Các chuyên đề về phương trình lượng giác
lượt xem 210
download
Các phương trình cơ bản, thường gặp và nâng cao
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các chuyên đề về phương trình lượng giác
- CHÖÔNG 1: COÂNG THÖÙC LÖÔÏNG GIAÙC I. Ñònh nghóa Treân maët phaúng Oxy cho ñöôøng troøn löôïng giaùc taâm O baùn kính R=1 vaø ñieåm M treân ñöôøng troøn löôïng giaùc maø sñ AM = β vôùi 0 ≤ β ≤ 2π Ñaët α = β + k2π, k ∈ Z Ta ñònh nghóa: sin α = OK cos α = OH sin α tgα = vôùi cos α ≠ 0 cos α cos α cot gα = vôùi sin α ≠ 0 sin α II. Baûng giaù trò löôïng giaùc cuûa moät soá cung (hay goùc) ñaëc bieät Goùc α ( ) 0 0o π ( ) 30 o π ( ) 45o π ( ) 60 o π ( ) 90 o Giaù trò 6 4 3 2 sin α 0 1 2 3 1 2 2 2 cos α 1 3 2 1 0 2 2 2 tgα 0 3 1 3 || 3 cot gα || 3 1 3 0 3 III. Heä thöùc cô baûn sin 2 α + cos2 α = 1 1 π 1 + tg 2 α = 2 vôùi α ≠ + kπ ( k ∈ Z ) cos α 2 1 t + cot g 2 = vôùi α ≠ kπ ( k ∈ Z ) sin 2 α IV. Cung lieân keát (Caùch nhôù: cos ñoái, sin buø, tang sai π ; phuï cheùo) a. Ñoái nhau: α vaø −α sin ( −α ) = − sin α cos ( −α ) = cos α tg ( −α ) = −tg ( α ) cot g ( −α ) = − cot g ( α )
- b. Buø nhau: α vaø π − α sin ( π − α ) = sin α cos ( π − α ) = − cos α tg ( π − α ) = −tgα cot g ( π − α ) = − cot gα c. Sai nhau π : α vaø π + α sin ( π + α ) = − sin α cos ( π + α ) = −cosα tg ( π + α ) = t gα cot g ( π + α ) = cot gα π d. Phuï nhau: α vaø −α 2 ⎛π ⎞ sin ⎜ − α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞ cos ⎜ − α ⎟ = sin α ⎝2 ⎠ ⎛π ⎞ tg ⎜ − α ⎟ = cot gα ⎝2 ⎠ ⎛π ⎞ cot g ⎜ − α ⎟ = tgα ⎝2 ⎠ π π e.Sai nhau : α vaø + α 2 2 ⎛π ⎞ sin ⎜ + α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞ cos ⎜ + α ⎟ = − sin α ⎝2 ⎠ ⎛π ⎞ tg ⎜ + α ⎟ = − cot gα ⎝2 ⎠ ⎛π ⎞ cot g ⎜ + α ⎟ = − tgα ⎝2 ⎠
- f. sin ( x + kπ ) = ( −1) sin x, k ∈ Z k cos ( x + kπ ) = ( −1) cos x, k ∈ Z k tg ( x + kπ ) = tgx, k ∈ Z cot g ( x + kπ ) = cot gx V. Coâng thöùc coäng sin ( a ± b ) = sin a cos b ± sin b cosa cos ( a ± b ) = cosa cos b m sin asin b tga ± tgb tg ( a ± b ) = 1 m tgatgb VI. Coâng thöùc nhaân ñoâi sin 2a = 2sin a cosa cos2a = cos2 a − sin 2 a = 1 − 2sin 2 a = 2 cos2 a − 1 2tga tg2a = 1 − tg2 a cot g2 a − 1 cot g2a = 2 cot ga VII. Coâng thöùc nhaân ba: sin 3a = 3sin a − 4sin 3 a cos3a = 4 cos3 a − 3cosa VIII. Coâng thöùc haï baäc: 1 sin 2 a = (1 − cos2a ) 2 1 cos2 a = (1 + cos2a ) 2 1 − cos2a tg 2 a = 1 + cos2a IX. Coâng thöùc chia ñoâi a Ñaët t = tg (vôùi a ≠ π + k 2 π ) 2
- 2t sin a = 1 + t2 1 − t2 cosa = 1 + t2 2t tga = 1 − t2 X. Coâng thöùc bieán ñoåi toång thaønh tích a+ b a−b cosa + cos b = 2 cos cos 2 2 a+b a−b cosa − cos b = −2sin sin 2 2 a+ b a−b sin a + sin b = 2 cos sin 2 2 a+b a−b sin a − sin b = 2 cos sin 2 2 sin ( a ± b ) tga ± tgb = cosa cos b sin ( b ± a ) cot ga ± cot gb = sin a.sin b XI. Coâng thöùc bieån ñoåi tích thaønh toång 1 cosa.cos b = ⎡ cos ( a + b ) + cos ( a − b ) ⎦ ⎤ 2⎣ −1 sin a.sin b = ⎡ cos ( a + b ) − cos ( a − b ) ⎦ ⎤ 2 ⎣ 1 sin a.cos b = ⎡sin ( a + b ) + sin ( a − b ) ⎤ 2⎣ ⎦ sin 4 a + cos4 a − 1 2 Baøi 1: Chöùng minh = sin 6 a + cos6 a − 1 3 Ta coù: sin 4 a + cos 4 a − 1 = ( sin 2 a + cos2 a ) − 2sin 2 a cos2 a − 1 = −2sin 2 a cos2 a 2 Vaø: sin 6 a + cos6 a − 1 = ( sin 2 a + cos2 a )( sin 4 a − sin 2 a cos2 a + cos 4 a ) − 1 = sin 4 a + cos 4 a − sin 2 a cos2 a − 1 = (1 − 2sin 2 a cos2 a ) − sin 2 a cos2 a − 1 = −3sin 2 a cos2 a
- sin 4 a + cos4 a − 1 −2sin 2 a cos2 a 2 Do ñoù: = = sin 6 a + cos6 a − 1 −3sin 2 a cos2 a 3 1 + cos x ⎡ (1 − cos x ) ⎤ 2 Baøi 2: Ruùt goïn bieåu thöùc A = = ⎢1 + ⎥ sin x ⎢ ⎣ sin 2 x ⎥ ⎦ 1 π Tính giaù trò A neáu cos x = − vaø < x < π 2 2 1 + cos x ⎛ sin x + 1 − 2 cos x + cos2 x ⎞ 2 Ta coù: A = ⎜ ⎟ sin x ⎝ sin 2 x ⎠ 1 + cos x 2 (1 − cos x ) ⇔A= . sin x sin 2 x 2 (1 − cos2 x ) 2sin 2 x 2 ⇔A= = = (vôùi sin x ≠ 0 ) sin 3 x sin 3 x sin x 1 3 Ta coù: sin 2 x = 1 − cos2 x = 1 − = 4 4 π Do: < x < π neân sin x > 0 2 3 Vaäy sin x = 2 2 4 4 3 Do ñoù A = = = sin x 3 3 Baøi 3: Chöùng minh caùc bieåu thöùc sau ñaây khoâng phuï thuoäc x: a. A = 2 cos4 x − sin 4 x + sin 2 x cos2 x + 3sin 2 x 2 cot gx + 1 b. B = + tgx − 1 cot gx − 1 a. Ta coù: A = 2 cos4 x − sin 4 x + sin 2 x cos2 x + 3sin 2 x ⇔ A = 2 cos4 x − (1 − cos2 x ) + (1 − cos2 x ) cos2 x + 3 (1 − cos2 x ) 2 ⇔ A = 2 cos4 x − (1 − 2 cos2 x + cos4 x ) + cos2 x − cos4 x + 3 − 3cos2 x ⇔ A = 2 (khoâng phuï thuoäc x) b. Vôùi ñieàu kieän sin x.cos x ≠ 0,tgx ≠ 1 2 cot gx + 1 Ta coù: B = + tgx − 1 cot gx − 1
- 1 +1 2 tgx 2 1 + tgx ⇔B= + = + tgx − 1 1 − 1 tgx − 1 1 − tgx tgx 2 − (1 − tgx ) 1 − tgx ⇔ B= = = −1 (khoâng phuï thuoäc vaøo x) tgx − 1 tgx − 1 Baøi 4: Chöùng minh 1 + cosa ⎡ (1 − cosa ) ⎤ cos2 b − sin 2 c 2 ⎢1 − 2 ⎥+ 2 2 − cot g 2 b cot g 2 c = cot ga − 1 2sin a ⎢ sin a ⎥ sin bsin c ⎣ ⎦ Ta coù: cos2 b − sin 2 c * − cot g 2 b.cot g 2 c sin b.sin c 2 2 cotg 2 b 1 = − 2 − cot g 2 b cot g 2 c sin c sin b 2 ( ) ( ) = cot g 2 b 1 + cot g 2 c − 1 + cot g 2 b − cot g 2 b cot g 2 c = −1 (1) 1 + cosa ⎡ (1 − cos a ) ⎤ 2 * ⎢1 − ⎥ 2 sin a ⎢ sin 2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ (1 − cos a ) ⎤ 2 = ⎢1 − ⎥ 2 sin a ⎢ 1 − cos2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ 1 − cosa ⎤ = 1− 2sin a ⎢ 1 + cosa ⎥ ⎣ ⎦ 1 + cosa 2 cosa = . = cot ga (2) 2 sin a 1 + cos a Laáy (1) + (2) ta ñöôïc ñieàu phaûi chöùng minh xong. Baøi 5: Cho ΔABC tuøy yù vôùi ba goùc ñeàu laø nhoïn. Tìm giaù trò nhoû nhaát cuûa P = tgA.tgB.tgC Ta coù: A + B = π − C Neân: tg ( A + B) = −tgC tgA + tgB ⇔ = −tgC 1 − tgA.tgB ⇔ tgA + tgB = −tgC + tgA.tgB.tgC Vaäy: P = tgA.tgB.tgC = tgA + tgB + tgC AÙp duïng baát ñaúng thöùc Cauchy cho ba soá döông tgA,tgB,tgC ta ñöôïc tgA + tgB + tgC ≥ 3 3 tgA.tgB.tgC
- ⇔ P ≥ 33 P ⇔ 3 P2 ≥ 3 ⇔P≥3 3 ⎧tgA = tgB = tgC ⎪ π Daáu “=” xaûy ra ⇔ ⎨ π ⇔ A=B=C= ⎪0 < A,B,C < 2 3 ⎩ π Do ñoù: MinP = 3 3 ⇔ A = B = C = 3 Baøi 6 : Tìm giaù trò lôùn nhaát vaø nhoû nhaát cuûa a/ y = 2 sin 8 x + cos4 2x b/ y = 4 sin x − cos x 4 ⎛ 1 − cos 2x ⎞ a/ Ta coù : y = 2 ⎜ ⎟ + cos 2x 4 ⎝ 2 ⎠ Ñaët t = cos 2x vôùi −1 ≤ t ≤ 1 thì 1 4 y = (1 − t ) + t 4 8 1 3 => y ' = − (1 − t ) + 4t 3 2 (1 − t ) = 8t 3 3 Ta coù : y ' = 0 ⇔ 1 − t = 2t 1 ⇔t= 3 1 ⎛1⎞ Ta coù y(1) = 1; y(-1) = 3; y ⎜ ⎟ = 27 ⎝ 3⎠ 1 Do ñoù : Max y = 3 vaø Miny = x∈ x∈ 27 b/ Do ñieàu kieän : sin x ≥ 0 vaø cos x ≥ 0 neân mieàn xaùc ñònh ⎡ π ⎤ D = ⎢ k2π, + k2π ⎥ vôùi k ∈ ⎣ 2 ⎦ Ñaët t = cos x vôùi 0 ≤ t ≤ 1 thì t = cos x = 1 − sin x 4 2 2 Neân sin x = 1 − t4 Vaäy y = 1 − t − t treân D ' = [ 0,1] 8 4 −t 3 Thì y ' = − 1 < 0 ∀t ∈ [ 0; 1) 2. (1 − t 8 ) 4 7 Neân y giaûm treân [ 0, 1 ]. Vaäy : max y = y ( 0 ) = 1, min y = y (1) = −1 x∈ D x∈ D Baøi 7: Cho haøm soá y = sin4 x + cos4 x − 2m sin x cos x Tìm giaù trò m ñeå y xaùc ñònh vôùi moïi x
- Xeùt f (x) = sin 4 x + cos4 x − 2m sin x cos x f ( x ) = ( sin 2 x + cos2 x ) − m sin 2x − 2 sin 2 x cos2 x 2 1 f ( x) = 1 − sin2 2x − m sin 2x 2 Ñaët : t = sin 2x vôùi t ∈ [ −1, 1] y xaùc ñònh ∀x ⇔ f ( x ) ≥ 0∀x ∈ R 1 2 ⇔ 1− t − mt ≥ 0 ∀t ∈ [ −1,1] 2 ⇔ g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ [ −1, 1] Do Δ ' = m2 + 2 > 0 ∀m neân g(t) coù 2 nghieäm phaân bieät t1, t2 Luùc ñoù t t1 t2 g(t) + 0 - 0 Do ñoù : yeâu caàu baøi toaùn ⇔ t1 ≤ −1 < 1 ≤ t 2 ⎧1g ( −1) ≤ 0 ⎪ ⎧−2m − 1 ≤ 0 ⇔⎨ ⇔ ⎨ ⎪1g (1) ≤ 0 ⎩ ⎩2m − 1 ≤ 0 ⎧ −1 ⎪m ≥ 2 ⎪ 1 1 ⇔⎨ ⇔− ≤m≤ ⎪m ≤ 1 2 2 ⎪ ⎩ 2 Caùch khaùc : g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ [ −1,1] ⇔ max g (t ) ≤ 0 ⇔ max { g (−1), g (1)} ≤ 0 t ∈[ −1,1 ] ⎧ −1 ⎪m ≥ 2 ⎪ ⇔ max {−2m − 1),− 2m + 1)} ≤ 0 ⇔ ⎨ ⎪m ≤ 1 ⎪ ⎩ 2 1 1 ⇔− ≤m≤ 2 2 π 3π 5π 7π 3 Baøi 8 : Chöùng minh A = sin4 + sin4 + sin4 + sin4 = 16 16 16 16 2 7π ⎛π π ⎞ π Ta coù : sin = sin ⎜ − ⎟ = cos 16 ⎝ 2 16 ⎠ 16 5π ⎛ π 5π ⎞ 3π sin = cos ⎜ − ⎟ = cos 16 ⎝ 2 16 ⎠ 16 Maët khaùc : sin 4 α + cos4 α = ( sin 2 α + cos2 α ) − 2 sin 2 α cos2 α 2 = 1 − 2sin2 α cos2 α 1 = 1 − sin2 2α 2
- π 7π 3π 5π Do ñoù : A = sin4 + sin4 + sin4 + sin4 16 16 16 16 ⎛ π π ⎞ ⎛ 4 3π 3π ⎞ = ⎜ sin 4 + cos4 ⎟ + ⎜ sin + cos4 ⎟ ⎝ 16 16 ⎠ ⎝ 16 16 ⎠ ⎛ 1 π⎞ ⎛ 1 3π ⎞ = ⎜ 1 − sin 2 ⎟ + ⎜ 1 − sin 2 ⎟ ⎝ 2 8⎠ ⎝ 2 8 ⎠ 1⎛ π 3π ⎞ = 2 − ⎜ sin 2 + sin 2 ⎟ 2⎝ 8 8 ⎠ 1⎛ π π⎞ ⎛ 3π π⎞ = 2 − ⎜ sin 2 + cos2 ⎟ ⎜ do sin = cos ⎟ 2⎝ 8 8⎠ ⎝ 8 8⎠ 1 3 = 2− = 2 2 Baøi 9 : Chöùng minh : 16 sin 10o .sin 30o .sin 50o .sin 70o = 1 A cos 10o 1 Ta coù : A = = (16sin10ocos10o)sin30o.sin50o.sin70o cos 10 o cos 10 o 1 ⎛1⎞ o ( ⇔ A= 8 sin 20o ) ⎜ ⎟ cos 40o . cos 20o cos 10 ⎝2⎠ 1 o ( ⇔ A= 4 sin 200 cos 20o ) . cos 40o cos10 1 o ( ⇔ A= 2 sin 40o ) cos 40o cos10 1 cos 10o ⇔ A= sin 80 =o =1 cos10o cos 10o A B B C C A Baøi 10 : Cho ΔABC . Chöùng minh : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 A+B π C Ta coù : = − 2 2 2 A+B C Vaäy : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg .tg tg 2 2 2 ⎡ A B⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 A C B C A B ⇔ tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 π π π π Baøi 11 : Chöùng minh : 8 + 4tg + 2tg + tg = cot g ( *) 8 16 32 32
- 1 1 1 1⎡ A B C A B C⎤ + + = ⎢ tg + tg + tg + cot g + cot g + cot g ⎥ sin A sin B sin C 2 ⎣ 2 2 2 2 2 2⎦ A B C A B C Ta coù : cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 (Xem chöùng minh baøi 19g ) sin α cos α 2 Maët khaùc : tgα + cot gα = + = cos α sin α sin 2α 1⎡ A B C A B C⎤ Do ñoù : ⎢ tg + tg + tg + cotg + cotg + cotg ⎥ 2⎣ 2 2 2 2 2 2⎦ 1⎡ A B C⎤ 1 ⎡ A B C⎤ = ⎢ tg + tg + tg ⎥ + ⎢cotg + cotg + cotg ⎥ 2⎣ 2 2 2⎦ 2 ⎣ 2 2 2⎦ 1⎡ A A⎤ 1 ⎡ B B⎤ 1 ⎡ C C⎤ = ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 1 1 1 = + + sin A sin B sin C BAØI TAÄP 1. Chöùng minh : π 2π 1 a/ cos − cos = 5 5 2 cos15 + sin15 o o b/ = 3 cos15o − sin15o 2π 4π 6π 1 c/ cos + cos + cos =− 7 7 7 2 d/ sin 2x sin 6x + cos 2x.cos 6x = cos3 4x 3 3 e/ tg20o.tg40o.tg60o.tg80o = 3 π 2π 5π π 8 3 π f/ tg + tg + tg + tg = cos 6 9 18 3 3 9 π 2π 3π 4π 5π 6π 7π 1 g/ cos .cos .cos .cos .cos .cos .cos = 15 15 15 15 15 15 15 27 ⎡π ⎤ ⎡π ⎤ h/ tgx.tg ⎢ − x ⎥ .tg ⎢ + x ⎥ = tg3x ⎣3 ⎦ ⎣3 ⎦ k/ tg20o + tg40o + 3tg20o.tg40o = 3 3 e/ sin 20o.sin 40o.sin 80o = 8 m/ tg5 .tg55 .tg65 .tg75 = 1 o o o o ⎧sin x = 2 sin ( x + y ) ⎪ 2. Chöùng minh raèng neáu ⎨ π ⎪ x + y ≠ ( 2k + 1) ( k ∈ z ) ⎩ 2 sin y thì tg ( x + y ) = cos y − 2 3. Cho ΔABC coù 3 goùc ñeàu nhoïn vaø A ≥ B ≥ C
- a/ Chöùng minh : tgA + tgB + tgC = tgA.tgB.tgC b/ Ñaët tgA.tgB = p; tgA.tgC = q Chöùng minh (p-1)(q-1) ≥ 4 4. Chöùng minh caùc bieåu thöùc khoâng phuï thuoäc x : a/ A = sin 4 x (1 + sin 2 x ) + cos4 x (1 + cos2 x ) + 5 sin 2 x cos2 x + 1 b/ B = 3 ( sin 8 x − cos8 x ) + 4 ( cos6 x − 2 sin 6 x ) + 6 sin 4 x c/ C = cos2 ( x − a ) + sin2 ( x − b ) − 2 cos ( x − a ) sin ( x − b ) sin ( a − b ) 5. Cho ΔABC , chöùng minh : cos C cos B a/ cot gB + = cot gC + sin B cos A sin C cos A A B C 3A 3B 3C b/ sin3 A + sin3 B + sin3 C = 3cos cos cos + cos cos cos 2 2 2 2 2 2 A B−C B A−C c/ sin A + sin B + sin C = cos .cos + cos .cos 2 2 2 2 C A−B + cos .cos 2 2 d/ cotgAcotgB + cotgBcotgC + cotgCcotgA = 1 e/ cos2 A + cos2 B + cos2 C = 1 − 2 cos A cos B cos C f/ sin3Asin(B- C)+ sin3Bsin(C- A)+ sin3Csin(A- B) = 0 6. Tìm giaù trò nhoû nhaát cuûa : 1 1 π a/ y = + vôùi 0 < x < sin x cos x 2 9π b/ y = 4x + + sin x vôùi 0 < x < ∞ x c/ y = 2 sin 2 x + 4 sin x cos x + 5 7. Tìm giaù trò lôùn nhaát cuûa : a/ y = sin x cos x + cos x sin x b/ y = sinx + 3sin2x c/ y = cos x + 2 − cos2 x TT luyện thi đại học CLC Vĩnh Viễn
- Chöông 2: PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C CÔ BAÛ N ⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π ⎧ π ⎪u ≠ + kπ tgu = tgv ⇔ ⎨ 2 ( k, k ' ∈ Z ) ⎪u = v + k ' π ⎩ ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π π Ñaë c bieä t : sin u = 0 ⇔ u = kπ cos u = 0 ⇔ u = + kπ 2 π sin u = 1 ⇔ u = + k2π ( k ∈ Z) cos u = 1 ⇔ u = k2π ( k ∈ Z ) 2 π sin u = −1 ⇔ u = − + k2π cos u = −1 ⇔ u = π + k2π 2 Chuù yù : sin u ≠ 0 ⇔ cos u ≠ ±1 cos u ≠ 0 ⇔ sin u ≠ ±1 Baø i 28 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2002) Tìm x ∈ [ 0,14 ] nghieä m ñuù ng phöông trình cos 3x − 4 cos 2x + 3 cos x − 4 = 0 ( * ) Ta coù (*) : ⇔ ( 4 cos3 x − 3 cos x ) − 4 ( 2 cos2 x − 1) + 3 cos x − 4 = 0 ⇔ 4 cos3 x − 8 cos2 x = 0 ⇔ 4 cos2 x ( cos x − 2 ) = 0 ⇔ cos x = 0 hay cos x = 2 ( loaïi vì cos x ≤ 1) π ⇔ x= + kπ ( k ∈ Z ) 2 π Ta coù : x ∈ [ 0,14] ⇔ 0 ≤ + kπ ≤ 14 2 π π 1 14 1 ⇔ − ≤ kπ ≤ 14 − ⇔ −0, 5 = − ≤ k ≤ − ≈ 3, 9 2 2 2 π 2 ⎧ π 3π 5π 7π ⎫ Maø k ∈ Z neâ n k ∈ {0,1, 2, 3} . Do ñoù : x ∈ ⎨ , , , ⎬ ⎩2 2 2 2 ⎭ Baø i 29 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2004) Giaû i phöông trình : ( 2 cos x − 1)( 2 sin x + cos x ) = sin 2x − sin x ( *)
- Ta coù (*) ⇔ ( 2 cos x − 1)( 2 sin x + cos x ) = sin x ( 2 cos x − 1) ⇔ ( 2 cos x − 1) ⎡( 2 sin x + cos x ) − sin x ⎤ = 0 ⎣ ⎦ ⇔ ( 2 cos x − 1)( sin x + cos x ) = 0 1 ⇔ cos x = ∨ sin x = − cos x 2 π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ 3 ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) 3 4 Baø i 30 : Giaû i phöông trình cos x + cos 2x + cos 3x + cos 4x = 0 (*) Ta coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 0 5x 3x 5x x ⇔ 2 cos .cos + 2 cos .cos = 0 2 2 2 2 5x ⎛ 3x x⎞ ⇔ 2 cos ⎜ cos + cos ⎟ = 0 2 ⎝ 2 2⎠ 5x x ⇔ 4 cos cos x cos = 0 2 2 5x x ⇔ cos = 0 ∨ cos x = 0 ∨ cos = 0 2 2 5x π π x π ⇔ = + kπ ∨ x = + kπ ∨ = + kπ 2 2 2 2 2 π 2kπ π ⇔ x= + ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) 5 5 2 Baø i 31: Giaûi phöông trình sin 2 x + sin 2 3x = cos2 2x + cos2 4x ( * ) 1 1 1 1 Ta coù (*) ⇔ (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) 2 2 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x ⇔ −2 cos 4x cos 2x = 2 cos 6x cos 2x ⇔ 2 cos 2x ( cos 6x + cos 4x ) = 0 ⇔ 4 cos 2x cos 5x cos x = 0 ⇔ cos 2x = 0 ∨ cos 5x = 0 ∨ cos x = 0 π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 2 2 π kπ π kπ π ⇔ x= + ∨x= + ∨ x = + kπ , k ∈ 4 2 10 5 2 Baø i 32 : Cho phöông trình ⎛π x⎞ 7 sin x.cos 4x − sin 2 2x = 4 sin 2 ⎜ − ⎟ − ( *) ⎝4 2⎠ 2 Tìm caù c nghieä m cuû a phöông trình thoû a : x − 1 < 3
- 1 ⎡ π ⎤ 7 Ta coù : (*)⇔ sin x.cos 4x − (1 − cos 4x ) = 2 ⎢1 − cos ⎛ − x ⎞ ⎥ − ⎜ ⎟ 2 ⎣ ⎝2 ⎠⎦ 2 1 1 3 ⇔ sin x cos 4x − + cos 4x = − − 2sin x 2 2 2 1 ⇔ sin x cos 4x + cos 4x + 1 + 2sin x = 0 2 ⎛ 1⎞ ⎛ 1⎞ ⇔ cos 4x ⎜ sin x + ⎟ + 2 ⎜ sin x + ⎟ = 0 ⎝ 2⎠ ⎝ 2⎠ ⎛ 1⎞ ⇔ ( cos 4x + 2) ⎜ sin x + ⎟ = 0 ⎝ 2⎠ ⎡cos 4x = −2 ( loaïi ) ⎡ π ⎢ ⎢ x = − 6 + k 2π ⇔ ⎢sin x = − 1 = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ ⎜ ⎟ ⎢ x = 7π + 2hπ ⎣ 2 ⎝ 6⎠ ⎢ ⎣ 6 Ta coù : x − 1 < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4 π Vaä y : −2 < − + k2π < 4 6 π π 1 1 2 1 ⇔ − 2 < 2kπ < 4 + ⇔ −
- 3 ⇔ sin 4x = sin3 4x 4 ⇔ 3sin 4x − 4 sin3 4x = 0 ⇔ sin12x = 0 kπ ⇔ 12x = kπ ⇔ x= ( k ∈ Z) 12 Baø i 34 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B, naê m 2002) Giaû i phöông trình : sin 2 3x − cos2 4x = sin 2 5x − cos2 6a ( * ) Ta coù : (*)⇔ 1 1 1 1 (1 − cos 6x ) − (1 + cos 8x ) = (1 − cos10x ) − (1 + cos12x ) 2 2 2 2 ⇔ cos 6x + cos 8x = cos10x + cos12x ⇔ 2 cos7x cos x = 2 cos11x cos x ⇔ 2 cos x ( cos 7x − cos11x ) = 0 ⇔ cos x = 0 ∨ cos7x = cos11x π ⇔ x = + kπ ∨ 7x = ±11x + k 2π 2 π kπ kπ ⇔ x = + kπ ∨ x = − ∨x= ,k ∈ 2 2 9 Baø i 35 : Giaû i phöông trình ( sin x + sin 3x ) + sin 2x = ( cos x + cos 3x ) + cos 2x ⇔ 2sin 2x cos x + sin 2x = 2 cos 2x cos x + cos 2x ⇔ sin 2x ( 2 cos x + 1) = cos 2x ( 2 cos x + 1) ⇔ ( 2 cos x + 1) ( sin 2x − cos 2x ) = 0 1 2π ⇔ cos x = −= cos ∨ sin 2x = cos 2x 2 3 2π π ⇔ x=± + k2π ∨ tg2x = 1 = tg 3 4 2π π π ⇔ x=± + k2π ∨ x = + k , ( k ∈ Z ) 3 8 2 Baø i 36: Giaû i phöông trình cos 10x + 2 cos2 4x + 6 cos 3x. cos x = cos x + 8 cos x. cos3 3x ( * ) Ta coù : (*)⇔ cos10x + (1 + cos 8x ) = cos x + 2 cos x ( 4 cos3 3x − 3 cos 3x ) ⇔ ( cos10x + cos 8x ) + 1 = cos x + 2 cos x.cos 9x ⇔ 2 cos 9x cos x + 1 = cos x + 2 cos x.cos 9x ⇔ cos x = 1 ⇔ x = k2π ( k ∈ Z ) Baø i 37 : Giaû i phöông trình
- 4 sin 3 x + 3 cos3 x − 3sin x − sin 2 x cos x = 0 ( * ) Ta coù : (*) ⇔ sin x ( 4 sin 2 x − 3) − cos x ( sin 2 x − 3 cos2 x ) = 0 ⇔ sin x ( 4 sin 2 x − 3) − cos x ⎡sin 2 x − 3 (1 − sin 2 x ) ⎤ = 0 ⎣ ⎦ ⇔ ( 4 sin x − 3) ( sin x − cos x ) = 0 2 ⇔ ⎡ 2 (1 − cos 2x ) − 3⎤ ( sin x − cos x ) = 0 ⎣ ⎦ ⎡ 1 2π cos 2x = − = cos ⇔ ⎢ 2 3 ⎢ ⎣sin x = cos x ⎡ π ⎡ 2π ⎢ x = ± + kπ ⇔ ⎢2x = ± 3 + k2π ⇔ ⎢ 3 ( k ∈ Z) ⎢ ⎢ x = π + kπ ⎣ tgx = 1 ⎢ ⎣ 4 Baø i 38 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B naê m 2005) Giaû i phöông trình : sin x + cos x + 1 + sin 2x + cos 2x = 0 ( * ) Ta coù : (*) ⇔ sin x + cos x + 2sin x cos x + 2 cos2 x = 0 ⇔ sin x + cos x + 2 cos x ( sin x + cos x ) = 0 ⇔ ( sin x + cos x ) (1 + 2 cos x ) = 0 ⎡sin x = − cos x ⇔ ⎢ ⎢cos 2x = − 1 = cos 2π ⎣ 2 3 ⎡ tgx = −1 ⇔ ⎢ ⎢ x = ± 2π + k 2π ⎣ 3 ⎡ π ⎢ x = − 4 + kπ ⇔ ⎢ ( k ∈ Z) ⎢ x = ± 2π + k2π ⎢ ⎣ 3 Baø i 39 : Giaû i phöông trình ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 cos2 x = 3 ( *) Ta coù : (*) ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 (1 − sin 2 x ) − 3 = 0 ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + (1 + 2 sin x )(1 − 2 sin x ) = 0 ⇔ ( 2 sin x + 1) ⎡ 3 cos 4x + 2 sin x − 4 + (1 − 2 sin x ) ⎤ = 0 ⎣ ⎦ ⇔ 3 ( cos 4x − 1)( 2 sin x + 1) = 0 1 ⎛ π⎞ ⇔ cos 4x = 1 ∨ sin x = − = sin ⎜ − ⎟ 2 ⎝ 6⎠
- π 7π ⇔ 4x = k2π ∨ x = − + k2π ∨ x = + k2π 6 6 kπ π 7π ⇔ x= ∨ x = − + k2π ∨ x = + k2π, ( k ∈ Z) 2 6 6 Baø i 40: Giaû i phöông trình sin 6 x + cos6 x = 2 ( sin 8 x + cos8 x ) ( * ) Ta coù : (*) ⇔ sin6 x − 2sin8 x + cos6 x − 2 cos8 x = 0 ⇔ sin 6 x (1 − 2 sin 2 x ) − cos6 x ( 2 cos2 x − 1) = 0 ⇔ sin6 x cos 2x − cos6 x. cos 2x = 0 ⇔ cos 2x ( sin 6 x − cos6 x ) = 0 ⇔ cos 2x = 0 ∨ sin6 x = cos6 x ⇔ cos 2x = 0 ∨ tg 6 x = 1 π ⇔ 2x = ( 2k + 1) ∨ tgx = ±1 2 π π ⇔ x = ( 2k + 1) ∨ x = ± + kπ 4 4 π kπ ⇔ x= + ,k ∈ 4 2 Baø i 41 : Giaû i phöông trình 1 cos x.cos 2x.cos 4x.cos 8x = ( *) 16 Ta thaá y x = kπ khoâ n g laø nghieä m cuû a (*) vì luù c ñoù cos x = ±1, cos 2x = cos 4x = cos 8x = 1 1 (*) thaøn h : ±1 = voâ nghieä m 16 Nhaâ n 2 veá cuû a (*) cho 16sin x ≠ 0 ta ñöôï c (*) ⇔ (16 sin x cos x ) cos 2x.cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 8 sin 2x cos 2x ) cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 4 sin 4x cos 4x ) cos 8x = sin x vaø sin x ≠ 0 ⇔ 2sin 8x cos 8x = sin x vaø sin x ≠ 0 ⇔ sin16x = sin x vaø sin x ≠ 0 k2π π kπ ⇔x = ∨x= + , ( k ∈ Z) 15 17 17 Do : x = hπ khoâ n g laø nghieä m neâ n k ≠ 15m vaø 2k + 1 ≠ 17n ( n, m ∈ Z ) Baø i 42: Giaû i phöông trình 8cos ⎛ x + π⎞ = cos 3x ( * ) 3 ⎜ ⎟ ⎝ 3⎠ π π Ñaët t = x + ⇔x=t− 3 3
- Thì cos 3x = cos ( 3t − π ) = cos ( π − 3t ) = − cos 3t Vaä y (*) thaø n h 8 cos3 t = − cos 3t ⇔ 8 cos3 t = −4 cos3 t + 3 cos t ⇔ 12 cos3 t − 3 cos t = 0 ⇔ 3 cos t ( 4 cos2 t − 1) = 0 ⇔ 3 cos t ⎡2 (1 + cos 2t ) − 1⎤ = 0 ⎣ ⎦ ⇔ cos t ( 2 cos 2t + 1) = 0 1 2π ⇔ cos t = 0 ∨ cos 2t = − = cos 2 3 π 2π ⇔ t = ( 2k + 1) ∨ 2t = ± + k2π 2 3 π π ⇔ t = + kπ ∨ t = ± + kπ 2 3 π Maø x = t − 3 π 2π Vaä y (*) ⇔ x = + k2π ∨ x = kπ ∨ x = + kπ, ( vôùik ∈ Z ) 6 3 Ghi chuù : Khi giaû i caù c phöông trình löôï n g giaù c coù chöù a tgu, cotgu, coù aå n ôû maã u , hay chöù a caê n baä c chaü n ... ta phaû i ñaë t ñieà u kieä n ñeå phöông trình xaù c ñònh. Ta seõ duø n g caù c caù c h sau ñaâ y ñeå kieå m tra ñieà u kieä n xem coù nhaä n nghieä m hay khoâ n g. + Thay caùc giaù trò x tìm ñöôï c vaø o ñieà u kieä n thöû laï i xem coù thoû a Hoaë c + Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø caù c ngoï n cung tìm ñöôïc treâ n cuø n g moä t ñöôø n g troø n löôï n g giaù c . Ta seõ loaï i boû ngoï n cung cuû a nghieä m khi coù truø n g vôù i ngoï n cung cuû a ñieà u kieä n . Hoaë c + So vôi caù c ñieà u kieä n trong quaù trình giaûi phöông trình. Baø i 43 : Giaû i phöông trình tg 2 x − tgx.tg3x = 2 ( * ) ⎧cos x ≠ 0 π hπ Ñieà u kieä n ⎨ ⇔ cos3x ≠ 0 ⇔ x ≠ + ⎩cos 3x = 4 cos x − 3 cos x ≠ 0 3 6 3 Luù c ñoù ta coù (*) ⇔ tgx ( tgx − tg3x ) = 2 sin x ⎛ sin x sin 3x ⎞ ⇔ ⎜ − ⎟=2 cos x ⎝ cos x cos 3x ⎠ ⇔ sin x ( sin x cos 3x − cos x sin 3x ) = 2 cos2 x cos 3x ⇔ sin x sin ( −2x ) = 2 cos2 x. cos 3x ⇔ −2 sin2 x cos x = 2 cos2 x cos 3x ⇔ − sin2 x = cos x cos 3x (do cos x ≠ 0 ) 1 1 ⇔ − (1 − cos 2x ) = ( cos 4x + cos 2x ) 2 2 ⇔ cos 4x = −1 ⇔ 4x = π + k2π
- ⎛π ⎞ 1. Tìm caù c nghieä m treâ n ⎜ , 3π ⎟ cuû a phöông trình: ⎝3 ⎠ ⎛ 5π ⎞ ⎛ 7π ⎞ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ π⎞ 2. Tìm caù c nghieä m x treâ n ⎜ 0, ⎟ cuû a phöông trình ⎝ 2⎠ sin 4x − cos 6x = sin (10, 5π + 10x ) 2 2 3. Giaû i caù c phöông trình sau: ( a/ sin 3 x + cos3 x = 2 sin5 x + cos5 x ) sin x + sin 2x + sin 3x b/ = 3 cos x + cos 2x + cos 3x 1 + cos x c/ tg 2 x = 1 − sin x d/ tg2x − tg3x − tg5x = tg2x.tg3x.tg5x 4 e/ cos x = cos2 x 3 ⎛ π⎞ 1 1 f/ 2 2 sin ⎜ x + ⎟ = + ⎝ 4 ⎠ sin x cos x 2 i/ 2tgx + cot g2x = 3 + sin 2x 2 h/ 3tg3x + cot g2x = 2tgx + sin 4x 2 2 2 k/ sin x + sin 2x + sin 3x = 2 sin 2x l/ + 2 cos x = 0 1 + sin x m/ 25 − 4x 2 ( 3sin 2πx + 8 sin πx ) = 0 sin x.cot g5x n/ =1 cos 9x 2 o/ 3tg6x − = 2tg2x − cot g4x sin 8x ( p/ 2 sin 3x 1 − 4 sin 2 x = 1 ) 1 + cos x q/ tg 2 x = 1 − sin x 2 r/ cos3 x cos 3x + sin 3 x sin 3x = 4 ⎛x⎞ ⎛x⎞ 5 s/ sin4 ⎜ ⎟ + cos4 ⎜ ⎟ = ⎝ 3⎠ ⎝ 3⎠ 8 t/ cos x − 4 sin x − 3 cos x sin2 x + sin x = 0 3 3 x x u/ sin4 + cos4 = 1 − 2sin x 2 2
- ⎛ π⎞ ⎛ π⎞ v/ sin ⎜ 3x − ⎟ = sin 2x.sin ⎜ x + ⎟ ⎝ 4⎠ ⎝ 4⎠ 4 w/ tg x + 1 = ( 2 − sin x ) sin 3x 2 cos4 x ⎛ x ⎞ y/ tgx + cos x − cos2 x = sin x ⎜ 1 + tg tgx ⎟ ⎝ 2 ⎠ 4. Cho phöông trình: ( 2 sin x − 1)( 2 cos 2x + 2 sin x + m ) = 3 − 4 cos2 x (1) a/ Giaû i phöông trình khi m = 1 b/ Tìm m ñeå (1) coù ñuù n g 2 nghieä m treâ n [ 0, π ] ( ÑS: m = 0 ∨ m < −1 ∨ m > 3 ) 5. Cho phöông trình: 4 cos5 x sin x − 4 sin5 x.cos x = sin2 4x + m (1) Bieá t raè n g x = π laø moä t nghieä m cuû a (1). Haõ y giaû i phöông trình trong tröôø n g hôï p ñoù . Th.S Phạm Hồng Danh TT luyện thi Đại học CLC Vĩnh Viễn
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên đề toán học : Phương trình lượng giác
13 p | 322 | 562
-
Một số kỹ năng giải phương trình lượng giác-Nguyễn Minh Nhiên
5 p | 506 | 166
-
Bài giảng Phương trình lượng giác và ứng dụng (Nâng cao) - ThS. Lê Văn Đoàn
132 p | 667 | 145
-
Tài liệu toán " Phương trình lượng giác "
9 p | 216 | 109
-
Chuyên đề: Lượng giác và ứng dụng
134 p | 290 | 59
-
127 Phương trình lượng giác trong bộ đề thi tuyển sinh vào ĐH - CĐ
8 p | 283 | 58
-
Chuyên đề Phương trình lượng giác trong các kỳ thi tuyển sinh ĐH - CĐ
9 p | 313 | 56
-
Chuyên đề lượng giác: Hướng dẫn giải phương trình lượng giác cơ bản và đơn giản (Lớp 11)
73 p | 297 | 45
-
Luyện thi Đại học - Chuyên đề 3: Phương trình lượng giác (Đặng Thanh Nam)
54 p | 160 | 40
-
Luyện thi ĐH môn Toán: Phương trình lượng giác cơ bản (Phần 1) - Thầy Đặng Việt Hùng
2 p | 149 | 25
-
Chuyên đề luyện thi Đại học: Một số kĩ năng giải phương trình lượng giác
4 p | 235 | 22
-
Chuyên đề về Phương trình lượng giác
39 p | 209 | 12
-
Luyện thi ĐH môn Toán: Phương trình lượng giác cơ bản (Phần 2) - Thầy Đặng Việt Hùng
1 p | 110 | 11
-
Chuyên đề Lượng giác - Đình Nguyên
24 p | 111 | 11
-
Luyện thi Đại học chuyên đề: Phương trình lương giác
17 p | 122 | 10
-
Ôn thi: Chuyên đề Lượng giác
26 p | 118 | 8
-
Lượng giác vận dụng cao - Nguyễn Minh Tuấn
68 p | 31 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn