Đặc tính thời gian của hệ thống điều khiển số
lượt xem 48
download
Xác định đặc tính thời gian của một khâu bằng phương pháp đệ quy
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đặc tính thời gian của hệ thống điều khiển số
- C.4: ĐẶC TÍNH THỜI GIAN CỦA HỆ THỐNG ĐIỀU KHIỂN SỐ
- 4.1 KHÁI NIỆM CHUNG X(z) Y(z) G(z) x(kT) y(kT) Cho x(kT) và G(z). Xác định y(kT) x(kT ) ⇒ X ( z ) = Z { x(kT )} Y ( z) G( z) = ⇒ Y ( z ) = X ( z ).G ( z ) X ( z) ⇒ y (kT ) = Z −1 {Y ( z )}
- Ví dụ 1 − e − aT • Cho: x(kT ) = 1(kT ) G( z) = z − e − aT z x(kT ) = 1(kT ) ⇒ X ( z ) = Z {1(kT )} = z −1 z 1 − e − aT Y ( z ) = X ( z ).G ( z ) = ⋅ z − 1 z − e − aT ⎧ z 1 − e − aT ⎫ • Tra bảng: y (kT ) = Z {Y ( z )} = Z ⎨ −1 −1 ⋅ − aT ⎬ ⎩ z −1 z − e ⎭ y (kT ) = 1 − e − akT
- 1 x(kT) 0.8 0.6 y(kT) 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 time [s]
- 4.2. XÁC ĐỊNH ĐẶC TÍNH THỜI GIAN CỦA MỘT KHÂU BẰNG PHƯƠNG PHÁP ĐỆ QUY Y ( z) 2z −1 Cho hàm truyền đạt của khâu: G( z) = = 2 X ( z) 2z − z − 1 và tín hiệu đầu vào x(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định y(kT) 1. Nhân chéo: 2 z 2Y ( z ) − zY ( z ) − Y ( z ) = 2 zX ( z ) − X ( z ) 2. Nhân hai vế cho z-n với n là bậc cao nhất của z: 2Y ( z ) − z −1Y ( z ) − z −2Y ( z ) = 2 z −1 X ( z ) − z −2 X ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ:
- f (kT ) ⇒ Z { f (kT )} = F ( z ) ⇒ Z −1{ F ( z )} = f (kT ) ⇒ Z { f [ (k − 1)T ]} = z F ( z ) ⇒ Z −1 −1 {z −1 F ( z )} = f [ (k − 1)T ]
- 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {2Y ( z ) − z −1Y ( z ) − z −2Y ( z )} = Z −1 {2 z −1 X ( z ) − z −2 X ( z )} 2 y (kT ) − y[(k − 1)T ] − y[(k − 2)T ] = 2 x[(k − 1)T ] − x[(k − 2)T ] 4. Xác định y(kT). Đơn giản cách viết: y (kT ) = 0.5 y[(k − 1)T ] + 0.5 y[(k − 2)T ] + x[(k − 1)T ] − 0.5 x[(k − 2)T ] y (k ) = 0.5 y (k − 1) + 0.5 y (k − 2) + x(k − 1) − 0.5 x( k − 2); k = 0,1, 2,..., ∞ Biểu thức đệ quy đặc tính thời gian đầu ra của khâu đã cho y (0) = 0.5 y (−1) + 0.5 y (−2) + 2 x(−1) − 0.5 x(−2) 5. Xác định các giá trị ban đầu: y(-1) = 0; y(-2) = 0; x(-1) = 0; x(-2) = 0
- Các bước tính y (k ) = 0.5 y (k − 1) + 0.5 y (k − 2) + x(k − 1) − 0.5 x(k − 2); k = 0,1, 2,..., ∞ k = 0 … y(0) = 0.5y(-1) + 0.5y(-2) + x(-1) – 0.5x(-2) = 0 k = 1 … y(1) = 0.5y(0) + 0.5y(-1) + x(0) – 0.5x(-1) = x(0) k = 2 … y(2) = 0.5y(1) + 0.5y(0) + x(1) – 0.5x(0) = 0.5x(0) + x(1) – 0.5x(0) = x(1) k = 3 … y(3) = 0.5y(2) + 0.5y(1) + x(2) – 0.5x(1) = 0.5x(1) + 0.5x(0) + x(2) – 0.5x(1) = x(2) + 0.5 x(0) . . . .
- Lưu đồ thuật toán START 1 Nhập x(k), Kmax k=k+1 y(1) = 0; y(2) = 0 y(-2) = 0; y(-1) = 0 x(1) = 0; x(2) = 0 x(-2) = 0; x(-1) = 0 (-) k > Kmax k > Kmax + 3 (+) k=3 k=0 STOP y(k) = 0.5y(k-1) + 0.5y(k-2) + x(k-1) – 0.5x(k-2) 1
- Ví dụ 1: Y ( z) a2 Cho hàm truyền đạt của khâu: H 0GP ( z ) = = U ( z ) z − a1 và tín hiệu đầu vào u(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định y(kT): 1. Nhân chéo: zY ( z ) − a1Y ( z ) = a2U ( z ) 2. Nhân hai vế cho z-1: Y ( z ) − a1 z −1Y ( z ) = a2 z −1U ( z )
- Y ( z ) − a1 z −1Y ( z ) = a2 z −1U ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {Y ( z ) − a1 z −1Y ( z )} = Z −1 {a2 z −1U ( z )} y (kT ) − a1 y[(k − 1)T ] = a2u[(k − 1)T ] 4. Xác định u(kT). Đơn giản cách viết: y (kT ) = a1 y[(k − 1)T ] + a2u[(k − 1)T ] y (k ) = a1 y (k − 1) + a2u (k − 1) y (0) = a1 y (−1) + a2u (−1) 5. Xác định các giá trị ban đầu: y(-1) = 0; u(-1) = 0
- Các bước tính y (k ) = a1 y (k − 1) + a2u (k − 1) k = 0 … y(0) = a1y(-1) + a2u(-1) = 0 k = 1 … y(1) = a1y(0) + a2u(0) = u(0) k = 2 … y(2) = a1y(1) + a2u(1) = a1u(0) + a2u(1) k = 3 … y(3) = a1y(2) + a2u(2) = a1[a1u(0) + a2u(1)] + a2u(2) . . . .
- Lưu đồ thuật toán START 1 Nhập u(k), k=k+1 a1, a2, Kmax y(1) = 0; u(1) = 0 y(-1) = 0; u(-1) = 0 (-) k > Kmax k > Kmax + 2 k=2 k=0 (+) STOP y(k) = a1y(k-1) + a2u(k-1) 1
- Ví dụ 2: U ( z ) A0 z + A1 Cho hàm truyền đạt của khâu: GC ( z ) = = E ( z) z −1 và tín hiệu đầu vào e(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định u(kT): 1. Nhân chéo: zU ( z ) − U ( z ) = A0 zE ( z ) + A1E ( z ) 2. Nhân hai vế cho z-1: U ( z ) − z −1U ( z ) = A0 E ( z ) + A1 z −1E ( z )
- U ( z ) − z −1U ( z ) = A0 E ( z ) + A1 z −1E ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {U ( z ) − z −1U ( z )} = Z −1 { A0 E ( z ) + A1 z −1E ( z )} u (kT ) − u[(k − 1)T ] = A0e(kT ) + A1e[(k − 1)T ] 4. Xác định u(kT). Đơn giản cách viết: u (kT ) = u[(k − 1)T ] + A0e(kT ) + A1e[(k − 1)T ] u (k ) = u (k − 1) + A0e(k ) + A1e(k − 1) u (0) = u (−1) + A0e(0) + A1e(−1) 5. Xác định các giá trị ban đầu: u(-1) = 0; e(-1) = 0
- Các bước tính u (k ) = u (k − 1) + A0e(k ) + A1e(k − 1) k = 0 … u(0) = u(-1) + A0e(0) + A1e(-1) = A0e(0) k = 1 … u(1) = u(0) + A0e(1) + A1e(0) =(A0 + A1)e(0) + A0e(1) k = 2 … u(2) = u(1) + A0e(2) + A1e(1) = = (A0 + A1)e(0) + A0e(1) + A0e(2) + A1e(1) = = (A0 + A1)e(0) + (A0 + A1)e(1) + A0e(2) . . . .
- Lưu đồ thuật toán START 1 Nhập e(k), k=k+1 A0, A1, Kmax u(1) = 0; e(1) = 0 u(-1) = 0; e(-1) = 0 (-) k > Kmax k > Kmax + 2 k=2 k=0 (+) STOP u(k) = u(k-1) + A0e(k) + A1e(k-1) 1
- 4.3. MÔ PHỎNG HỆ THỐNG ĐIỀU KHIỂN SỐ 1. Xác định hàm truyền đạt G(z) của cả hệ thống. Xác định đặc tính đầu ra của hệ thống như của một khâu. Æ Không có đặc tính thời gian của các tín hiệu khác trong hệ thống. 2. Xác định đặc tính thời gian của tất cả các khâu trong hệ thống.
- Ví dụ Mô phỏng hệ thống có một vòng kín X(z) E(z) U(z) Y(z) GC(z) H0GP(z) (-) Trong đó: A0 z + A1 a2 GC ( z ) = H 0GP ( z ) = z −1 z − a1
- X(z) E(z) U(z) Y(z) GC(z) H0GP(z) (-) U ( z ) A0 z + A1 GC ( z ) = = E( z) z −1 ⇒ u (k ) = u (k − 1) + A0e(k ) + A1e(k − 1) (1) Y ( z) a H 0GP ( z ) = = 2 U ( z ) z − a1 ⇒ y (k ) = a1 y (k − 1) + a2u ( k − 1) (2) E(z) = X(z) – Y(z) Î e(k) = x(k) – y(k) (3)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Hệ Thống Điều Khiển Số ( ĐCKĐB)
66 p | 397 | 112
-
Báo cáo lý thuyết điều khiển tự động - Các đặc tính của hệ thống điều khiển tự động
32 p | 344 | 93
-
Điền khiển số - Chương 4
0 p | 137 | 61
-
Bài giảng Điều khiển số - Chương 4
0 p | 175 | 43
-
Bài tập Cơ sở điều khiển tự động
3 p | 274 | 29
-
Bài giảng Lý thuyết điều khiển tự động: Chương 3
36 p | 190 | 26
-
Bài giảng Lý thuyết điều khiển tự động: Chương 3 - Võ Văn Định
85 p | 136 | 24
-
Bài giảng Lý thuyết điều khiển tự động: Bài 4
56 p | 24 | 12
-
Chương 6: Đặc tính của tín hiệu trong miền thời gian và tần số
30 p | 141 | 11
-
Lý thuyết điều khiển tự động - Chương 3 ĐẶC TÍNH ĐỘNG HỌC CỦA HỆ THỐNG
28 p | 90 | 9
-
Bài giảng Chương 2: Đặc tính chung của các phần tử
40 p | 81 | 9
-
Bài giảng Cơ sở tự động: Chương 3 - Nguyễn Đức Hoàng
40 p | 81 | 7
-
Bài giảng Nguyên tắc làm việc của các hệ thống bảo vệ - TS. Nguyễn Công Tráng
0 p | 73 | 5
-
Bài giảng Điều khiển số - Chương 4: Đặc tính thời gian của hệ thống điều khiển số
0 p | 53 | 2
-
Bài giảng Lý thuyết điều khiển tự động: Bài 6 - ThS. Đỗ Tú Anh
23 p | 41 | 2
-
Aanten dò sóng Terahertz trong hệ quang phổ miền thời gian dùng xung laser femto giây
3 p | 14 | 2
-
Xây dựng đặc tính âm thanh của hệ động lực diesel máy phát điện 110 kW tại phòng thí nghiệm của Viện Nghiên cứu Khoa học và Công nghệ Hàng hải - trường Đại học Hàng hải Việt Nam
7 p | 36 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn