆ h 0 2 ⇔ ∫ f ( x).g ( x)dx − ∫ f 2 ( x)dx . ∫ g 2 ( x)dx ≤ 0 b b b a a a ) (∫ 2 b b b ∫ f 2 ( x)dx . ∫ g 2 ( x)dx ⇒ f ( x).g ( x)dx a a a Chöùng minh raèng : 1 (e − 1) e x − x 5 3. e x − 1 < ∫ e2 t + e− t dt < 1 x 1. ∫ 1 + x3 dx < 2 0 2 0 3∏ 3cos x − 4sin x 5∏ 1 1 2. ∫ esin 2 dx > ∫ x 4. dx 1 + x2 2 0 4 0 Baøi giaûi : ) (∫ 2 b b b 1. Ta coù : f 2 ( x)dx . ∫ g 2 ( x)dx ( ñaõ chöùng minh baøi tröôùc ) ∫ f ( x).g ( x)dx a a a b b b ∫ ∫ ∫ ⇒ f 2 ( x)dx . g 2 ( x)dx f ( x).g ( x)dx a a a (1 + x ) . (1 − x + x 2 ) = (1 + x ) . (1 − x + x ) 1 + x3 = 2 (1 − x + x ) dx < ∫ (1 + x ) dx ∫ ( x − x + 1) dx 1 1 1 1 (1 + x ) ⇒ ∫ 1 + x3 dx = ∫ 2 2 0 0 0 0 1 1 x3 x 2 x2 5 1 ∫ 1 + x3 dx < + x + x = − 3 2 2 0 0 2 0 5 1 ⇒ ∫ 1 + x3 dx < 2 0 ∏ ∏ ∏ 2. ∫ esin dx = ∫ dx + ∫ 2 2 2 2 x esin x esin x 2 dx 0 0 0 ∏ ∏ x x 2 Ñaët t = + t ⇒ dx = dt ∏ 2 t 0 2 15
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ( ) dt sin 2 ∏ + t ∏ ∏ ∏ ⇒ ∫ esin dx = ∫ 2 esin x dx + ∫ 2 2 x 2 2 e 0 0 0 ∏ ∏ ∏ =∫ dx + ∫ ecos x dx = 2∫ 2 2 2 2 2 2 esin x esin x dx 0 0 0 2 2 ∏ ∏ sin 2 x cos 2 x Ta laïi coù ∫ edx = ∫ 2 e 2 .e 2 2 dx 0 0 ∏ ∏ 2 2 =∏ e ; e > e 2 2 0 0 3 ∏ ⇒ ∫ esin x dx > 2 2 0 Chuù yù : baøi naøy coù theå giaûi theo phöông phaùp ñaïo haøm . x x t 3. ∫ e 2t + e − t dt = ∫ e et + e−2t dt 2 0 0 ) (∫ 2 ∫ e dt ∫ ( e + e −2t )dt x t t t et + e−2t dt t t 2 e 0 0 0 vi ( ∫ f ( x).g ( x)dx ) 2 b b b ∫ f 2 ( x)dx . ∫ g 2 ( x)dx a a a ⇒ ( ∫ e + e dt ) x 1 2 (e − 1) e x − − 2 x < ( e − 1) e − 11 x −t 2t x x 2 2e o 1 (e − 1) e x − (1) 1 ⇒∫ e 2t + e − t dt x 2 0 Maët khaùc : e 2t + e − t > et ; ∀0 < t < x x x ⇒∫ e2t + e− t dt > ∫ et dt = e x − 1 (2) 0 0 1 (e − 1) e x − x Töø (1) vaø (2) suy ra : e x − 1 < ∫ e 2t + e − t dt < x 2 0 3cos x − 4sin x 1 32 + ( −4 )2 sin 2 x + cos 2 x = 5 4. x2 + 1 1 + x2 1 + x2 3cos x − 4sin x 3cos x − 4sin x 1 1 1 1 ∫ ∫ 5∫ ⇒ dx dx dx 1 + x2 1 + x2 1 + x2 0 0 0 Ñaët x = tgt ⇒ dx = (1 + tg 2t ) dt 16
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 (1 + tg t ) 2 ∏ x 0 1 1 1 1 ⇒∫ dx = ∫ dt = ∫ dt = ∏ 0 1+ x 0 1 + tg t 2 2 4 0 t 0 4 1 3cos x − 4sin x 5∏ ⇒ 4. ∫ dx 1+ x 2 4 0 Chöùng minh baát ñaúng thöùc tích phaân baèng phöông phaùp ñaïo haøm. Chöùng minh raèng : ∫( )( ) ∏ ∏2 ∏ 11 ∫ ( sin x + cos x )dx x+7 + 11 − x dx 4 1. 54 2 108 −7 4 4 0 2. 0 < ∫ x (1 − x 2 )dx < 4 3∏ 1 e 4. ∫ esin x dx > 2 27 0 2 0 Baøi giaûi : ( )( ) 11 − x ; x ∈ [ −7,11] 1. Xeùt f ( x ) = x+7 + 11 − x − x + 7 f '( x) = ⇒ f '( x) = 0 ⇔ x = 2 2 11 − x x + 7 x -7 2 11 f’(x) + 0 - f(x) 6 րց 32 32 11 11 11 f ( x) f ( x ) dx 6 ⇒ 3 2 ∫ dx ∫ 6 ∫ dx ⇒3 2 −7 −7 −7 ∫( ) 11 ⇒ 54 2 x + 7 + 11 − x dx 108 −7 2. Xeùt haøm soá : f(x) = x(1-x2) ; ∀x ∈ [ 0,1] ⇒ f ' ( x) = 3x 2 - 4 x + 1 1 ⇒ f’(x)=0 ⇔ x = ∨ x =1 3 x -∞ 0 1 +∞ 1 3 f’(x) + 0 - f(x) 4 27 րց 0 0 17
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 4 ⇒0 f ( x) 27 ( )( ) ∃x ∈ 0, 1 ; 1 , 0 ⇒ 0 < f < 4 3 3 27 ( x) va f (0) = f (1) = 0 41 4 1 1 ⇒ 0 < ∫ f ( x)dx < ∫0 dx ⇒ 0 < ∫0 f ( x)dx < 27 27 0 3. Xeùt haøm soá : ∏ ∏ f ( x) = sin x + cos x = 2 sin x + ; x ∈ 0, 4 4 ∏ ∏ f ' ( x) = 2 cos x + 0 , ∀x ∈ 0, 4 4 ∏ ⇒ f(x) laø haøm soá taêng ∀x ∈ 0, ⇒ f ( 0) f( x ) f ∏ ( 4) 4 ∏ ∏2 ∏ ∫0 ( sin x + cos x )dx 4 ⇒ 1 sin x + cos x 2⇒ 4 4 4. Nhaän xeùt ∀x > 0 thì e x > 1 + x ( ñaây laø baøi taäp Sgk phaàn chöùng minh baát ñaúng thöùc baèng pp ñaïo haøm) Xeùt f (t ) = et − 1 − t ; t 0 ⇒ f '(t ) = et − 1 > 0 ; ∀t > 0 ⇒ haøm soá f(t) ñoàng bieán ∀t 0 Vì x > 0 neân f(x) > f(0) = 0 ⇒ e x − 1 − x > 0 ⇔ e x > 1 + x (1) Do vaäy : ∀x ∈ ( 0, ∏ ) thi esin ( do(1) ) 2 > 1 + sin 2 x x 1 − cos 2 x ⇒ ∫ esin x dx > ∫ (1 + sin 2 x )dx = ∏ + ∫ ∏ ∏ ∏ 2 dx 2 0 0 0 3∏ ∏ ⇒ ∫ esin x dx > 2 2 0 Chöùng minh raèng : ∏ 2 x 1 3 3 cot gx 1 2 ∫1 x2 + 1dx 2 ∫∏ 6 x dx 3 1. 4. 5 12 ∏ 3 3 sin x 1 2 1 1 1 5. < ∫ ∫∏ 4 x dx 2 dx < 2. 3 0 2 + x − x2 4 2 ( ) ∏3 2∏ 3 1 1 ∏ 6. 2 4 2 < ∫ 1 + x + 4 1 − x dx < 4 ∫ 4 3. dx −1 cos x + cos x + 1 3 3 2 0 Baøi giaûi : 18
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 − x2 x 0 ; ∀x ∈ [1, 2] ; x ∈ [1, 2] . coù f '( x ) = 1. Xeùt : f ( x ) = (1 + x 2 ) x +1 2 2 ⇒ haøm soá nghòch bieán ∀x ∈ [1, 2] ⇒ f( 2) f( x ) f (1) 2 22 x 1 x 12 2 ⇒ ∫ dx ∫ 2 ∫1 ⇒ dx dx 5 x +1 2 51 x +1 2 2 1 2 x 1 2 ∫1 x 2 + 1 2 ⇒ 5 ∏ ∏ x.cos x − sin x sin x 2. Xeùt f ( x ) = ; ∀x ∈ ; ⇒ f '( x ) = x2 6 3 x ∏ ∏ Ñaët Z = x.cos x − sin x ⇒ Z ' = − x x < 0 ; ∀x ∈ ; 6 3 ∏ ∏ ⇒ Z ñoàng bieán treân ∀x ∈ ; vaø : 6 3 ∏ −3 3 ∏ ∏ Z Z∏ = < 0 ; ∀x ∈ ; ( 3) 6 3 6 ∏ ∏ ⇒ f '( x ) < 0 ; ∀x ∈ ; 6 3 x -∞ +∞ ∏ ∏ 6 3 f’(x) − ∏ f(x) 3 ց 33 2∏ 33 3 ⇒ f( X ) 2∏ ∏ 33 sin x 3 hay : 2∏ ∏ x 3 ∏3 3 3 ∏3 ∏ ∏ sin x 3 sin x 1 2 ∏ ∫∏ 6 ∫ ∫∏ 6 dx ⇒ 4 ∫ ⇒ 3 3 dx dx dx ∏ ∏ ∏ x x 2 6 6 3. Ñaët t = cos x ; x ∈ [ 0, ∏ ] ⇒ t ∈ [ −1,1] vaø f (t ) = t 2 + t + 1; t ∈ [ −1,1] 19
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 f '(t ) = 2t + 1; f '( t ) = 0 ⇔ t = − 2 t - ∞ -1 1 +∞ −1 2 f’(t) 0 + − f(t) 1 3 ց ր 3 4 3 3 ; ∀t ∈ [ −1,1] ⇒ f(t ) 4 3 cos 2 x + cos x + 1 3 ; ∀x ∈ [ 0, ∏ ] ⇒ 4 1 3 1 2 cos 2 x + cos x + 1 ⇒ hay 3 3 cos 2 x + cos x + 1 2 3 1∏ 1 2∏ ∏ ∫ dx ∫ ∫ dx ⇒ dx cos x + cos x + 1 2 30 0 30 ∏3 2∏ 3 1 ∏ ∫ ⇒ dx cos x + cos x + 1 3 3 2 0 Chuù yù : thöïc chaát baát ñaúng thöùc treân phaûi laø : ∏3 2∏ 3 1 ∏ (hoïc sinh töï giaûi thích vì sao)
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân f’(x) 0 − + f(x) 9 4 րց 2 2 9 ⇒2 f( x ) 4 ( )( ) ∃x ∈ 0, 1 ; 1 ,1 2 ⇒2< f < 9 2 vaø ( x) f ( 0) = f (1) = 2 4 9 2 1 1 ⇒ 2 < 2 + x − x2 < ⇒ < < 2+ x− x 4 3 2 2 21 1 11 1 ⇒ ∫ dx < ∫ ∫ dx dx < 2 + x − x2 30 0 20 2 1 1 1 ⇒
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Chöùng minh raèng : 3 ∏ ∫ − 2tg 4 x dx ≤ 90 3 4. 9 0 cos 4 2 1. 2.e ≤ ∫ e 2 −2 x− x dx ≤ 2 e 4 0 ∏ 1 12 200 2. ∫ 5. ∫ e x +1dx ≥ 1 + 2 e- x dx < 0, 005 4 100 0 9 100 1 x 3. 90 − ln10 ≤ ∫ e x dx < 90 + + ln10 ∏ tg 2 ∫ dx < 1 2 6. 200 10 x 0 Baøi giaûi : ; x ∈ [ 0, 2] coù f '( x ) = 1 − 2 x 1. Ñaët f ( x ) = x − x 2 1 coù f '( x ) = 0 ⇔ x = 2 x -∞ 0 2 +∞ 1 2 f’(x) 0 + − f(x) 1 4 րց −2 0 1 ⇒ −2 f( x) 4 1 hay − 2 x − x2 4 2 2 2 1 = 4 e ⇒ e−2 ≤ ∫ dx ≤ ∫ e x − x dx e ∫ dx 2 2 ⇒ e −2 e x−x 4 4 e 0 0 0 2 ∫ x − x2 −2 4 2.e e dx 2. e 0 2 Chuù yù : thöïc chaát baát ñaúng thöùc treân laø : 2.e −2 < ∫ e x − x dx < 2. 4 e 2 0 1 ≤ 2 ; (1) x ≠ 0 2. Tröôùc heát ta chöùng minh : e − x2 x Ñaët t = x 2 ; x ≠ 0 ⇒ t > 0 1 Giaû söû ta coù (1) vaø (1) ⇔ e − t ; t > 0 ⇔ et t ;t >0 t 0 ( 2) ; t > 0 ⇔ et − t Ñaët f ( x ) = et − t co f '( t ) = et − 1 > 0 , t > 0 22
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt công thức Toán cấp 3 - THPT Ngô Thời Nhiệm
23 p | 2185 | 565
-
tích phân phổ thông trung học phần 1
15 p | 415 | 175
-
Chứng minh đẳng thức tổ hợp không dùng đạo hàm, tích phân - Nguyễn Công Định
3 p | 1097 | 99
-
Đề thi thử đại học môn Toán năm 2012 - 2013 - THPT Nguyễn Huệ
6 p | 213 | 57
-
Bài giảng Công nghệ 12 bài 10: Thực hành - Mạch nguồn điện một chiều
26 p | 509 | 47
-
Bài giảng 16: Hàm số đa thức
16 p | 201 | 44
-
Tổng hợp 5 bài lập dàn ý các dạng đề trong truyện ngắn Rừng xà nu của Nguyễn Trung Thành
11 p | 605 | 43
-
Bài giảng Sinh học 8 bài 37: Thực hành phân tích một khẩu phần cho trước
11 p | 1592 | 34
-
mẹo phân tích nhanh 1 phân thức
2 p | 147 | 33
-
Các chuyên đề Toán phổ thông: Tập 1
43 p | 127 | 23
-
Bất đẳng thức tích phân- Nguyễn Phú Khánh ĐH Đà Lạt - 3
11 p | 106 | 13
-
Bất đẳng thức tích phân- Nguyễn Phú Khánh ĐH Đà Lạt - 1
11 p | 93 | 13
-
Phương pháp tính tích phân bằng nguyên hàm từng phần (Phần 2)
3 p | 119 | 9
-
Phương pháp tính tích phân bằng đổi biến số
3 p | 93 | 5
-
Giải bài tập Thực hành: Đọc bản đồ, phân tích và đánh giá ảnh hưởng của tài nguyên khoáng sản đối với phát triển công nghiệp ở Trung du và miền núi Bắc Bộ SGK Địa lí 9
3 p | 119 | 3
-
Phân tích phần mở đầu bản “Tuyên ngôn Độc lập” để làm nổi bật giá trị nội dung tư tưởng và nghệ thuật lập luận của Chủ tịch Hồ Chí Minh
5 p | 92 | 3
-
Đề thi giữa học kì 1 môn Toán lớp 8 năm 2023-2024 - Trường THCS Nguyễn Huệ, Đại Lộc
3 p | 10 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn