intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bất đẳng thức tích phân- Nguyễn Phú Khánh ĐH Đà Lạt - 1

Chia sẻ: Le Nhu | Ngày: | Loại File: PDF | Số trang:11

94
lượt xem
13
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chuyên đề bao gồm các dạng toán Bất đẳng thức Tích phân được biên soạn theo chương trình toán học cải cách ban cơ bản, nhằm trang bị cho học sinh các kiến thức cần thiết kgi làm các bài toán bất đẳng thức Tích phân.Chuyên đề được biên soạn bởi Ts. Nguyễn Phú Khánh - ĐH Đà Lạt

Chủ đề:
Lưu

Nội dung Text: Bất đẳng thức tích phân- Nguyễn Phú Khánh ĐH Đà Lạt - 1

  1. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Chöùng minh raèng : 1 1 π π 3π π 1 1. dx ∫ 4 4. ln 2 < ∫ dx < 3 − 2 sin 2 x 2 4 1+ x x π 0 4 4 1 3 cot g 1 π π 1 5. ∫ dx 2. dx ∫ 3 2 x + x+1 8 12 x 3 π 0 4 1 1 π x 1 π π 3. dx ∫ 1 2 6. dx ∫ 2 6 0 x + x + x3 + 3 5 4 18 6 1− x 0 93 Baøi giaûi : 3π 1 1 1 1 π sin 2 x 1 ⇒ 1 2 sin 2 x 2 ⇒ 1 3 − 2 sin 2 x 2 ⇒ 1. x sin x 1 ⇒ 1 ⇒ 3 − 2 sin 2 x 4 4 2 2 2 1 3π 1 1 π π 3π 3π 3π ⇒ ∫π 4 dx ∫π 4 dx ∫ π 4 dx ⇒ ∫π 4 3 − 2 sin 2 xdx 2 4 2 24 4 3 − 2 sin x 4 4 1  3 cot gx 1 3 cot gx 4 3 π3 π cot gx 4 π3 π π  2. x dx ∫π 3 dx dx π ∫π 4 π ∫π 4 ⇒ ⇒ ⇒ 4 x x 3 1 4 3 π π 4 π x π  3 π cot gx 1 ∫π 4 x dx 3 3 ⇒ 12 Baøi toaùn naøy coù theå giaûi theo phöông phaùp ñaïo haøm. 1 3. 0 x < 1 ⇒ 0 x 6 .... x 2 < 1 ⇒ −1 − x 2 − x 6 0 ⇒ 0 1 − x 2 1 − x 6 1 ⇒ 1 − x 2 1 − x6 1 2 1 1 1 1 1 dx I ⇒1 ⇒ ∫ 2 dx ∫ 2 1− x 1− x 1 − x6 6 2 0 0 1  π π 1 Vôùi I = ∫ 2 dx Ñaët x = sin t ; t ∈  − ;  ⇒ dx = cos tdt  2 2 1 - x2 0 1 x 0 1 1 cos tdt π π 1 2 1 1 = ∫ 2 dt = Vaäy ∫0 1 − x 6 dx 6 ⇒I=∫ 2 2 6 2 π t 0 1 − sin 2 t 0 0 6 x 1 ⇒ x2 x x x ⇒ 1 + x2 1 + x x 1 + x 4. 0 x 1 ⇒ x 1 1 1 ( 1) ; ∀x ∈ [ 0,1] ⇒ x + 1 1 + x x 1 + x2 Daáu ñaúng thöùc trong (1) xaûy ra khi : VT(1) VG(1) x = 0 ⇒ x∈∅  VG(1) VP(1) x = 1 1 1 1 dx 1 π 1 1 1 Do ñoù : ∫ dx < ∫ dx < ∫ 2 ⇒ ln 2 < ∫ dx < 0 1+ x 0 x +1 4 1+ x x 1+ x x 0 0 1 π 1 Chuù yù : ∫ dx = Xem baøi taäp 5 . 0 1 + x2 4 1
  2. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 1 5. 0 1 ⇒ x2 x2 + x ⇒ 2 + 2 x2 x2 + x + 2 ⇒ x ⇒ x2 + x2 x 2 2 x + x+ 2 2( x + 1) 1 11 1 1 1 1 ∫0 x2 + 1 dx ; I = ∫0 1 + x2 dx ⇒∫ dx x + x+2 2 2 0 1 dt = (1 + tg 2 t)dt Ñaët x = tgt ⇒ dx = cos 2 t 0 1 π 1 + tg 2 t 1 π π π x π 1 Vaäy ∫ 2 ⇒I=∫ 4 dt = ∫ 4 dt = ⇒ I = dx 0 1 + tg t 4 4 0 x + x+2 8 2 π 0 0 t 4 0 x5 x 3  6. 0 x 1 ⇒  ⇒ 0 x5 + x 4 2 x 3 ⇒ x3 + 3 x 5 + x4 + x3 + 3 3 x 3 + 3 0 x4 x 3   1 1 1 x x x ⇒ ⇒3 3x + 3 x + x + x3 + 3 x +3 3x + 3 x + x + x3 + 3 x +3 3 5 4 3 5 4 3 x x x 1 1 1 dx ( 1 ) ⇒∫ ∫ ∫ dx dx 0 3x + 3 x + x + x3 + 3 x +3 3 5 4 3 0 0 11 x 0 1 x x 1 ° I1 = ∫ dx ; Ñaë t x = t 2 ;( t 0) ⇒ dx = 2 tdt dx = ∫ 3 0 3 x3 + 3 3 0 x +1 0 1 t 0 1 2 2 1 3 t 2 . dt 1 1 2t π t 1 du Ñaët u = t 3 ⇒ du = 3t 2 dt I1 = ∫ 6 dt = ∫ 3 2 ⇒ I1 = ∫ 2 = 0 1 9 0 u +1 18 3 0 t +1 9 0 (t ) + 1 u π Keát quaû : I = (baøi taäp 5) 4 π x x 1 1 °I2 = ∫ 3 (töông töï) Vaäy (1) ⇔ I1 ∫ 5 = dx I2 0 x + x + x3 + 3 0 x +3 4 93 π π x 1 ∫ dx 18 x + x + x3 + 3 5 4 93 0 π π sin x .cos x 1,Chöùng minh raèng : ∫ 2 dx (1 + sin x ) (1 + cos x ) 4 4 12 0 ) (  π  π t tg 4 x 2 tg 3t + 3 tgt 2.Neáu : I ( t ) = ∫ dx > 0 , ∀t ∈  0 ,  ; thì : tg  t +  > e 3  4  4 cos 2 x 0 Baøi giaûi : 3 2 + cos2 x + sin2 x 2 + sin 4 x + cos 4 x 1. Ta coù : = (1 + sin 4 x)(1 + cos4 x) (1 + sin 4 x)(1 + cos 4 x) (1 + sin 4 x)(1 + cos 4 x) 3 1 + sin 4 x + 1 + cos 4 x 1 1 ⇒ = + (1 + sin x)(1 + cos 4 x) (1 + sin x)(1 + cos x) 1 + sin x 1 + cos 4 x 4 4 4 4 2
  3. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 3 sin x. cos x 1  sin 2 x sin 2 x  sin x. cos x sin x. cos x sin x. cos x ⇒ + ⇒  1 + sin 4 x + 1 + cos 4 x  (1 + sin 4 x)(1 + cos 4 x) 1 + sin x 4 1 + cos x 4 (1 + sin 4 x)(1 + cos 4 x) 6  3 sin x. cos x 1  π 2 sin 2 x sin 2 x  π π ⇒∫  ∫0 1 + sin 4 x dx + ∫ 2 2 dx dx  0 (1 + sin 4 x)(1 + cos 4 x ) 6 0 1 + cos 4 x  sin 2 x π °J1 = ∫ 2 Ñaë t t = sin 2 x ⇒ dt = sin 2 xdx dx 0 1 + sin 4 x π 0 x 2 ⇒ J = 1 dt = π (keát quaû I= π baøi taäp 5) ∫0 t 2 + 1 4 1 0 4 1 t sin 2 x π °J2 = ∫ 2 u = cos 2 x ⇒ du = − sin 2 xdx Ñaë t dx 0 1 + cos 4 x π 0 x π π 1 du 2 = (keát quaû I= baøi taäp 5) ⇒ J2 = ∫ 2 0 0 u +1 4 4 u 1 1 sin x. cos x sin x. cos x π π π ( I + J ) Vaäy ∫ 2 ⇒∫ 2 dx dx 0 (1 + sin 4 x)(1 + cos 4 x) 0 (1 + sin 4 x )(1 + cos 4 x) 6 12 dt 2. Ñaët t = tgx ⇒ dt = (1 + tg 2 x) dx ⇒ dx = 1 + t2 tgt tgt t 4 tgt t 4 dt tgt  2 dt 1 13 1 t-1  13 1 tgt - 1 I =∫ t 0 1 - t 2 . 1 + t 2 = ∫0 1 - t 2 = ∫0  -t - 1 + 1 - t 2 dt =  - 3 t - t - 2 ln t + 1  0 = - 3 tg t - tgt - 2 ln tgt + 1     2 1+t Vì 1 1 tgt - 1 I > 0 neân : - tg 3 t - tgt - ln >0 (t) 3 2 tgt + 1 3 2  tg t + 3 tgt   1 tgt − 1 1 π 1 π   = ln tg  t +  > tg 3 t + tgt ⇒ tg  t +  > e 3  ⇔ ln  2 tgt + 1 2 4 3 4   1 1 x2 1 vaø lim In dx = 0 Chöùng minh : 1. I n = ≤ ∫ In dx ≤ 2( n + 1) n+1 x +1 n→+∞ 0 2 1 2. J n = x n ( 1 + e-x ) Chöùng minh : 0 < ∫ J n dx vaø lim J n dx = 0 n +1 n→+∞ 0 Baøi giaûi : xn xn xn 11 1 1 1 1 x n ⇒ ∫ x n dx x n dx 1. 0 x 1 ⇒ 1 x + 1 2 ⇒ 1; ∫0 x + 1dx ∫ 2 x +1 20 2 x +1 0 1 1 x n+1 x n+1 xn xn 1 1 1 1 ∫0 x + 1dx ∫0 x + 1dx ⇒ ⇒ 2 ( n + 1) 2 ( n +1) n +1 0 n +1 0 3
  4. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân  1  n→∞ 2 ( n + 1) = 0 lim xn  Ta coù :  ⇒ lim =0 n→∞ x + 1  lim 1 = 0  n→∞ n + 1  x n (1 + e − x ) x n (1 + e − x ) e0 = 1 ⇒ 1 1 + e− x e− x 2 ⇒ xn 2. x n hay 0 2 xn 1⇒ 0 2. 0 x 1n (1 + e x ) dx x n (1 + e − x ) dx 2 1 1 ∫ 2∫ x ndx ⇒ 0 ∫ − ⇒0 x n +1 0 0 0 ⇒ lim xn (1 + e− x ) dx = 0 2 Ta coù : lim =0 n→∞ n + 1 n→∞ Chöùng minh raèng : π 2 1. ∫ π cos x(4 − 3 cos x)(2 cos x + 2)dx ≤ 8π 2. ∫ 2 ln x(9 − 3 ln x − 2 ln x)dx ≤ 8(e − 1) -2 1 2π 49π π π 3. ∫π 4. ∫ 3 4 sin x(1 + 2 sin x )(5 − 3 sin x)dx < tgx(7 − 4 tgx)dx ≤ 3 64 0 4 243π π 5. ∫ sin 4 x. cos6 xdx ≤ 6250 0 Baøi giaûi : Ñaët f(x) = cosx(4 - 3 cosx )(2 cosx + 2) 3  cos x + 4 − 3 cos x + 2 cos x + 2    =8 cauchy f(x)     3     π π π 2 2 2 ⇒∫ 8∫ dx ⇒ ∫ cos x(4 − 3 cos x )(2 cos x + 2)dx 8π f(x)dx −π −π −π 2 2 2 2. Ñaët f ( x) = ln x (9 − 3 ln x − 2 ln x) = ln x (3 + ln x )(3 − 2 ln x ) 3  ln x + 3 + ln x + 3 − 2 ln x    =8 f ( x)     3     e e e ⇒∫ 8∫ dx ⇒ ∫ ln x (9 − 3 ln x − 2 ln x) dx 8( e −1) f ( x) dx 1 1 1 3  sin x + 1 + 2 sin x + 5 − 3 sin x    8 3. Ñaët f ( x) = sin x (1 + 2 sin x)(5 − 3 sin x ) ; f(x)     3      sin x = 1 + 2 sin x  sin x = −1   Ñaúng thöùc ⇔  ⇔ x∈∅ ⇔  sin x = 5 − 3 sin x  4 sin x = 5   2π π π π ⇒ f (x) < 8 ⇒ ∫ f(x)dx < 8∫ ⇒∫ 3 3 3 sin x(1 + 2 sin x )(5 − 3 sin x)dx < dx 3 π π π 4 4 4 1 4. Ñaët f(x) = tgx(7 − 4 tgx) = .4 tgx( 7 − 4 tgx) 4 4
  5. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 2 1  4 tgx + 7 − 4 tgx  49 f ( x) ≤  =   4 2 16  ∏ 49 ∏ 4 ∏ 49 ∏ ( ) ⇒ ∫ 4 f ( x ) dx 16 ∫0 ⇒ ∫ 4 tgx 7 − 4 tgx dx dx 16 0 0 5. sin 4 x.cos 6 x = (1 − cos 2 x).(1 − cos 2 x).cos 2 x . cos 2 x . cos 2 x 1 = (2 − 2 cos 2 x)(1 − cos 2 x).cos 2 x.cos 2 x.cos 2 x 2 5 1  2 − 2 cos 2 x + 1 − cos 2 x + cos 2 x + cos 2 x + cos 2 x  ≤  2 5  243 ∏ 243 ∏ ⇒ ∫ sin 4 x.cos 6 xdx ≤ ⇒ sin 4 x.cos 6 x ≤ 6250 6250 0 Chöùng minh raèng : ) ( 5∏ 2 ∏ ∫ cos 2 x + 3sin 2 x + sin 2 x + 3cos 2 x dx 2 1. −∏ 3 3 ) ( e 4 ( e − 1) 2. ∫ 3 + 2 ln 2 x + 5 − 2 ln 2 x dx 1 ∏ 3 cos x + sin x ∏ ∫ 3. − dx x2 + 4 4 4 Baøi giaûi : 1. Ñaët f ( x ) = 1 cos 2 x + 3sin 2 x + 1. sin 2 x + 3cos 2 x 2 ( cos 2 x + 3sin 2 x + 3cos 2 x + sin 2 x ) ⇒ f ( x ) f 2( x ) 22 ) ( ∏ 5∏ 2 ∏ ∏ ⇒ ∫ ∏2 f ( x ) dx 2 2 ∫ ∏2 dx ⇒ ∫ ∏2 cos 2 x + 3sin 2 x + sin 2 x + 3cos 2 x dx − − − 3 3 3 3 2. Ñaët f ( x ) = 1 3 + 2 ln 2 x + 1 5 − 2 ln 2 x f ( x ) 2 ≤ 2 ( 3 + 2 ln 2 x + 5 − 2 ln 2 x ) ⇒ f ( x ) ≤ 4 ( ) e e e 3 + 2 ln 2 x + 5 − 2 ln 2 x dx ≤ 4 ( e − 1) ⇒ ∫ f ( x ) dx 4 ∫ dx ⇒ ∫ 1 1 1 3. 3 cos x + sin x ≤ ( 3)2 + 1 ( cos 2 x + sin 2 x )   3 cos x + sin x 3 cos x + sin x 2 2 2 dx ⇒∫ ≤ 2∫ ⇒ ≤ x +4 x2 + 4 x +4 x +4 2 2 2 0 0 5
  6. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Ñaët x = 2tgt ⇒ dx = 2 (1 + tg 2 t ) dt ∏ 2 (1 + tg 2t ) 1∏ ∏ 2 x 0 1 dx ⇒∫ =∫ 4 dt = ∫ 4 dt = 4 (1 + tg t ) ∏ x +4 2 2 2 8 0 0 0 t 0 4 3 cos x + sin x ∏ ∏ 3 cos x + sin x ∏ 2 2 ⇒∫ ∫ ⇒− dx dx x +4 x2 + 4 2 4 4 4 0 0 ÑAÙNH GIAÙ TÍCH PHAÂN DÖÏA VAØO TAÄP GIAÙ TRÒ CUÛA HAØM DÖÔÙI DAÁU TÍCH PHAÂN Chöùng minh raèng : ∏ ∏ ∏ sin x ∏ sin x 4..∫ dx > ∫∏ 1.∫ sin 2 xdx ≤ 2∫ 2 4 4 dx cos xdx x x 0 0 0 2 ∏ ∏ 2 2 5. ∫ (ln x) 2 dx < ∫ ln xdx 2.∫ 2∫ 2 2 sin 2 xdx sin xdx 0 0 1 1 x −1 2x − 1 ∏ ∏ 2 2 3.∫ dx < ∫ 6. ∫ sin xdx < ∫ 4 4 dx cos xdx 1 x +1 x 1 0 0 Baøi giaûi :  ∏  0 ≤ sin x ≤ 1  1.∀x ∈  0;  ⇒  ⇒ 2sin x.cos x ≤ 2 cos x   4  0 ≤ cos x ≤ 1   ∏ ∏ 4 4 ⇒∫ sin 2 xdx ≤ 2 ∫ ⇔ sin 2 x ≤ 2 cos x cos xdx 0 0 6
  7. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân  ∏  cos x ≤ 1  2. ∀x ∈  0;  ⇒  ⇒ 2 sin 2 x.cos x ≤ 2sin x   2  0 ≤ sin x   ∏ ∏ 2 2 ⇔ sin 2 x ≤ 2sin x ⇒ ∫ sin 2 xdx ≤ 2 ∫ sin xdx 0 0 x -1 2 x − 1 −x 2 + x − 1 3. ∀x ∈ [ 1;2 ] Xeùt hieäu : 0 ⇒ < dx ∏−x ∏−x ∏ x x 0 2 sin x ∏ sin x ∏ ⇒∫ dx > ∫∏ dx x x 0 2 5. Haøm soá y = f(x) = lnx lieân tuïc treân [1,2] neân y = g(x) = (lnx)2 cuõng lieân tuïc treân [1,2] 1 x 2 ⇒ 0 ln x ln 2 < 1 (*) ⇒ 0 (ln x )2 < ln x 2 2 ∀x ∈ [ 1,2 ] ⇒ ∫ (ln x )2 dx < ∫ ln xdx 1 1 Chuù yù : daáu ñaúng thöùc (*) xaûy ra taïi x0 = 1⊂ [1,2] sin x ∏ ∏ 6. 0 < x < ⇒ 0 < tgx < tg = 1 ⇔
  8. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Baøi Giaûi: 1. 0 ≤ x ≤ 1 ⇒ 0 ≤ x 2 ≤ 1 ⇒ 4 ≤ x 2 + 4 ≤ 5 ⇒ 2 x2 + 4 ≤ 5 1 1 1 1 ⇒ 2 ∫ dx ≤ ∫ x 2 + 4 dx ≤ 5 ∫ dx ⇒ 2 ≤ ∫ x 2 + 4 dx ≤ 5 0 0 0 0 2. 0 ≤ x ≤ 1 ⇒ 0 ≤ x 8 ≤ 1 ⇒ 1 ≤ x 8 + 1 ≤ 2 1 1 ⇒ 0 ≤ x8 + 1 ≤ 2 ⇒ ≤1 ≤ 2 x8 + 1 1 1 dx dx 1 1 1 1 ≤1 ∫ dx ≤ ∫ ≤ ∫ dx ⇒ ≤∫ ⇒ 2 2 0 0 0 0 x8 + 1 x8 + 1 3. 0 ≤ x ≤ 1 ⇒ 1 x10 + 1 2 ⇒1 3 x10 + 1 2 3 1 1 25 25 x x 1⇔ x 25 ⇒ 2 2 3 3 3 x +1 10 3 x +110 1 25 1 x 25 1 x 1 1 1 1 x 25 dx x 25 dx ⇒ ∫ ∫ ∫ ∫ ⇒ dx dx 26 2 26 2 3 3 0 03 0 03 x +1 10 x +1 10 x sin x x ;(1) ∀x ∈ [ 0,1] . 4. Tröôùc heát ta chöùng minh : 1 + x sin x 1+ x Giaû söû ta coù : (1). 1 1 1 1 ; ∀x [ 0.1] ⇔ (1) ⇔ 1 − 1− 1 + x sin x 1+ x 1 + x sin x 1 + x ⇔ 1 + x 1 + x.sin x ⇔ x (1 − sin x ) 0 ñuùng ∀x ∈ [ 0,1] x sin x 1 1  1 1 x dx = ∫ 1 − ∫ dx ∫ (1) ⇔  dx   1+ x  0 0 x + x sin x 0 1+ x  1 x .sin x 1 dx ( x − ln 1 + x ) = 1 − ln 2 ⇔∫ Vaäy (1) ñaúng thöùc ñuùng , khi ñoù: 0 1 + x sin x 0 x.sin x 1 ⇒∫ dx 1 − ln 2. 0 1 + x .sin x  1 1 0 < e− x = x e− x sin x 1, 3  ⊂ ( 0, ∏ ) ⇒  1 e⇒0< 2 <  5. x ∈  e e ( x + 1)  x +1 2 0 < sin x < 1  3 e − x sin x 1 3 dx 1 3 dx ⇒0
  9. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân (1 + tg t )dt = 2 ∏ ∏ ∏ ∏ x 1 3 ⇒ Ι = ∫∏ ∫∏ 4 dt = t = 3 3 3 ∏ ∏ ∏ 1 + tg t 2 12 t 4 4 4 4 3 e − x sin x ∏ Vaäy 0 < ∫ dx < x +1 2 12e 1 1⇒ 0 x2 ⇒ − x2 − x3 x3 6. 0 x 0 ⇒ 4 − 2x2 4 − x 2 − x3 4 − x2 ⇒ 4 − 2x2 4 − x2 − x3 4 − x2 1 1 1 ⇒ 4 − 2x2 4− x −x 4 − x2 2 3 1 1 1 1 1 1 ⇒I =∫ ∫ ∫ dx = J dx dx 4 − x2 4 − x2 − x3 4 − 2 x2 0 0 0 Ñaët x = 2sin t ⇒ dx = 2 cos tdt ∏ ∏ ∏ x 0 1 2 cos tdt ⇒I =∫ 6 = ∫ 6 dt = ∏ 4 − ( 2sin t ) 6 2 0 0 t 0 6 Ñaët x = 2 sin t ⇒ dx = 2 cos tdt x 0 1 ∏ t 0 4 ∏ ∏ ∏2 4 2 cos tdt 2 ⇒J =∫ = = 4 ( ) 2 8 0 2 4−2 2 sin t 0 ∏ ∏2 dx 1 ≤∫ ⇒ ≤ 6 8 4 − x 2 − x3 0 Chöùng minh raèng : ∏ ∏6 e −1 ∏ 1 1 − x2 ≤ ∫ 2 1 + sin 2 x .dx ≤ ∫0 e dx 1 3. 1. 2 2 4 e 0 ∏ ∏ ∏ 1 1 sin 2 x 4. 0.88 < ∫ ∫0 2 e dx 2 e dx < 1 2. 1 + x4 2 0 Baøi giaûi : 9
  10. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1.°0 x 1 ⇒ 0 x 2 x 1 ⇒ 0 < e x 2 ex 1 1 e− x (1) 2 ⇔ e− x ⇒ x2 x e e 1( 2 ) °x 2 2 2 e0 = 1 ⇒ e− x 0 ⇒ ex Töø (1) vaø (2) suy ra : e − x 2 e− x 1 e −1 1 1 1 1 ⇒ ∫ e − x dx ∫e ∫0 dx ⇒ e ∫e 2 − x2 − x2 1 dx dx 0 0 0 2 1⇒1 sin 2 x esin x 2. 0 e ∏ ∏ ∏ ∏ ∏ ∏ ⇒∫ ∫ e.∫ ∫ 2 2 dx ⇒ 2 2 2 2 esin x dx esin x dx dx e 2 2 0 0 0 0 12 1 1 3 1⇒ 0 ⇒1 1 + sin 2 x sin 2 x 3. 0 sin x 2 2 2 2 ∏ ∏6 ∏ ∏ 3 ∏2 ∏ 1 1 ⇒∫ ∫ ∫0 dx ⇒ 2 ∫ 1 + sin 2 x dx 1 + sin 2 x .dx 2 2 2 dx 2 2 2 4 0 0 0 4. Caùch 1: 1 1 ∀x ∈ ( 0,1) thì x 4 < x 2 ⇒ 1 + x 4 < 1 + x 2 ⇒ > 1+ x 1 + x2 4 ( ) 1 1 1 1 1 ⇒∫ dx > ∫ dx = ln x + 1 + x 2 = ln 1 + 2 > 0,88 0 0 1 + x4 1 + x2 0 1 1 1 Maët khaùc : 1 + x 4 > 1 ⇒ dx > I 1+ x 1+ x 1 + x4 4 2 0 1 1 Vôùi : I = ∫ dx 1 + x2 0 dt = (1 + tg 2t ) dt 1 Ñaët x = tgt ⇒ dx = cos 2 10
  11. Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân (1 + tg t ) dt = 2 ∏ ∏ x 0 1 1 I =∫ ∫ 4 4 dt ∏ (1 + tg t ) cos t 0 0 2 t 0 4 ∏ cos t I =∫ 4 dt 1 − sin 2 t 0 ∏ t 0 4 Ñaët u = sin t ⇒ du = cos tdt 1 u 0 2 1− u + u +1 1 1 1 1 1 du 1 1 I =∫ =∫ du = ∫ + 2 2 2 du  (1 − u )(1 + u ) 1− u  1+ u 1− u  2 20 20 0 1 1 1+ u 11 11 1 1 2 =∫2 du + ∫ 2 du = ln 1+ u 1− u 2 1− u 2 2 0 0 0 1 2+ 2 1 1 > 0,88 ⇒ ∫ I= dx > 0,88 ln 2 2− 2 0 1 + x4 1 Maët khaùc :1 + x 4 > 1 ⇒
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2