Các phương pháp tính tích phân-Nguyễn Duy Khôi
lượt xem 233
download
Tài liệu " Các phương pháp tính tích phân-Nguyễn Duy Khôi " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc các bạn học tốt
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các phương pháp tính tích phân-Nguyễn Duy Khôi
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI L I NÓI ð U Ngày nay phép tính vi tích phân chi m m t v trí h t s c quan tr ng trong Toán h c, tích phân ñư c ng d ng r ng rãi như ñ tính di n tích hình ph ng, th tích kh i tròn xoay, nó còn là ñ i tư ng nghiên c u c a gi i tích, là n n t ng cho lý thuy t hàm, lý thuy t phương trình vi phân, phương trình ñ o hàm riêng...Ngoài ra phép tính tích phân còn ñư c ng d ng r ng rãi trong Xác su t, Th ng kê, V t lý, Cơ h c, Thiên văn h c, y h c... Phép tính tích phân ñư c b t ñ u gi i thi u cho các em h c sinh l p 12, ti p theo ñư c ph bi n trong t t c các trư ng ð i h c cho kh i sinh viên năm th nh t và năm th hai trong chương trình h c ð i cương. Hơn n a trong các kỳ thi T t nghi p THPT và kỳ thi Tuy n sinh ð i h c phép tính tích phân h u như luôn có trong các ñ thi môn Toán c a kh i A, kh i B và c kh i D. Bên c nh ñó, phép tính tích phân cũng là m t trong nh ng n i dung ñ thi tuy n sinh ñ u vào h Th c sĩ và nghiên c u sinh. V i t m quan tr ng c a phép tính tích phân, chính vì th mà tôi vi t m t s kinh nghi m gi ng d y tính tích phân c a kh i 12 v i chuyên ñ “TÍNH TÍCH PHÂN B NG PHƯƠNG PHÁP PHÂN TÍCH - ð I BI N S VÀ T NG PH N” ñ ph n nào c ng c , nâng cao cho các em h c sinh kh i 12 ñ các em ñ t k t qu cao trong kỳ thi T t nghi p THPT và kỳ thi Tuy n sinh ð i h c và giúp cho các em có n n t ng trong nh ng năm h c ð i cương c a ð i h c. Trong ph n n i dung chuyên ñ dư i ñây, tôi xin ñư c nêu ra m t s bài t p minh h a cơ b n tính tích phân ch y u áp d ng phương pháp phân tích, phương pháp ñ i bi n s , phương pháp tích phân t ng ph n. Các bài t p ñ ngh là các ñ thi T t nghi p THPT và ñ thi tuy n sinh ð i h c Cao ñ ng c a các năm ñ các em h c sinh rèn luy n k năng tính tích phân và ph n cu i c a chuyên ñ là m t s câu h i tr c nghi m tích phân. Tuy nhiên v i kinh nghi m còn h n ch nên dù có nhi u c g ng nhưng khi trình bày chuyên ñ này s không tránh kh i nh ng thi u sót, r t mong ñư c s góp ý chân tình c a quý Th y Cô trong H i ñ ng b môn Toán S Giáo d c và ðào t o t nh ð ng Nai. Nhân d p này tôi xin c m ơn Ban lãnh ñ o nhà trư ng t o ñi u ki n t t cho tôi và c m ơn quý th y cô trong t Toán trư ng Nam Hà, các ñ ng nghi p, b n bè ñã ñóng góp ý ki n cho tôi hoàn thành chuyên ñ này. Tôi xin chân thành cám ơn./. Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 1
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI M CL C L i nói ñ u 1 M cl c 2 I. Nguyên hàm: I.1. ð nh nghĩa nguyên hàm 3 I.2. ð nh lý 3 I.3. Các tính ch t c a nguyên hàm 3 I.4. B ng công th c nguyên hàm và m t s công th c b sung 4 II. Tích phân: II.1. ð nh nghĩa tích phân xác ñ nh 5 II.2. Các tính ch t c a tích phân 5 II.3 Tính tích phân b ng phương pháp phân tích 5 Bài t p ñ ngh 1 9 II.4 Tính tích phân b ng phương pháp ñ i bi n s 10 II.4.1 Phương pháp ñ i bi n s lo i 1 10 ð nh lý v phương pháp ñ i bi n s lo i 1 13 M t s d ng khác dùng phương pháp ñ i bi n s lo i 1 14 Bài t p ñ ngh s 2 14 Bài t p ñ ngh s 3 15 Bài t p ñ ngh s 4: Các ñ thi tuy n sinh ð i h c Cao ñ ng 16 II.4.2 Phương pháp ñ i bi n s lo i 2 16 Bài t p ñ ngh s 5 21 Các ñ thi T t nghi p trung h c ph thông 22 Các ñ thi tuy n sinh ð i h c Cao ñ ng 22 II.5. Phương pháp tích phân t ng ph n 23 Bài t p ñ ngh s 6: Các ñ thi tuy n sinh ð i h c Cao ñ ng 28 III. Ki m tra k t qu c a m t bài gi i tính tích phân b ng máy tính CASIO fx570-MS 29 Bài t p ñ ngh s 7: Các câu h i tr c nghi m tích phân 30 Ph l c 36 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 2
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI I. NGUYÊN HÀM: I.1. ð NH NGHĨA NGUYÊN HÀM: Hàm s F(x) ñư c g i là nguyên hàm c a hàm s f(x) trên (a;b) n u v i m i x∈(a;b): F’(x) = f(x) VD1: a) Hàm s F(x) = x3 là nguyên hàm c a hàm s f(x) = 3x2 trên R 1 b) Hàm s F(x) = lnx là nguyên hàm c a hàm s f(x) = trên (0;+∞) x I.2. ð NH LÝ: N u F(x) là m t nguyên hàm c a hàm s f(x) trên (a;b) thì: a) V i m i h ng s C, F(x) + C cũng là m t nguyên hàm c a f(x) trên kho ng ñó. b) Ngư c l i, m i nguyên hàm c a hàm s f(x) trên kho ng (a;b) ñ u có th vi t dư i d ng F(x) + C v i C là m t h ng s . Theo ñ nh lý trên, ñ tìm t t c các nguyên hàm c a hàm s f(x) thì ch c n tìm m t nguyên hàm nào ñó c a nó r i c ng vào nó m t h ng s C. T p h p các nguyên hàm c a hàm s f(x) g i là h nguyên hàm c a hàm s f(x) và ñư c ký hi u: ∫ f(x)dx (hay còn g i là tích phân b t ñ nh) V y: ∫ f(x)dx = F(x)+C 1 VD2: a) ∫ 2xdx = x 2 + C b) ∫ sinxdx = - cosx + C c) ∫ cos x dx = tgx +C 2 I.3. CÁC TÍNH CH T C A NGUYÊN HÀM: ' 1) ( ∫ f(x)dx ) = f(x) 2) ∫ a.f(x)dx = a ∫ f(x)dx (a ≠ 0 ) 3) ∫ f(x) ± g(x) dx = ∫ f(x)dx ± ∫ g(x)dx 4) ∫ f(x)dx = F(x)+C ⇒ ∫ f (u(x) ) u'(x)dx = F (u(x) )+C ∫ (5x -6x 2 + 8x )dx = x 5 - 2x 3 + 4x 2 +C 4 VD3: a) b) ∫6cosx.sinxdx = -6 ∫ cosx.d (cosx ) = -3cos 2 x +C Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 3
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI I.4. B NG CÔNG TH C NGUYÊN HÀM: B NG CÁC NGUYÊN HÀM CƠ B N NGUYÊN HÀM CÁC HÀM SƠ C P THƯ NG G P NGUYÊN HÀM CÁC HÀM S H P 1/ ∫ dx = x + C 1/ ∫ du = u + C x α +1 uα +1 2/ ∫ x α dx = +C ( α ≠ -1) 2/ ∫ uα du = +C ( α ≠ -1) α +1 α +1 dx du 3/ ∫ = ln x + C (x ≠ 0) 3/ ∫ = ln u + C (u = u(x) ≠ 0) x u 4/ ∫ e x dx = e x + C 4/ ∫ eu du = eu + C ax au 5/ ∫ a x dx = +C ( 0 < a ≠ 1) 5/ ∫ au du = +C ( 0 < a ≠ 1) lna lna 6/ ∫ cosx dx = sinx + C 6/ ∫ cosu du = sinu + C 7/ ∫ sinx dx = -cosx + C 7/ ∫ sinu du = - cosu + C π π = (1+ tg2 x ) dx = tgx + C (x ≠ + k π ) = (1+ tg2u ) du = tgu + C (u ≠ + kπ ) dx du 8/ ∫ cos 2 x ∫ 8/ ∫ 2 cos2u ∫ 2 = (1+ cotg 2 x ) dx = -cotgx + C (x ≠ k π ) = (1+ cotg2u ) du = -cotgu + C (u ≠ kπ ) dx du 9/ ∫ sin 2 x ∫ 9/ ∫ sin2u ∫ CÁC CÔNG TH C B SUNG CÔNG TH C NGUYÊN HÀM THƯ NG G P: CÁC CÔNG TH C LŨY TH A: 1 1/ a m . a n = a m+n 1/ ∫ x dx = 2 x + C (x ≠ 0) am 1 1 ( ax + b ) α +1 2/ = a m-n ; n = a -n 2/ ∫ ( ax + b ) dx = α n + C (a ≠ 0) a a a α +1 1 n m 1 1 3/ m a = am ; an = a m 3/ ∫ dx = ln ax + b + C (a ≠ 0) ax + b a 1 ax +b CÁC CÔNG TH C LƯ NG GIÁC: 4/ ∫ e ax+b dx = e + C (a ≠ 0) a a. CÔNG TH C H B C: a kx 5/ ∫ a kx dx = + C ( 0 ≠ k ∈ R, 0 < a ≠ 1) 1 1 k.lna 1/ sin2 x = (1- cos2x ) 2/ cos2 x = (1+cos2x ) 2 2 1 6/ ∫ cos ( ax + b ) dx = sin ( ax + b ) + C (a ≠ 0) b. CÔNG TH C BI N ð I TÍCH THÀNH T NG a 1 1 1/ cosa.cosb = cos ( a - b ) + cos ( a +b ) 7 / ∫ sin ( ax + b ) dx = - cos ( ax + b ) + C (a ≠ 0) 2 a 1 π 2/ sina.sinb = cos ( a - b ) - cos ( a + b ) 8 / ∫ tgx dx = - ln cosx + C (x ≠ 2 + kπ ) 2 1 9/ ∫ cotgx dx = ln sinx + C (x ≠ k π ) 3/ sina.cosb = sin ( a - b ) + sin ( a + b ) 2 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 4
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI II. TÍCH PHÂN: II.1. ð NH NGHĨA TÍCH PHÂN XÁC ð NH: Gi s hàm s f(x) liên t c trên m t kho ng K, a và b là hai ph n t b t kỳ c a K, F(x) là m t nguyên hàm c a hàm s f(x) trên K. Hi u F(b) – F(a) ñư c g i là tích phân t a ñ n b c a f(x). Ký hi u: b b ∫ f(x)dx = F(x) = F(b)-F(a) a a II.2. CÁC TÍNH CH T C A TÍCH PHÂN: a 1/ ∫ f (x )dx =0 a a b 2/ ∫ f (x )dx = −∫ f (x )dx b a b b 3/ ∫ k.f (x )dx = k.∫ f (x )dx (k ≠ 0) a a b b b 4/ ∫ [f (x ) ± g(x )]dx = ∫ f (x )dx ± ∫ g(x )dx a a a b c b 5/ ∫ f(x)dx = ∫ f (x )dx + ∫ f (x )dx v i c∈(a;b) a a c b 6 / N u f (x ) ≥ 0, ∀x ∈ [a;b ] thì ∫ f (x )dx ≥ 0 . a b b 7 / N u f (x ) ≥ g (x ), ∀x ∈ [a;b ] thì ∫ f (x )dx ≥ ∫ g(x )dx . a a b 8 / N u m ≤ f (x ) ≤ M , ∀x ∈ [a;b ] thì m(b − a ) ≤ ∫ f (x )dx ≤ M (b − a ) . a t 9 / t bi n thiên trên [a;b ] ⇒ G (t ) = ∫ f (x )dx là m t nguyên hàm c a f (t ) và G (a ) = 0 a II.3. TÍNH TÍCH PHÂN B NG PHƯƠNG PHÁP PHÂN TÍCH: b Chú ý 1: ð tính tích phân I = ∫ f (x )dx ta phân tích f (x ) = k1 f1(x ) + ... + km fm (x ) a Trong ñó: ki ≠ 0 (i = 1,2, 3,..., m ) các hàm fi (x ) (i = 1,2, 3,..., m ) có trong b ng nguyên hàm cơ b n. VD4: Tính các tích phân sau: Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 5
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI 2 2 1) I = ∫(3x 2 - 4x +3)dx =(x 3 - 2x 2 +3x) -1 -1 = (2 3 - 2.2 2 +3.2) -((-1)3 - 2.(-1)2 +3.(-1)) = 12 Nh n xét: Câu 1 trên ta ch c n áp d ng tính ch t 4 và s d ng công th c 1/ và 2/ trong b ng nguyên hàm. 2 3x 4 -6x 3 + 4x 2 - 2x + 4 2) I = ∫ dx 1 x2 Nh n xét: Câu 2 trên ta chưa áp d ng ngay ñư c các công th c trong b ng nguyên hàm, trư c h t tách phân s trong d u tích phân (l y t chia m u) r i áp d ng tính ch t 4 và s d ng công th c 1/, 2/, 3/ trong b ng nguyên hàm. 2 2 3x 4 -6x 3 + 4x 2 - 2x + 4 2 4 ⇒ I= ∫ 2 dx = ∫(3x 2 -6x + 4 - + 2 )dx 1 x 1 x x 4 2 = (x 3 -3x 2 + 4x - 2ln |x |- ) = 4 - 2ln2 x 1 2 x 2 -5x +3 3) I = ∫ dx 0 x +1 Nh n xét: Câu 3 trên ta cũng chưa áp d ng ngay ñư c các công th c trong b ng nguyên hàm, trư c h t phân tích phân s trong d u tích phân (l y t chia m u) r i áp d ng tính ch t 4 và s d ng công th c 1/, 2/ trong b ng nguyên hàm và công th c 3/ b sung. 2 2 2 x -5x +3 9 ⇒ I= ∫ dx = ∫ x − 6 + dx 0 x +1 0 x +1 x2 2 = -6x +9ln | x +1 | = 2 -12 +9ln3 = 9ln3 -10 2 0 1 4) I = ∫e x (2xe -x +5 x e-x -e-x ) dx 0 Nh n xét: Câu 4: bi u th c trong d u tích phân có d ng tích ta cũng chưa áp d ng ngay ñư c các công th c trong b ng nguyên hàm, trư c h t nhân phân ph i rút g n r i áp d ng tính ch t 4 và s d ng công th c 1/, 2/, 5/ trong b ng nguyên hàm. 1 1 2 5x 1 4 ⇒ I = ∫e (2xe +5 e -e ) dx = ∫ (2x +5 -1 ) dx = x + x -x x -x -x x -x = 0 0 ln5 0 ln5 π 4 π 2 5) I = ∫(4cosx +2sinx - 2 )dx =(4sinx - 2cosx - 2tgx) 4 = 2 2 - 2 - 2+2 = 2 0 cos x 0 Nh n xét: Câu 5 trên ta ch c n áp d ng tính ch t 4 và s d ng công th c 6/, 7/ và 8/ trong b ng nguyên hàm. Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 6
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI π 8 π 6) I = ∫(4sin2x - 12cos4x)dx = (-2cos2x - 3sin4x) 8 = - 2 -3 + 2 = -1- 2 0 0 Nh n xét: Câu 6 trên ta cũng ch c n áp d ng tính ch t 4 và s d ng công th c 6/ , 7/ trong b ng nguyên hàm ph n các công th c b sung. π 12 π ∫ sin 2 7) I = )dx(2x - 0 4 Nh n xét: Câu 7 h c sinh có th sai vì s d ng nh m công th c 2/ trong b ng b ng π nguyên hàm c t bên ph i, b i ñã xem u 2 = sin 2(2x -) (hơi gi ng ñ o hàm hàm s h p). 4 V i câu 7 trư c h t ph i h b c r i s d ng công th c 6/ trong b ng nguyên hàm ph n các công th c b sung. π π π 12 π 1 12 π 1 12 ∫ sin ∫ 1 - cos(4x - 2 ) dx = 2 ∫ (1 - sin4x )dx 2 ⇒ I= (2x - )dx = 0 4 2 0 0 π 1 1 1 π 1 π 1 1 π 1 = x + cos4x 12 = + cos - 2 0 + 4 cos0 = 24 - 16 2 4 0 2 12 4 3 π 16 8/ I = ∫ cos6x.cos2xdx 0 Nh n xét: câu 8: bi u th c trong d u tích phân có d ng tích ta cũng chưa áp d ng ngay ñư c các công th c trong b ng nguyên hàm, trư c h t ph i bi n ñ i lư ng giác bi n ñ i tích thành t ng r i áp d ng tính ch t 4 và s d ng công th c 6/ trong b ng nguyên hàm ph n các công th c b sung. π π π 16 1 16 1 1 1 ⇒ I = ∫ cos6x.cos2xdx = 0 2 ∫ (cos8x +cos4x )dx = 2 8 sin8x + 4 sin4x 0 16 0 π 1 π 1 1 1 1 2 1 = 1 1 2 8 2 4 4 2 8 1 sin + sin − sin 0 + sin 0 = + 4 2 8 = 8 16 1+ 2 ( ) 2 ∫x 2 9) I = -1dx -2 Nh n xét: Câu 9 bi u th c trong d u tích phân có ch a giá tr tuy t ñ i, ta hư ng h c sinh kh d u giá tr tuy t ñ i b ng cách xét d u bi u th c x2 – 1 trên [-2;2] và k t h p v i tính ch t 5/ c a tích phân ñ kh giá tr tuy t ñ i. Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 7
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI 2 -1 1 2 ⇒ I= ∫x ∫ (x -1 )dx − ∫ ( x 2 - 1 ) dx + ∫ ( x 2 -1 )dx 2 2 -1dx = -2 -2 -1 1 x -1 x 3 1 x 2 3 3 = -x − -x + -x = 5 3 -2 3 -1 3 1 3 3x +9 10) I = ∫ 2 dx 2 x - 4x -5 Nh n xét: Câu 10 trên ta không th c hi n phép chia ña th c ñư c như câu 2 và 3, m t khác bi u th c dư i m u phân tích ñư c thành (x -5)(x +1) nên ta tách bi u th c 3x+9 A B 4 1 trong d u tích phân như sau: 2 = + = - (phương pháp h s x - 4x -5 x -5 x+1 x -5 x+1 b t ñ nh) 3 3 3x +9 4 1 dx = ( 4ln | x -5 |-ln |x +1 |) 3 ⇒ I= ∫ 2 dx = ∫ - 2 2 x - 4x -5 x -5 x +1 2 4 = 4ln2 -ln4 - 4ln3 +ln3 = 2ln2 -3ln3 = ln 27 a'x +b' Chú ý 2: ð tính I = ∫ dx (b 2 - 4ac ≥ 0) ta làm như sau: ax 2 +bx + c b 2 TH1: N u b 2 - 4ac = 0 , khi ñó ta luôn có s phân tích ax 2 +bx + c = a(x + ) 2a b ba' ba' a'(x + )+b' - a' dx b' - dx 2a 2a dx = ⇒ I= ∫ b ∫ b + a2a ∫ a x+ b a(x + )2 (x + )2 2a 2a 2a TH2: N u b 2 - 4ac >0 ⇒ ax 2 + bx + c = a(x - x1 )(x - x 2 ) . Ta xác ñ nh A,B sao cho A+ B = a' a'x + b' = A(x - x1 )+ B(x - x 2 ) , ñ ng nh t hai v ⇒ Ax1 + Bx 2 = -b' 1 A(x - x1 )+ B(x - x 2 ) 1 A B I= ∫ dx = ∫( + )dx . a (x - x1 )(x - x 2 ) a x - x 2 x - x1 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 8
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI Chú ý 3: P(x) TH1: ð tính I = ∫ dx ta làm như sau: (x -a1 )(x -a2 )...(x -an ) P(x) A1 A2 An = + +...+ (x -a1 )(x -a2 )...(x -an ) (x -a1 ) (x -a2 ) (x -an ) P(x) TH2: ð tính I = ∫ dx ta làm như sau: (x -a1 ) (x -a2 )k ...(x - an )r m P(x) A1 A2 Am m k r = m + m -1 + ...+ + ... (x -a1 ) (x -a2 ) ...(x -an ) (x - a 1 ) (x - a 2 ) (x - a m ) P(x) TH3: ð tính I = ∫ dx v i P(x) và Q(x) là hai ña th c: Q(x) * N u b c c a P(x) l n hơn ho c b ng b c c a Q(x) thì l y P(x) chia cho Q(x). * N u b c c a P(x) nh hơn b c c a Q(x) thì tìm cách ñưa v các d ng trên. Nh n xét: Ví d 4 trên g m nh ng bài t p tính tích phân ñơn gi n mà h c sinh có th áp d ng ngay b ng công th c nguyên hàm ñ gi i ñư c bài toán ho c v i nh ng phép bi n ñ i ñơn gi n như nhân phân ph i, chia ña th c, ñ ng nh t hai ña th c, bi n ñ i tích thành t ng...Qua ví d 4 này nh m giúp các em thu c công th c và n m v ng phép tính tích phân cơ b n. BÀI T P ð NGH 1: Tính các tích phân sau: 1 2 1) I = ∫(x x + 2x 3 +1)dx 2x 2 x + x 3 x - 3x + 1 2) Ι = ∫ dx 0 1 x2 0 2 x 3 -3x 2 -5x +3 ∫ (x + x - 3 ) dx 2 ∫ 2 3) I = dx 4) I = -1 x -2 -2 π π 6 12 5) I = ∫ (sinx + cos2x - sin3x )dx 0 6) I = ∫ 4sinx.sin2x.sin3xdx 0 π 16 2 ∫x 2 ∫ cos 4 8) I = + 2x -3 dx 7) I = 2xdx 0 -2 4 1 dx dx 9) I = ∫ 2 10) I = ∫ 1 x -5x +6 x +1+ x 0 2 x + 2x +6 x 2 +1 11) I = ∫ dx 12) I = ∫ dx (x -1)(x - 2)(x - 4) (x -1)3 (x +3) xdx x 7 dx 13) I = ∫ 4 14) I = ∫ x -6x 2 +5 (1+ x 4 )2 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 9
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI II.4. TÍCH PHÂN B NG PHƯƠNG PHÁP ð I BI N S : II.4.1. Phương pháp ñ i bi n s lo i 1: b Ta có chú ý (SGK trang 123): Tích phân ∫ f(x)dx a ch ph thu c vào hàm s f(x), c n a và b mà không ph thu c vào cách ký hi u bi n s tích phân. T c là: b b b ∫ f(x)dx = ∫ f(t)dt = ∫ f(u)du = ... a a a Trong m t s trư ng h p tính tích phân mà không tính tr c ti p b ng công th c hay qua các bư c phân tích ta v n không gi i ñư c. Ta xét các trư ng h p cơ b n sau: VD5: Tính các tích phân sau: 2 2 dx 1) I = ∫ 0 2 -x2 Phân tích: Bi u th c trong d u tích phân có ch a căn b c hai, ta không kh căn b ng phép bi n ñ i bình phương hai v ñư c, ta th tìm cách bi n ñ i ñưa căn b c hai v 2 2 d ng A 2 , khi ñó ta s liên tư ng ngay ñ n công th c: 1-sin x = cos x = cosx , do ñó: π π ð t x = 2sint ⇒ dx = 2costdt , t ∈ - ; 2 2 2 2 π ð i c n: x= ⇒ 2sint = ⇒t = 2 2 6 x =0 ⇒ 2sint = 0 ⇒ t = 0 π π π π 6 2cost.dt 6 2cost.dt 6 π π ⇒ I= ∫ =∫ = ∫ dt = t = 6 ( vì t ∈ 0; ⇒ cost > 0 ) 6 0 2 2 2 -2sin t 0 2(1-sin t) 0 6 0 2 dx Trong VD trên khi ta thay ñ i như sau: I = ∫ 0 2 -x2 . H c sinh làm tương t và π 1 ñư c k t qu I = . K t qu trên b sai vì hàm s f (x) = không xác ñ nh khi x= 2 . 2 2-x2 Do ñó khi ra ñ d ng trên Giáo viên c n chú ý: hàm s f (x) xác ñ nh trên [a;b] Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 10
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI 6 2 2) I = ∫ 0 3 - x 2 dx π π ð t x = 3 sint ⇒ dx = 3 costdt , t ∈ - ; 2 2 6 6 π ð i c n: x= ⇒ 3sint = ⇒t = 2 2 4 x =0 ⇒ 2sint = 0 ⇒ t = 0 π π π π 4 4 34 3 1 3 π 1 ⇒I = ∫ 3 -3sin t . 3cost.dt = ∫ 3cos t.dt = ∫ (1+cos2t ).dt = t+ sin2t = + 2 2 4 0 0 20 2 2 24 2 0 β β dx a) Khi g p d ng ∫ α a 2 - x 2 dx hay ∫ α a2 - x 2 (a > 0) π π ð t x = a.sint ⇒dx = a.cost.dt , t ∈ - ; 2 2 2 2 2 2 2 ( ð bi n ñ i ñưa căn b c hai v d ng A 2 , t c là: a -a sin x = a cos x =a. cosx ) π π ð i c n: x = β ⇒ t = β’ ∈ - ; 2 2 π π x = α ⇒ t = α’ ∈ - ; 2 2 π π π π Lưu ý: Vì t ∈ - ; ⇒ α ', β ' ∈ - ; ⇒ cost > 0 2 2 2 2 β β' β' ⇒ ∫ a - x dx = 2 2 ∫ a -a sin t .acostdt = ∫ a 2cost 2dt , h b c cos2t. 2 2 2 α α' α' β β' β' dx a.costdt hay ∫ α =∫ = ∫ dt a 2 - x 2 α ' a 2 -a 2sin 2 t α ' ð n ñây, công th c nguyên hàm không ph thu c vào bi n s nên ta tính ñư c tích phân theo bi n s t m t cách d dàng. ñây ta c n lưu ý: Bi u th c trong d u tích phân này là hàm s theo bi n s t ñơn ñi u trên [α;β]. Ta m r ng tích phân d ng trên như sau: β β dx b) Khi g p d ng ∫ α a 2 -u 2(x)dx hay ∫ α a 2 - u 2(x) (a > 0) π π ð t u(x) = a.sint ⇒ u'(x).dx = a.cost.dt , t ∈ - ; 2 2 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 11
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI π π ð i c n: x = β ⇒ t = β’ ∈ - ; 2 2 π π x = α ⇒ t = α’ ∈ - ; 2 2 6 6 2+ 2+ 2 2 3 - (x -2 ) dx 2 VD6: Tính tích phân sau: I = ∫ 2 -x 2 + 4x -1 dx . Ta có: I = ∫ 2 π π ð t x - 2 = 3 sint ⇒ dx = 3 cost.dt , t ∈ - ; 2 2 6 2 π ð i c n: x = 2+ ⇒ sint = ⇒t = 2 2 4 x = 2 ⇒ sint = 0 ⇒ t = 0 π π 4 4 ⇒ I= ∫ 3 - 3sin 2 t . 3 cost.dt = ∫ 3cos 2 t.dt 0 0 π π 3 4 3 1 3 π 1 = ∫ (1+ cos2t ).dt = t + sin2t 4 = + 20 2 2 24 2 0 2 dx VD7: Tính tích phân sau: I = ∫ dx 0 2+x 2 Nh n xét: Ta th y tam th c b c hai m u s vô nghi m nên ta không s d ng phương pháp h s b t ñ nh như ví d 4.10 và không phân tích bi u th c trong d u tích phân ñư c như chú ý 2 và chú ý 3. π π ð t: x = 2tgt ⇒ dx = 2. (1+tg 2t )dt , t ∈ - ; 2 2 π ð i c n: x = 2 ⇒ 2tgt = 2 ⇒ t = 4 x =0 ⇒ 2tgt = 0 ⇒ t = 0 π π 2.(1+tg 2t )dt 4 2 π 4 2 4 2π ⇒ I= ∫ 2 = ∫ dt = t = 0 2+2tg t 0 2 2 8 0 β dx c) Khi g p d ng +x2 ∫ (a > 0) αa 2 Nh n xét: a2 + x2 = 0 vô nghi m nên ta không phân tích bi u th c trong d u tích phân ñư c như chú ý 2 và chú ý 3. π π ð t x = a.tgt ⇒ dx = a. (1+ tg t ) dt , t ∈ - ; 2 2 2 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 12
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI π π ð i c n: x = β ⇒ t = β’ ∈ - ; 2 2 π π x = α ⇒ t = α’ ∈ - ; 2 2 Ta xét ví d tương t ti p theo: 1+ 2 dx VD8: Tính tích phân sau: I = ∫ 1 2 x -2x+3 Nh n xét: Ta th y tam th c b c hai m u s vô nghi m nên ta phân tích m u s ñư c thành: a2 + u2(x). 1+ 2 1+ 2 dx dx Ta có: I = ∫ 1 2 x -2x+3 = ∫ 1 2+ ( x -1) 2 π π ð t x -1= 2tgt ⇒ dx = 2. (1+tg 2t )dt , t ∈ - ; 2 2 ð i c n: π x = 1+ 2 ⇒ tgt = 1 ⇒ t = 4 x = 1 ⇒ tgt = 0 ⇒t = 0 π π 2.(1+tg 2t )dt 4 2 π 4 2 2π ⇒ I= ∫ 4 2 = ∫ dt = t = 0 2+2tg t 0 2 2 8 0 V y: β dx d) Khi g p d ng ∫ +u 2 (x ) αa 2 (a > 0) V i tam th c b c hai a 2 +u 2 (x ) vô nghi m thì π π ð t u(x) = a.tgt ⇒ u'(x)dx = a.(1+tg 2t )dt , t ∈ - ; 2 2 π π ð i c n: x = β ⇒ t = β’ ∈ - ; 2 2 π π x = α ⇒ t = α’ ∈ - ; 2 2 Tóm l i: Phương pháp ñ i bi n s d ng 1: ð nh lý: N u 1. Hàm s x = u(t) có ñ o hàm liên t c, ñơn ñi u trên ño n [α;β]. 2. Hàm s h p f [u(t)] ñư c xác ñ nh trên ño n [α;β]. Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 13
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI 3. u(α) = a, u(β) = b. b β thì ∫ f(x)dx = α f [u(t)]u'(t).dt a ∫ T ñó ta rút ra quy t c ñ i bi n s d ng 1 như sau: B1: ð t x = u(t) (v i u(t) là hàm có ñ o hàm liên t c trên [α ;β ] , f(u(t)) xác ñ nh trên [α ;β ] và u(α ) = a, u( β ) = b ) và xác ñ nh α , β b β β B2: Thay vào ta có: I = ∫ f(u(t)).u'(t)dt = ∫ g(t)dt = G(t) α = G( β ) -G (α ) a α M t s d ng khác thư ng dùng phương pháp ñ i bi n s dang 1: 1 a * Hàm s trong d u tích phân ch a a 2 -b 2 x 2 hay ta thư ng ñ t x = sint a 2 -b 2 x 2 b 1 a * Hàm s trong d u tích phân ch a b 2 x 2 - a 2 hay ta thư ng ñ t x = b2 x 2 - a 2 bsint 1 a * Hàm s trong d u tích phân ch a 2 2 2 ta thư ng ñ t x = tgt a +b x b a * Hàm s trong d u tích phân ch a x(a -bx) ta thư ng ñ t x = sin 2t b BÀI T P ð NGH 2: Tính các tích phân sau: 1 1 2 x2 1) I = ∫ x 1 - x dx 2) I = ∫ dx 2 0 0 4 - 3x 1 2 x x2 - 1 3) I = ∫ 0 3 + 2x - x 2 dx 4) I = ∫ x dx 1 3 2 1 x +1 dx 5) I = ∫ x(2 - x) dx 6) I = ∫ 2 0 x + x +1 1 1 Hư ng d n: Câu 4: ð t x = Câu 5: ð t x = 2sin 2t sint π VD9: Ch ng minh r ng: N u hàm s f(x) liên t c trên 0; thì 2 π π 2 2 ∫ f (sinx )dx = ∫ f (cosx )dx 0 0 Áp d ng phương pháp trên ñ tính các tích phân sau : π π 2 4 4 sin x 1) I = ∫ dx 2) I = ∫ ln(1+ tgx)dx 0 sin 4x + cos 4x 0 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 14
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI Gi i π 2 π VT = ∫ f (sinx )dx ð t x= 2 - t ⇒ dx = -dt . 0 π π ð i c n x =0 ⇒t = ;x= ⇒t =0 2 2 π π 0 2 ⇒ VT = − ∫ f sin − t dt = ∫ f (cosx )dx = VP (ñpcm) π 2 0 2 Áp d ng phương pháp trên ñ tính các tích phân sau : π 2 sin 4x 1) I = ∫ 4 4 dx 0 sin x + cos x π ð t x= - t ⇒ dx = -dt . 2 π π ð i c n x =0 ⇒t = ;x= ⇒t =0 2 2 π π π 0 sin 4( - t) 2 cos t 4 2 cos 4x I= - ∫ 2 π π dt = ∫ 4 4 dt = ∫ 4 4 dx π sin 4( - t)+ cos 4( - t) 0 sin t + cos t 0 sin x + cos x 2 2 2 π π π 2 sin x 4 cos x 2 2 π π 4 ⇒ 2I = ∫ sin 4x + cos 4x dx + ∫ 4 4 dx = ∫ dx = ⇒ I = . 0 0 sin x + cos x 0 2 4 π 4 2) I = ∫ ln(1+ tgx)dx 0 ð t x = π - t ⇒ dx = -dt 4 π π ð i c n x =0 ⇒t = ;x= ⇒t =0 4 4 π π π 0 π 1-tgt 4 4 4 ⇒ I = - ∫ ln[1+tg( -t)]dt = ∫ ln(1+ )dt = ∫ [ln2 -ln(1+tgt)]dt = ln2. ∫ dt - I π 4 0 1+tgt 0 0 4 πln2 π.ln2 ⇒2I = ⇒I = 4 8 BÀI T P ð NGH 3: Tính các tích phân sau: Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 15
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI π π 2 n n 2 π 1) ∫ sin xdx = ∫ cos xdx HD: ð t x = -t . 0 0 2 a 2) Cho I = ∫ f(x)dx . CMR: -a a a) I = 2 ∫ f(x)dx n u f(x) là hàm s ch n. 0 b) I = 0 n u f(x) là hàm s l . b b f(x) 3) Ch ng minh r ng: N u f(x) là hàm s ch n thì ∫ x dx = ∫ f(x)dx . -b a + 1 0 2 2x 2 + 1 Áp d ng: Tính I = ∫ x dx . -2 2 + 1 π ππ 4) Ch ng minh r ng: ∫ xf(sinx)dx = ∫ f(sinx)dx (HD: ð t x = π - t ) 20 0 π xsinx Áp d ng: Tính I = ∫ 4+ sin 2 x dx . 0 BÀI T P ð NGH 4: Tính các tích phân sau: (Các ñ tuy n sinh ð i h c) 2 1 2 x2 a) I = ∫ dx (ðH TCKT 1997) b) I = ∫ (1- x ) dx 2 3 (ðH Y HP 2000) 0 1- x 2 0 2 a c) I = ∫ x 2 4 - x 2 dx (ðH T.L i 1997) d) I = ∫ x 2 a 2 - x 2 dx (ðH SPHN 2000) 0 0 3 2 1 dx dx e) I = ∫x (ðH TCKT 2000) f) I = ∫ (ðH T.L i 2000) 1 1- x 2 0 x + 4x 2 +3 4 2 1 2 dx dx g) I = ∫ (ðH N.Ng 2001) h) I = ∫x (ðH BKHN 1995) -1 (1+ x )2 2 2 3 x 2 -1 II.4.2. Phương pháp ñ i bi n s lo i 2: (D ng ngh ch) b N u tích phân có d ng ∫ f u(x) u'(x)dx a ð t: u = u(x) ⇒ du = u'(x)dx ð i c n: x = b ⇒ u2 = u(b) x = a ⇒ u1 = u(a) u2 ⇒ I = ∫ f (u )du u1 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 16
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI a) M t s d ng cơ b n thư ng g p khi ñ i bi n s lo i 2:(D ng ngh ch) Trong m t s trư ng h p tính tích phân b ng phương pháp phân tích hay tính tích phân b ng tích phân ñ i bi n s lo i 1 không ñư c nhưng ta th y bi u th c trong d u tích phân có ch a: 1. Lũy th a thì ta th ñ t u b ng bi u th c bên trong c a bi u th c có ch a lũy th a cao nh t. 2. Căn th c thì ta th ñ t u b ng căn th c. 3. Phân s thì ta th ñ t u b ng m u s . 4. cosx.dx thì ta th ñ t u = sinx. 5. sinx.dx thì ta th ñ t u = cosx. dx 6. 2 hay (1 + tg2x)dx thì ta th ñ t u = tgx. cos x dx 7. 2 hay (1 + cotg2x)dx thì ta th ñ t u = cotgx. sin x dx 8. và ch a lnx thì ta th ñ t u = lnx. x VD 10: Tính các tích phân sau: 1 1. a) I = ∫(x +1) x dx 3 5 2 0 du ð t: u = x +1 ⇒ du = 3x dx ⇒ x dx = 3 2 2 3 ð i c n: x 0 1 u 1 2 2 du 1 2 5 u6 2 2 6 16 7 ⇒ I = ∫ u5 = ∫ u du = = - = 1 3 31 18 1 18 18 2 π 2 b) I = ∫(1+sinx )3 .cosx.dx (Tương t ) 0 2 2. a) I = ∫ 4+3x 2 .12x.dx 0 ð t: u = 4+3x 2 ⇒ u 2 = 4+3x 2 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 17
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI ⇒ 2udu = 6xdx ⇒ 12xdx = 4udu ð i c n: x 0 2 u 2 4 4 4 4 4u 3 4.43 4.2 3 224 ⇒ I = ∫ u.4u.du = ∫ 4u 2 .du = = - = 2 2 3 2 3 3 3 2 2 b) I = ∫ 1+2x 2 .x 3 .dx (HD: I = ∫ x 2 . 1+2x 2 .xdx ) 0 0 u2 -1 ð t u = 1+2x 2 ⇒ u 2 = 1+2x 2 ⇒ x 2 = 2 udu ⇒ 2udu = 4xdx ⇒ xdx = ... 2 1 x2 c) I = ∫ 3 dx ð t u 3 = 3 1+7x 3 ⇒ u 3 = 1+7x 3 0 1+7x 3 u 2du ⇒ 3u 2du = 21x 2dx ⇒ x 2dx = 7 ð i c n: x 0 1 u 1 2 2 2 2 2 2 u 1 1u 2 2 12 3 ⇒I = ∫ du = ∫ udu = = - = 1 7u 71 14 1 14 14 14 1 1 x3 x 2 .x 3.a) I = ∫ dx Ta có: I = ∫ dx x 2 +1 0 0 x 2 +1 ð t u = x 2 +1 ⇒ x 2 = u -1 du ⇒ du = 2xdx ⇒ xdx = 2 ð i c n: x 0 1 u 1 2 2 u -1 12 1 2 1 1 ⇒ I= ∫ du = ∫ 1- du = (u -ln |u |) = (2 -ln2 -1 ) = (1-ln2 ) 1 2u 2 1 u 1 2 2 2 x2 b) I = ∫ dx (HD: ð t u = x 3 +2 ) 1 x 3 +2 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 18
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI π 6 4.a) I = ∫ sin x.cosx.dx ð t: u = sinx ⇒ du = cosx.dx 4 0 ð i c n: π x 0 6 1 u 0 2 1 1 2 u5 2 1 ⇒ I = ∫ u du = 4 = 0 5 0 160 π 2 sinx b) I = ∫ dx (HD: ð t u = 1+3cosx ) 0 1+3cosx π 2 c) I = ∫ 1+3sinx.cosxdx (HD: ð t u = 1+3sinx ) 0 π 2 sin2x +sinx 5.a) I = ∫ dx (ð ðH kh i A – 2005) 0 1+3cosx π π 2sinxcosx +sinx 2 2 sinx (2cosx +1 ) Ta có I = ∫ dx = ∫ dx 0 1+3cosx 0 1+3cosx u2 -1 ð t u = 1+3cosx ⇒ u 2 = 1+3cosx ⇒ cosx = 3 -2udu ⇒ 2udu = -3sinxdx ⇒ sinxdx = 3 ð i c n: π x 0 2 u 2 1 u -1 -2udu 2 2 +1 1 2 3 3 dx = 2 ⇒I = ∫ u 9∫ (2u 2 + 1 )du 2 1 2 2u 3 2 2 2.2 3 2.13 34 = +u = +2 - -1 = 9 3 1 9 3 3 27 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 19
- CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI Nh n xét: ð i v i nh ng bài ch a căn th c, h c sinh có th ñ t u b ng bi u th c trong d u căn, nhưng sau khi ñ i bi n thì tích phân m i v n còn ch a căn th c nên vi c tính ti p theo s ph c t p hơn (t c là h c sinh ph i ñưa v xα). Ví d : Cách 2 c a câu 5 π 2 sin2x +sinx 5.a) I = ∫ dx (ð ðH kh i A – 2005) 0 1+3cosx π π 2 2sinxcosx +sinx 2 sinx (2cosx +1 ) Ta có I = ∫ dx = ∫ dx 0 1+3cosx 0 1+3cosx u -1 ð t u = 1+3cosx ⇒ cosx = 3 -du ⇒ du = -3sinxdx ⇒ sinxdx = 3 ð i c n: π x 0 2 u 4 1 +1 u -1 -du 2 3 du = 1 (2u+1 ) du 1 4 ⇒I = ∫ 3 4 ∫u 9 1 u 1 1 1 − 4 1 4 4 1 14 9 ∫ = 2 u+ = ∫ 2u 2 + u 2 = u u + 2 u 1 u 9 1 9 3 1 1 32 4 34 = +4- -2 = 9 3 3 27 Nh n xét: Rõ ràng cách gi i 2 ñ t u b ng bi u th c trong căn th y ph c t p hơn so v i cách 1. π 2 sin2x.cosx b) I = ∫ 0 1+cosx dx (ðH kh i B – 2005) π (tgx +1 ) dx 4 2 dx 6.a) I = ∫ 2 ð t: u = tgx +1 ⇒ du = 0 cos x cos 2 x ð i c n: π x 0 4 u 1 2 2 u3 2 8 1 7 ⇒ I = ∫ u 2du = = - = 1 3 1 3 3 3 Trư ng THPT Nam Hà – Biên Hòa – ð ng Nai Trang 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Các phương pháp tính tích phân của các hàm số căn thức
7 p | 1999 | 407
-
Chuyên đề: Các phương pháp tính tích phân
39 p | 635 | 228
-
Toán 12: Các phương pháp tính tích phân-P2 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p | 243 | 81
-
Toán 12: Các phương pháp tính tích phân-P1 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p | 222 | 65
-
Tiết 62 : CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
6 p | 220 | 55
-
Toán 12: Các phương pháp tính tích phân-P3 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p | 148 | 49
-
Chuyên đề: Các phương pháp tính tích phân - GV: Nguyễn Duy Khôi
40 p | 140 | 36
-
Luyện thi ĐH môn Toán: Các phương pháp tính tích phân (Phần 2) - Thầy Đặng Việt Hùng
4 p | 144 | 35
-
Luyện thi ĐH môn Toán: Các phương pháp tính tích phân (Phần 1) - Thầy Đặng Việt Hùng
3 p | 172 | 35
-
Toán 12: Các phương pháp tính tích phân-P1 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
0 p | 83 | 10
-
Toán 12: Các phương pháp tính tích phân-P1 (Bài tập tự luyện) - GV. Lê Bá Trần Phương
3 p | 98 | 8
-
Toán 12: Các phương pháp tính tích phân-P3 (Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p | 111 | 8
-
Toán 12: Các phương pháp tính tích phân-P2 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
0 p | 77 | 6
-
Toán 12: Các phương pháp tính tích phân-P2 (Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p | 94 | 6
-
Toán 12: Các phương pháp tính tích phân-P3 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
0 p | 76 | 5
-
Giới thiệu phương pháp tính tích phân và số phức: Phần 1
260 p | 92 | 5
-
Bài tập tự luyện: Các phương pháp tính tích phân (phần 1)
3 p | 99 | 5
-
Bài giảng Chương 7: Các phương pháp tính tích phân
61 p | 75 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn