intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đáp án đề thi tuyển sinh Đại học năm 2009 môn Toán khối A

Chia sẻ: Nguyễn Trí Quân | Ngày: | Loại File: PDF | Số trang:4

446
lượt xem
122
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo Đáp án đề thi tuyển sinh Đại học năm 2009 môn Toán khối A

Chủ đề:
Lưu

Nội dung Text: Đáp án đề thi tuyển sinh Đại học năm 2009 môn Toán khối A

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN – THANG ĐIỂM ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 ĐỀ CHÍNH THỨC Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm I 1. (1,0 điểm) Khảo sát… (2,0 điểm) ⎧ 3⎫ • Tập xác định: D = \ ⎨− ⎬ . ⎩ 2⎭ • Sự biến thiên: −1 - Chiều biến thiên: y ' = < 0, ∀x ∈ D. ( 2 x + 3) 0,25 2 ⎛ 3⎞ ⎛ 3 ⎞ Hàm số nghịch biến trên: ⎜ −∞; − ⎟ và ⎜ − ; +∞ ⎟ . ⎝ 2⎠ ⎝ 2 ⎠ - Cực trị: không có. 1 1 - Giới hạn và tiệm cận: lim y = lim y = ; tiệm cận ngang: y = . x →−∞ x →+∞ 2 2 3 0,25 lim − y = −∞, lim + y = +∞ ; tiệm cận đứng: x = − . ⎛ 3⎞ x →⎜ − ⎟ ⎛ 3⎞ x →⎜ − ⎟ 2 ⎝ 2⎠ ⎝ 2⎠ - Bảng biến thiên: 3 x −∞ − +∞ 2 y' − − 1 +∞ 0,25 y 2 1 −∞ 2 • Đồ thị: 3 y x=− 2 1 y= 2 0,25 O x 2. (1,0 điểm) Viết phương trình tiếp tuyến… Tam giác OAB vuông cân tại O, suy ra hệ số góc tiếp tuyến bằng ±1 . 0,25 −1 Gọi toạ độ tiếp điểm là ( x0 ; y0 ) , ta có: = ±1 ⇔ x0 = −2 hoặc x0 = −1. 0,25 (2 x0 + 3) 2 • x0 = −1 , y0 = 1 ; phương trình tiếp tuyến y = − x (loại). 0,25 • x0 = −2 , y0 = 0 ; phương trình tiếp tuyến y = − x − 2 (thoả mãn). Vậy, tiếp tuyến cần tìm: y = − x − 2. 0,25 Trang 1/4
  2. Câu Đáp án Điểm II 1. (1,0 điểm) Giải phương trình… (2,0 điểm) 1 Điều kiện: sin x ≠ 1 và sin x ≠ − (*). 0,25 2 Với điều kiện trên, phương trình đã cho tương đương: (1 − 2sin x)cos x = 3(1 + 2sin x)(1 − sin x) ⎛ π⎞ ⎛ π⎞ 0,25 ⇔ cos x − 3 sin x = sin 2 x + 3 cos 2 x ⇔ cos ⎜ x + ⎟ = cos ⎜ 2 x − ⎟ ⎝ 3⎠ ⎝ 6⎠ π π 2π ⇔ x = + k 2π hoặc x = − + k . 0,25 2 18 3 π 2π Kết hợp (*), ta được nghiệm: x = − +k (k ∈ ) . 0,25 18 3 2. (1,0 điểm) Giải phương trình… ⎧2u + 3v = 8 Đặt u = 3 3 x − 2 và v = 6 − 5 x , v ≥ 0 (*). Ta có hệ: ⎨ 3 0,25 ⎩5u + 3v = 8 2 ⎧ 8 − 2u ⎧ 8 − 2u ⎪v = ⎪v = ⇔ ⎨ 3 ⇔ ⎨ 3 0,25 ⎪15u 3 + 4u 2 − 32u + 40 = 0 ⎪(u + 2)(15u 2 − 26u + 20) = 0 ⎩ ⎩ ⇔ u = −2 và v = 4 (thoả mãn). 0,25 Thế vào (*), ta được nghiệm: x = −2. 0,25 III Tính tích phân… (1,0 điểm) π π 2 2 I = ∫ cos5 xdx − ∫ cos 2 x dx. 0,25 0 0 π Đặt t = sin x, dt = cos xdx; x = 0, t = 0; x = , t = 1. 2 π π 1 0,50 2 2 1 ⎛ 2 1 ⎞ 8 I1 = ∫ cos5 xdx = ∫ (1 − sin 2 x ) cos xdx = ∫ (1 − t ) 2 2 2 dt = ⎜ t − t 3 + t 5 ⎟ = . 0 0 0 ⎝ 3 5 ⎠ 0 15 π π π ⎞2 π 8 π 2 12 1⎛ 1 0,25 I 2 = ∫ cos 2 x dx = ∫ (1 + cos 2 x ) dx = ⎜ x + sin 2 x ⎟ = . Vậy I = I1 − I 2 = − . 0 20 2⎝ 2 ⎠0 4 15 4 IV Tính thể tích khối chóp... (1,0 điểm) S ( SIB ) ⊥ ( ABCD) và ( SIC ) ⊥ ( ABCD); suy ra SI ⊥ ( ABCD). Kẻ IK ⊥ BC ( K ∈ BC ) ⇒ BC ⊥ ( SIK ) ⇒ SKI = 60 . 0,50 A B I D C K Diện tích hình thang ABCD : S ABCD = 3a 2 . 3a 2 3a 2 0,25 Tổng diện tích các tam giác ABI và CDI bằng ; suy ra S ΔIBC = . 2 2 2S 3 5a 3 15a BC = ( AB − CD ) + AD 2 = a 5 ⇒ IK = ΔIBC = 2 ⇒ SI = IK .tan SKI = . BC 5 5 0,25 1 3 15a 3 Thể tích khối chóp S . ABCD : V = S ABCD .SI = . 3 5 Trang 2/4
  3. Câu Đáp án Điểm V Chứng minh bất đẳng thức… (1,0 điểm) Đặt a = x + y, b = x + z và c = y + z. Điều kiện x( x + y + z ) = 3 yz trở thành: c 2 = a 2 + b 2 − ab. 0,25 Bất đẳng thức cần chứng minh tương đương: a3 + b3 + 3abc ≤ 5c3 ; a, b, c dương thoả mãn điều kiện trên. 3 1 c 2 = a 2 + b 2 − ab = (a + b) 2 − 3ab ≥ (a + b) 2 − (a + b) 2 = (a + b) 2 ⇒ a + b ≤ 2c (1). 0,25 4 4 a 3 + b3 + 3abc ≤ 5c 3 ⇔ (a + b)(a 2 + b 2 − ab) + 3abc ≤ 5c 3 ⇔ (a + b)c 2 + 3abc ≤ 5c 3 0,25 ⇔ (a + b)c + 3ab ≤ 5c 2 . 3 (1) cho ta: (a + b)c ≤ 2c 2 và 3ab ≤ (a + b) 2 ≤ 3c 2 ; từ đây suy ra điều phải chứng minh. 4 0,25 Dấu bằng xảy ra khi: a = b = c ⇔ x = y = z. VI.a 1. (1,0 điểm) Viết phương trình AB... (2,0 điểm) Gọi N đối xứng với M qua I , suy ra N (11; −1) và N thuộc đường thẳng CD. 0,25 A M B E ∈ Δ ⇒ E ( x;5 − x ) ; IE = ( x − 6;3 − x ) và NE = ( x − 11;6 − x). I E là trung điểm CD ⇒ IE ⊥ EN . IE.EN = 0 ⇔ ( x − 6)( x − 11) + (3 − x)(6 − x) = 0 ⇔ x = 6 hoặc 0,25 C D E N x = 7. • x = 6 ⇒ IE = ( 0; −3) ; phương trình AB : y − 5 = 0. 0,25 • x = 7 ⇒ IE = (1; −4 ) ; phương trình AB : x − 4 y + 19 = 0. 0,25 2. (1,0 điểm) Chứng minh ( P) cắt ( S ), xác định toạ độ tâm và tính bán kính… ( S ) có tâm I (1;2;3), bán kính R = 5. 2− 4−3− 4 0,25 Khoảng cách từ I đến ( P) : d ( I ,( P) ) = = 3 < R; suy ra đpcm. 3 Gọi H và r lần lượt là tâm và bán kính của đường tròn giao tuyến, 0,25 H là hình chiếu vuông góc của I trên ( P) : IH = d ( I ,( P) ) = 3, r = R 2 − IH 2 = 4. ⎧ x = 1 + 2t ⎪ y = 2 − 2t ⎪ Toạ độ H = ( x; y; z ) thoả mãn: ⎨ 0,25 ⎪z = 3 − t ⎪ ⎩ 2 x − 2 y − z − 4 = 0. Giải hệ, ta được H (3; 0; 2). 0,25 VII.a Tính giá trị của biểu thức… (1,0 điểm) Δ = −36 = 36i 2 , z1 = −1 + 3i và z2 = −1 − 3i. 0,25 | z1 | = (−1)2 + 32 = 10 và | z2 | = (−1)2 + (−3)2 = 10. 0,50 Trang 3/4
  4. Câu Đáp án Điểm A = | z1 | 2 + | z2 | 2 = 20. 0,25 VI.b 1. (1,0 điểm) Tìm m... (2,0 điểm) (C ) có tâm I (−2; −2), bán kính R = 2. 0,25 1 1 Diện tích tam giác IAB : S = IA.IB.sin AIB ≤ R 2 = 1; S lớn nhất khi và chỉ khi IA ⊥ IB. 0,25 2 2 R −2 − 2 m − 2 m + 3 Khi đó, khoảng cách từ I đến Δ : d ( I , Δ) = =1 ⇔ =1 0,25 2 1 + m2 8 ⇔ (1 − 4m ) = 1 + m 2 ⇔ m = 0 hoặc m = 2 . 0,25 15 2. (1,0 điểm) Xác định toạ độ điểm M ... Δ 2 qua A(1;3; −1) và có vectơ chỉ phương u = (2;1; −2). M ∈ Δ1 ⇒ M (−1 + t ; t; −9 + 6t ). 0,25 ⎡ ⎤ MA = (2 − t ;3 − t ;8 − 6t ), ⎣ MA, u ⎦ = (8t − 14; 20 − 14t ; t − 4) ⇒ ⎡ MA, u ⎤ = 3 29t 2 − 88t + 68. ⎣ ⎦ ⎡ MA, u ⎤ ⎣ ⎦ Khoảng cách từ M đến Δ 2 : d ( M , Δ 2 ) = = 29t 2 − 88t + 68. u 0,25 −1 + t − 2t + 12t − 18 − 1 11t − 20 Khoảng cách từ M đến ( P ) : d ( M ,( P) ) = = . 1 + ( −2 ) + 2 3 2 2 2 11t − 20 53 29t 2 − 88t + 68 = ⇔ 35t 2 − 88t + 53 = 0 ⇔ t = 1 hoặc t = . 0,25 3 35 53 ⎛ 18 53 3 ⎞ t = 1 ⇒ M (0;1; −3); t = ⇒ M ⎜ ; ; ⎟. 0,25 35 ⎝ 35 35 35 ⎠ VII.b Giải hệ phương trình… (1,0 điểm) ⎧ x 2 + y 2 = 2 xy ⎪ Với điều kiện xy > 0 (*), hệ đã cho tương đương: ⎨ 2 0,25 ⎪ x − xy + y = 4 2 ⎩ ⎧x = y ⎧x = y ⇔ ⎨ 2 ⇔⎨ 0,50 ⎩y = 4 ⎩ y = ±2. Kết hợp (*), hệ có nghiệm: ( x; y ) = (2;2) và ( x; y ) = (−2; −2). 0,25 -------------Hết------------- Trang 4/4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2