Đề án lý thuyết thống kê " Vận dụng phương pháp dãy số thời gian để phân tích sự biên động của kim ngạch xuất khẩu dệt may thời kì 1996-2003 và dự báo 2004"
lượt xem 100
download
Trong sự phát triển kinh tế hiện nay, xu thế hội nhập và toàn cầu hoá ngày càng phát triển và lan rộng. Sự thông thương dao dịch giữa các nước ngày càng mở rộng. Điều đó tạo cơ hội cho phát triển kinh tế,nhưng đồng thời củng tạo ra nhiều kho khăn cho các nước đang phát triển.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề án lý thuyết thống kê " Vận dụng phương pháp dãy số thời gian để phân tích sự biên động của kim ngạch xuất khẩu dệt may thời kì 1996-2003 và dự báo 2004"
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Vận dụng phương pháp dãy số thời gian để phân tích sự biến động của kim ngạch xuất khẩu dệt may thời ki 1996_2003 và dự báo năm 2004 LỜI MỞ ĐẦU Trong sự phát triển kinh tế hiện nay, xu thế hội nhập và toàn cầu hoá ngày càng phát triển và lan rộng. Sự thông thương dao dịch giữa các nước ngày càng mở rộng. Điều đó tạo cơ hội cho phát triển kinh tế,nhưng đồng thời củng tạo ra nhiều kho khăn cho các nước đang phát triển. Muốn phát triển kinh tế, phải mở rông giao lưu, buôn bán với nước ngoài, nắm bắt nhửng cơ hội ,phát huy lợi thế ,tìm ra hướng đi phù hợp và hạn chế được nhửng khó khăn do bối cảnh kinh tế thế giới tạo ra.Việt nam là một nước nghèo ,với điểm xuất phát thấp, đi lên từ một nền kinh tế lạc hậu,chủ yếu là nông nghiệp (hơn 70%lao động thuộc nông nghiệp). Từ khi chuyển sang nền kinh tế thị trường ,nước ta đả đạt được nhiều thành tựu,đưa nền kinh tế thoát khỏi khủng hoảng,nâng cao đòi sống nhân dân ,và thoát khỏi thế cấm vận bao vây ,mở rộng quan hệ với các nước trên thế giới đã góp phần không nhỏ trong sự phát triển nền kinh tế ,đặc biệt là xuất khẩu. Xuất khẩu góp phần thúc đẩy kinh tế phát triển thu hút được nhửng máy móc thiết bị ,dây chuyền sản xuất hiện đại ,công nghệ thông...Ngoài ra xuất khẩu còn tăng thu ngân sách nhà nước,đáp ứng nhu cầu phát triển cơ sơ hạ tầng đồng thời tạo ra việc làm cho người lao động . Hàng dệt may là một trong nhửng mặt hàng xuất khẩu chủ yếu của Việt Nam. Thị trường xuất khẩu hàng dệt may ngày càng được mở rộng ở các thị trường như :EU, Mĩ, Nhật…và nhiều nước khác trên thế giới. Với nhửng thuận lợi sẵn có ngành dệt may xuất khẩu ngay càng phát triển, kim ngạch xuất khẩu ngày càng cao và chiếm một tỉ trọng lớn trong kim ngạch xuất khẩu của cả nưóc . 1
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Trước những đóng góp của ngành dệt may đối với nền kinh tế quốc dân nên em chọn đề tài: Vận dụng phương pháp dãy số thời gian để phân tích sự biến động của kim ngạch xuất khẩu dệt may thời ki 1996_2003 và dự báo năm 2004. Đề án này đuơc hoàn thành dưới sự hướng dẩn của cô giáo Trần phương Lan. Em xin chân thành cảm ơn cô.Tuy vậy do trình độ của em còn nhiều hạn chế nên không tránh khỏi những sai sót,mong thầy cô và các bạn thông cảm. Sinh viên thực hiện Phạm Minh Hạnh 2
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ CHƯƠNG I MỘT SỐ VẤN ĐỀ VỀ DÃY SỐ THỜI GIAN I. KHÁI NIỆM VỀ DÃY SỐ THỜI GIAN. 1.1..Khái niệm. Vật chất luôn luôn vận động không ngừng theo thời gian. Để nghiên cứu biến động của kinh tế xã hội, người ta thường sử dụng dãy số thời gian. Dãy số thời gian là dãy các trị số của chỉ tiêu thống kê được sắp xềp theo thứ tự thời gian. Dãy số thời gian cho phép thống kê học nghiên cứu đặc điểm biến động của hiện tượng theo thời gian vạch rõ xu hướng và tính quy luật của sự biến động, đồng thời dự đoán các mức độ của hiện tượng trong tương lai. 1.1..1..Kết cấu. Dãy số thì gian gồm hai thành phần: thời gian và chỉ tiêu của hiện tượng được nghiên cứu. +Thờt gian có thể đo bằng ngày, tháng, năm,…tuỳ theo mục đích nghiên cứu. Đơn vị thời gian phải đồng nhất trong dãy số thời gian. Độ dài thời gian giữa hai thời gian liền nhau được gọi là khoảng cách thời gian. + Chỉ tiêu về hiện tượng được nghiên cứu là chỉ tiêu được xây dựng cho dãy số thời gian. Các trị số của chỉ tiêu được gọi là các mức độ của dãy số thời gian. Các trị số này có thể là tuyệt đối , tương đối hay bình quân. 1.1.2..Phân loại. Có một số cách phân loại dãy số thời gian theo các mục đích nghiên cứu khác nhau.Thông thường, người ta căn cứ vào đặc điểm tồn tại về quy mô của hiện tượng theo thời gian để phân loại. Theo cách này, dãy số thời gian được chia thành hai loại: dãy số thời điẻm và dãy số thời kì. Dãy số thời điểm biểu hiện quy mô của hiện tượng nghiên cứu tại những thời điểm nhất định. Do vậy, mức độ của hiện tượng ở thời điểm sau có thể bao gồm toàn bộ hay một bộ phận mức độ của hiện tượng ở thời điểm trước đó. Dãy số thời kì biểu hiện quy mô (khối lượng) của hiện tượng trong từng thời gian nhất định. Do đó, chúng ta có thể cộng các mức độ liền nhau để được một mức độ lớn hơn trong một khoảng thời gian dài hơn. Lúc này, số lượng các số trong dãy số giảm xuống và khoảng cách thời gian lớn hơn. 1.1.3.Tác dụng. Dãy số thời gian có hai tác dụng chính sau: 3
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ +Thứ nhất, cho phép thống kê học nghiên cứu các đặc điểm và xu hướng biến động của hiện tượng theo thời gian. Từ đó, chúng ta có thể đề ra định hướng hoặc các biện pháp xử lí thích hợp. +Thứ hai, cho phép dự đoán các mức độ của hiện tượng nghiên cứu có khả năng xảy ra trong tương lai. Chúng ta sẽ nghiên cứu cụ thể hai tác dụng này trong các phần tiếp theo. 1.1.4..Điều kiện vận dụng. Để có thể vận dụng dãy số thời gian một cách hiệu quả thì dãy số thời gian phải đảm bảo tình chất có thể so sánh được giữa các mức độ trong dãy thời gian. Cụ thể là: + Phải thống nhất được nội dung và phương pháp tính + Phải thống nhất được phạm vi tổng thể nghiên cứu. + Các khoảng thời gian trong dãy số thời gian nên bằng nhau nhất là trong dãy số thời kì. Tuy nhiên, trên thực tế nhiều khi các điều kiện trên bị vi phạm do các nguyên nhân khác nhau.Vì vậy, khi vận dụng đòi hỏi phải có sự điều chỉnh thích hợp để tiến hành phân tích đạt hiệu quả cao. 1.1.5..Yêu cầu: Yêu cầu cơ bản khi xây dựng một dãy số thời gian là phải đảm bảo tính chất có thể so sánh được giữa các mức độ trong dãy số. Muốn vậy thì nội dung và phương pháp tính toán chỉ tiêu qua thời gian phải thống nhất, phạm vi hiên tượng nghiên cứu trước sau phải nhất trí, các khoảng cách thời gian trong dãy số nên bằng nhau. 1.2. CÁC CHỈ TIÊU PHÂN TÍCH DÃY SỐ THỜI GIAN. Để phân tích đặc điểm biến động của hiện tượng theo thời gian người ta thường sử dụng 5 chỉ tiêu chính sau đây: 1.2.1.Mức độ bình quân theo thời gian. Chỉ tiêu này phản ánh mức độ đại diện cho tất cả các mức độ tuyệt đối trong dãy số thời gian.Việc tính chỉ tiêu này phải phụ thuộc vào dãy số thời gian đó là dãy số thời điểm hay dãy số thời kì. 1.2.1.1.Đối với dãy số thời kì: mức độ bình quân theo thời gian được tính theo công thưc sau: n ∑ y y1+ y 2 +...+ y n i =1 i y= = n n (1). Trong đó: 4
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ yi(i=1,n). Các mức độ của dãy số thời kì. n: Số lượng các mức độ trong dãy số. 1.2.1.2.Đối với dãy số thời điểm có khoảng cách thời gian bằng nhau: chúng ta áp dụng công thức: y1 + +....+ + y n y 2 y n −1 y= 2 2 (2). n −1 Trong đó: yi(i=1,n).Các mức độ của dãy số thời đIểm có khoảng cách thời gian bằng nhau. 1.2.1.3.Đối với dãy số thời điểm có khoảng cách thời gian không bằng nhau: chúng ta áp dụng công thức: y1t1+ y 2t 2 +...+ y nt n y= (3). t1+t 2 +....+t n Trong đó: yi(i=1,n).Các mức độ của dãy số thời điểm có khoảng cách thời gian không bằng nhau. ti(i=1,n):Độ dài thời gian có mức độ: yi. 1.2.2.Lượng tăng (giảm) tuyệt đối Chỉ tiêu này phản ánh sự thay đổi về trị số tuyệt đối của chỉ tiêu trong dãy số giữa hai thời gian nghiên cứu. Nếu mức độ của hiện tượng tăng thì trị số của chỉ tiêu mang dấu (+) và ngược lại mang dấu (-). Tuỳ theo mục đích nghiên cứu, chùng ta có các lượng tăng (giảm ) tuyệt đối liên hoàn, định gốc hay bình quân. 1.2.2.1.Lượng tăng (giảm ) tuyệt đối liên hoàn: phản ánh mức chênh lệch tuyệt đối giữa mức độ nghiên cứu (yi )mức độ kì liền trước đó (yi-1) Công thức : δi=yi-yi-1 (i=2,n) (4). Trong đó: δi :Lượng tăng (giảm ) tuyệt đối liên hoàn n:Số lượng các mức độ trong dãy thời gian. 1.2.2.2.Lượng tăng (giảm) tuyệt đối định gốc: Là mức độ chênh lệch tuyệt đối giữa mức độ kì nghiên cứu yivà mức độ của một kì được chọn làm gốc, thông thường mức độ của kì gốc là mức độ đầu tiên trong dãy số (y1). Chỉ tiêu này phản ánh mức tăng (giảm) tuyệt đối trong những khoảng thời gian dài . Gọi Δ là lượng tăng(giảm) tuyệt đối định gốc, ta có: i Δ = y i − y1 i (i=2,n). (5). 5
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Giữa tăng giảm tuyệt đối liên hoàn và tăng giảm tuyệt đối định gốc có mối liên hệ được xác định theo công thức: n ∑ i =1 δi (i=2,n). (6). Công thức này cho thấy lượng tăng(giảm) tuyệt đối định gốc bằng tổng đại số lượng tăng giảm tuyệt đối liên hoàn. Công thức tổng quát: n Δ= n ∑ δi i =2 (7). 1.2.2.3.Lượng tăng (giảm) tuyệt đối bình quân là mức bình quân cộng của các mức tăng (giảm ) tuyệt đối liên hoàn. Nếu kí hiệu δ là lượng tăng (giảm)tuyệt đối bình quân, ta có công thức: n ∑δ i y −y (8). δ = = Δn = n 1 i =2 n −1 n −1` n −1 Lượng tăng (giảm) tuyệt đối bình quân không có ý nghĩa khi các mức độ của dãy số không có cùng xu hướng(cùng tăng hoặc cùng giảm) vì hai xu hướng trái ngược nhau sẽ triệt tiêu lẫn nhau làm sai lệch bản chất của hiện tựơng 1.2.3.Tốcđộ pháp triển. Tốc độ pháp triển là tương đối phản ánh tốc độ và xu hướng phát triển của hiện tượng theo thời gian. Có các tốc độ phát triển sau: 1.2.3.1.Tốc độ pháp triển liên hoàn( ti) phản ánh sự phát triển của hiện tượng giữa hai thời gian liền nhau. yi ti= (i=2,n) (9) y i −1 ti có thể được tính theo lần hay phần trăm(%). 1.2.3.2.Tốc độ phát triển định gốc(Ti phản ánh sự phát triển của hiện tượng trong những khoảng thời gian dài. Chỉ tiêu này được xác định bằng cách lấy mức độ của kì nghiên cứu ( yi )chia cho mức độ của một kì được chon làm gốc, thường là mức độ đầu tiên trong dãy số ( yi ). 6
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Công thức: yi Ti= (i=2,n) (10). y1 Giữa tốc độ phát triển liên hoàn và tốc độ phát triển định gốc có các mối quan hệ sau: +Thứ nhất, tích các tốc độ phát triển liên hoàn bằng tốc độ phát triển định gốc: ∏ t i =T i (i=2,n) (11). +Thứ hai,thương của hai tốc độ phát triển định gốc liền nhau bằng tốc độ phát triển liên hoàn giữa hai thơì gian liền đó: Ti t= i T i −1 (i=2,n) (12). Tốc độ phát triển định gốc cũng được tính theo số lần hay%. 1.2.3.3.Tốc độ phát triển bình quân là số bình quân nhân của các tốc độ phát triển liên hoàn, phản ánh tốc độ phát triển đại diện cho các tốc độ phát triển liên hoàn trong một thời kì nào đó . Gọi t là tốc độ phát triển bình quân, ta có: n t = n −1 t 1.t 2...t n = n −1 ∏ ti i =2 (13). hay : yn t = n −1 T i = n −1 (14). y1 Công thức này cũng có đơn vị tính giống hai công thức trên.Tốc độ phát triển bình quân có hạn chế là chỉ nên tính khi các mức độ của dãy số thời gian biến động theo một xu hướng nhất định(cùng tăng hoặc cùng giảm). 1.2.4.Tốc độ tăng (giảm). Chỉ tiêu này phản ánh mức độ của hiện tượng nghiên cứu giữa hai thời gian đã tăng (+) hoặc giảm (-) bao nhiêu lần (hoặc bao nhiêu %) Tương ứng với mỗi tốc độ phát triển, chúng ta có các tốc độ tăng giảm sau: 1.2.4.1.Tốc độ tăng giảm liên hoàn phản ánh sự biến động tăng(giảm) giữa hai thời gian liền nhau, là tỉ số giữa lượng tăng(giảm) liên hoàn kì nghiên cứu () với mức độ kì liền trước trong dãy số thời gian (yi-1). Gọi ai là tốc độ tăng (giảm) liên hoàn, ta có: 7
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ y−y Ai= δ = i i i −1 (i=2,n). (15) y i −1 y i −1 Hay: ai =ti -1 (nếu tính theo đơn vị lần) (16). ai =ti -100 (nếu tính theo đơn vị %) (17). 1.2.4.2.Tốc độ tăng (giảm) định gốc là tỷ số giữa lượng tăng (giảm) định gốc nghiên cứu() với mức độ kì gốc, thường là mức độ đầu tiên trong dãy(yi). y i − y1 Công thức: Ai= δ = i = T i − 1(100%) (18). yi y1 Trong đó : Ai:Tốc độ tăng (giảm ) định gốc có thể tính được theo lần hay%. 1.2.4.3.Tốc độ tăng (giảm) bình quân là số tương đối phản ánh tốc độ tăng (giảm) đại diện cho các tốc độ tăng (giảm) liên hoàn trong cả thời kì nghien cứu . Nếu kí hiệu a là tốc độ tăng (giảm) bình quân , ta có: a = t −1 (19) a = t − 100 (20) yn Hay: a = n −1 − 1(100%) (21) y1 Do tốc độ tăng (giảm) bình quân được tính theo tốc độ phát triển bình quân nên nó cũng có hạn chế khi áp dụng giống như tốc độ phát triển bình quân. 1.2.5.Giá trị tuyệt đối của 1% tăng(giảm). Chỉ tiêu này phản ánh cứ 1% tăng (giảm) của tốc độ tăng(giảm) liên hoàn thì tương ứng với một tỷ số tuyệt đối là bao nhiêu. Giá trị tuyệt đối của 1% tăng (giảm) được xác định theo công thức : g = δi (i=2,n) (22). i ai Trong đó: gi :Giá trị tuyệt đối của 1% tăng (giảm). ai:Tốc độ tăng (giảm) liên hoàn tính theođ đơn vị %. còn được tính theo công thức sau: y i −1 g i = 100 (i=2,n) (23). 8
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ *Chú ý:Chỉ tiêu náy chỉ tính cho tốc độ tăng (giảm) liên hoàn, đối với tốc độ tăng (giảm ) định gốc thì không tính vì kết quả luôn là một số không đổi và băng yi /100. II /MỘT SỐ PHƯƠNG PHÁP BIỂU HIỆN XU HƯỚNG BIẾN ĐỘNGVÀ THỐNG KÊ NGẮN HẠN 2.1. Một số phương pháp biểu hiện xu hướng biến động của hiện tượng 2.1.1.Phương pháp mở rộng khoảng cách thời gian Mở rộng khoảng cách thời gian là ghép một số khoảng thời gian gần nhau lại thành một khoảng thời gian dài hơn với mức độ lớn hơn.Trước khi ghép, các mưc độ trong dãy số chưa phản ánh được mức biến động cơ bản của hiện tượng hoặc biểu hiện chưa rõ rệt. Sau khi ghép, ảnh hưởng của các nhân tố ngẫu nhiên triệt tiêu lẫn nhau do ảnh hưởng của các chiều hướng trái ngược nhau và các mức độ mới bộc lộ rõ xu hướng biến động cơ bản của hiện tượng. Tuy nhiên, phương pháp mở rộng khoảng cách thời gian còn có một số nhược điểm nhất định . +Thứ nhất, phương pháp này chỉ áp dụng đối với dãy số thời kì vì nếu áp dụng cho dãy số thời điểm, các mức độ mới trở lên vô nghĩa. +Thứ hai, chỉ nên áp dụng cho dãy số tương đối dài và chưa bộc lộ rõ xu hường biến động của hiện tượng vì sau khi mở rộng khoảng cách thời gian,số lượng các mức độ trong dãy số giảm đi nhiều . 2.1.2Phương pháp bình quân trượt : Số bình quân trượt (còn gọi là số bình quân di động) là số bình quân cộng của một nhóm nhất định các mức độ của dãy số được tính bằng cách lần lượt loại dần các mức độ đầu và thêm dần các mức độ tiếp theo sao cho tổng số lượng các mức độ tham gia tính số lần bình quân không đổi. Có hai phương pháp số bình quân trượt cơ bản. 2.1.2.1.Số bình quân trươt đơn giản. Phương pháp này coi vai trò của các mức độ tham gia tính số bình quân trượt là như nhau.Thông thường,số mức độ tham gia trượt là lẻ (VD:3,5,7,…,2n+1) để giá trị bình quân nằm giữ khoảng trượt. − t + m2 1 yi t+ p yi Công thức tổng quát: y t = ∑ i =t − m −1 = ∑ m i =t − p 2 p +1 (24). 2 Trong đó : yt :Số bình quân trượt tại thời gian t. yi :Mức độ tại thời gian i. m:Số mức độ tham gia trượt. 9
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ t:Thời gian có mức độ tính bình quân trượt. Giả sử có dãy số thời gian: y1 , y2 ,..., yn-1 , yn (gồm m mức độ). Nếu tính bình quân trượt cho nhóm ba mức độ, chúng ta triển khai công thức như sau: y1+ y 2 + y 3 y 2 = 3 (25) y 2 + y 3+ y 4 y 3 = 3 (26). ............................... y + y + y y = n −2 n −1 n (27). n −1 3 2.1.2.2.Số bình quân trượt gia quyền. Cơ sở của phương pháp là gắn hệ số vai trò cho các mức độ tham gia tính bình quân trượt. Các mức độ này càng gần mức độ tính thì hệ số càng cao và càng xa thì hệ số càng nhỏ. Các hệ số vai trò được lấy từ các hệ số của tam giác Pascal. 1 1 1 1 2 1 1 3 3 1 Tuỳ theo mức độ tham gia tính bình quân trượt, chúng ta chọn dòng hê số tương ứng. Chẳng hạn, số mức độ tham gia là 3, công thức là: y1+2 y 2 + y 3 y 2 = 4 (28). y +2 y + y y = 2 3 4 (29). 3 4 y n − 2 +2 y n −1+ y n y n −1 = 4 (30). Phương pháp này cho chúng ta hiệu quả cao hơn phương pháp trên.Tuy nhiên cách tính phức tạp hơn nên ít được sử dụng. 2.1.3.Phương pháp hồi quy. Hồi quy là phương pháp của toán học được vận dụng trong thống kê để biểu hiện xu hướng biến động cơ bản của hiện tượng theo thời gian. Những 10
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ biến động này có nhiều giao động ngẫu nhiên và mức độ tăng (giảm) thất thường. Hàm xu thế tổng quát có dạng: y t = f (t , a0 , a1 ,..., an ) Trong đó: y t : Hàm xu thế lí thuyết . t: Thứ tự thời gian tương ứng với một mức độ trong dãy số. 0 1 :Các tham số của hàm xu thế ,các tham số này thường được a , a ,..., a n xác định bằng phương pháp bình phương nhỏ nhất. ∑ ( y t − y t ) = min 2 Do sự biến động của hiện tượng là vô cùng đa dạng nên có hàm xu thế tương ứng sao cho sự mô tả là gần đúng nhất so với xu hướng biến động thực tế của hiện tượng. Một số dạng hàm xu thế thường gặp là: 2.1.3.1.Hàm xu thế tuyến tính. y =a +a t t 0 1 Hàm xu thế tuyến tính được sử dụng khi dãy số thời gian có các lượng tăng (giảm) liên hoàn tuyệt đối xấp xỉ nhau.Theo phương pháp bình phương nhỏ nhất, chúng ta biến đổi được hệ phương trình: ∑ y = n a + a .∑ t 0 1 ∑ ty = a ∑ t + a ∑ t 2 0 1 Từ đó, chúng ta tíng được a ,a0 1 . Ngoài ra, tham số có thể tính trực tiếp theo công thức : ty −t y ty − t y a = = (31). σ 2 2 1 t − (t ) 2 t a 0 = y −a t 1 (32). 2.1.3.2.Hàm xu thế dạng Parabol bậc hai. Hàm Parabol được sử dụng khi các sai phân bậc hai(tức là sai phân của sai phân bậc một) xấp xỉ nhau. Dạng hàm : y = a + a .t + a .t t 0 1 2 2 (34). 11
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ với a ,a ,a 0 1 2 là các nghiệm của phương trình: ∑ y = n . a + a .∑ t + a .∑ t 2 0 1 2 ∑ t. y = a .∑ t + a .∑ t + a .∑ t 2 3 0 1 2 (35) ∑ t . y = a .∑ t + a .∑ t + a .∑ t 2 2 3 4 0 1 2 2.1.3.3.Hàm mũ. Phương trình hàm mũ có dạng: y = a .a t t 0 1 Hai tham số a 0 và a 1 là nghiệm của phương trình: ∑ lg y = n. lg a + lg a .∑ t 0 1 ∑ t. lg y = lg a .∑ t + lg a .∑ t 2 0 1 Hàm xu thế dạng y = a .a t 0 t 1 được vận dụng khi dãy số thời gian có các tốc độ phát triển liên hoàn xấp xỉ nhau. 2.1.3.4.Hàm Hypecpol. Phương trình hàm xu thế Hypecpol có dạng: y =a + a1 t 0 t Hàm xu thế này được sử dụng khi dãy số thời gian có các mức độ ngày càng giảm chậm dần. Các tham số a ,a0 1 được xác định theo hệphương trình: ∑ y = n a + a .∑ 1 t 0 1 1 1 1 ∑ . y = a .∑ . + a .∑ t t 0 1 2 t Trên đây là một số hàm xu hướng thường gặp. Sau khi xây dựng xong hàm xu thế, chúng ta cần thiết phải đánh giá xem mức độ phù hợp của dạng hàm có chấp nhận được hay không, hay mối liên hệ tương quan có chặt chẽ hay không. Đói với hàm xu thế dạng tuyến tính, người ta sử dụng hệ số tương quan r : ty − t . y r = = a1 σ t σ t .σ y σ y 12
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ σ 2 t − (t ) 2 t = với σ 2 2 y = y − ( y) Khi /r/ càng gần 1 thì mối liên hệ tương quan càng chặt chẽ. r mang dấu (-) khi y và t có mối liên hệ tương quan nghịch, còn r mang dấu (+) khi y và t có mối liên hệ tương quan thuận. Thông thường /r/ > 0.9 thì chúng ta có thể chấp nhận được. Ngoài ra, để đánh giá trình độ chặt chẽ của mối liên hệ tương quan giữa y và t trong các hàm xu thế phi tuyến người ta sử dụng tỉ số tương quan η. ∑ ( y − y t) 2 η = 1− ∑ ( y − y) 2 Nếu η càng gần 1 thì mối liên hệ tương quan càng chặt chẽ. 2.1.4.Phương pháp biểu hiện biến động thời vụ. Để xác định được tính chất và mức độ của biến động thời vụ, chúng ta phải sử dụng số liệu trong nhiều năm theo nhiều phương pháp khác nhau. Phương pháp thông dụng nhất là sử dụng chỉ số thời vụ. Có 2 loại chỉ số thời vụ: +Chỉ số thời vụ đối với dãy số thời gian có các mật độ tương đối ổn định. +Chỉ số thời vụ đối với dãy số thời gian có xu hướng biến động rõ rệt. *. Chỉ số thời vụ đối với dãy số thời gian có các mật độ tương đối ổn định nghĩa là trong cùng một kì, năm này qua năm khác không có sự thay đổi rõ rệt, các mức độ xấp xỉ nhau, khi đó chỉ số thời vụ được tính theo công thức sau: y I = i .100% (i=1,n). TV ( i ) y 0 Trong đó: I TV ( i ) :Chỉ số thời vụ của kì thứ i trong năm. y i :Số bình quân cộng của các mức độ cùng kì thứ i . y 0 :Số bình quân cộng của tất cả các mức độ trong dãy số . *.Chỉ số thời vụ đối với dãy số thời gian có xu hướng biến động rõ rệt. Trong trường hợp này, chúng ta phả đIều chỉnh bằng phương trình hồi quy để tính các mức độ lí thuyết.Sau đó dùng các mức độ này để làm căn cứ so sánh: 13
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ m y ∑ ij y j =1 I TV (i ) = .100% ij (i=1,n). m Trong đó: yij : Mức độ thực tế của kì thứ i năm j . y ij : Mức độ lí thuyết của kì thứ i năm j . 2.2.Một số phương pháp dự đoán thống kê ngắn hạn. 2.2.1.Một số phương pháp dự đoán thống kê ngắn hạn thường dùng: 2.2.1.1.Ngoại suy bằng các mức độ bình quân. Phương pháp này được sử dụng khi dãy số thời gian không dài và không phải xây với các dự đoán khoảng. Vì vậy, độ chính xác theo phương pháp này không cao. Tuy nhiên, phương pháp đơn giản và tính nhanh nên vẫn hay được dùng. Có các loại ngoại suy theo các mức độ bình quân sau: 14
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ a. Ngoại suy bằng mức độ bình quân theo thời gian: Phương pháp này được sử dụng khi các mức độ trong dãy số thời gian không có xu hướng biến động rõ rệt (biến động không đáng kể). Mô hình dự đoán: ) y n+ L = y với: n ∑y i y = i =1 n (36). Trong đó: y :Mức độ bình quân theo thời gian. n: Số mức độ trong dãy số. L:Tầm xa của dự đoán. ) y n+ L :Mức độ dự đoán ở thời gian (n+L). b.Ngoại suy bằng lượng tăng (giảm ) tuyệt đối bình quân. Phương pháp này được áp dụng trong trường hợp dãy số thời gian có các lượng tăng (giảm) tuyệt đối liên hoàn xấp xỉ nhau. Nghĩa là, các mức độ trong dãy số tăng cấp số cộng theo thời gian. Mô hình dự đoán: ) y n+ L = y + σ .L n với: n ∑σ i y −y Δ σ = i =1 n −1 = n n −1 1 = n n −1 (37). Trong đó: y n :Mức độ cuối cùng của dãy số thời gian. δ i (i=1,n): Lượng tăng (giảm) tuyệt đối liên hoàn. c.Ngoại suy bằng tốc độ phát triển bình quân. Đây là phương pháp được áp dụng khi dãy số thời gian có các tốc độ phát triển liên hoàn xấp xỉ nhau. Nghỉa là các mức độ tăng cấp số nhân theo thời gian. 15
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Với t là tốc độ phát triển bình quân, ta có mô hình dự đoán theo năm: ) L y n+ L = y .(t ) n (38). Nếu dự đoán cho những khoảng thời gian dưới môt năm ( tháng ,quý ,mùa…) thì: j −1 ) (t ) y =Y ij S i t (j=n+L) (39). Trong đó; ) y ij : Mức độ dự đoán kì thứ i.(i=1,m) của năm j. Yi: Tổng các mức độ của các kì cùng tên i. n Y= i ∑ y ij j =1 (i=1,m). Yij:mức độ thực tế kì thứ i của năm j. S =1+ (t ) + (t ) 2 +...+ (t ) n −1 t 2.2.1.2.Ngoại suy bằng số bình quân trượt. Gọi M là dãy số bình quân trượt. M=Mi (i=k,n) với k là khoảng san bằng . Đối với phương pháp này, người ta có thể tiến hành dự đoán điểm hay dự đoán khoảng . +Thứ nhất, đối với dự đoán điểm, mô hình dự đoán có dạng: ) y n +1 = M n (40). Mn: Số bình quân trượt thứ n. y $ n+ L : Mức độ dự đoán năm thứ n+L. +Thứ hai, mô hình dự đoán khoảng có dạng: 1 $ 1 y $ n +1 $ − t α .S . 1+ ≤y ≤y $ $ n +1 n +1 + t α .S . 1+ k k (41). Trong đó: 16
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ tα :Giá trị trong bảng T-Student với bậc tự do (k-1) và xác xuất tin cậy (1- α ). $ S : Sai số bình quân trượt: n 2 i= ∑ ( y i − M i) $ S= i=k n− k (42). 2.2.1.3.Ngoại suy hàm xu thế . Ngoại suy hàm xu thế là phương pháp dự đoán thông dụng, được xây dựng trên cơ sở sự biến động của hiện tượng trong tương lai tiếp tục xu hướng biến động đã hình thành trong quá khứ và hiện tại Mô hình dự đoán điểm: y = f (t + L) $ n+ L f(n+L) là giá trị hàm xu thế tại thời điểm (n+L). Mô hình dự đoán khoảng: y − t α .S p ≤ y n + L ≤ y n + L + t α .S p $n+ L $ $ Trong đó: Sp :Sai số dự đoán: 1 3(n + 2 L −1) 2 S =S e p 1+ + n n(n 2 −1) Se : Sai số mô hình: n 2 ∑ ( yt − y t) S=e i =1 n− p p: số các tham số trong mô hình . Các dạng hàm xu thế dùng để dự đoán là các hàm xu thế có chất lượng cao khi sai số mô hình nhỏ nhất và hệ số tương quan cao nhất (xấp xỉ 1). 2.2.1.4.Ngoại suy theo bảng Bays-balot. Nhờ việc phân tích các thành phần của dãy số thời gian, chúng ta xây dựng được mô hình khá chuẩn.Từ mô hình này chúng ta có thể dự đoán các mức độ cho tương lai. ) y = a +b(n + L) + Ci +ε t + L n+ L 17
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Tuy nhiên,thành phần ảnh hưởng của nhân tố ngẫu nhiên ε khó xác định. Hơn nữa ,ảnh hưởng này thường không lớn nên việc loại bỏ nhân tố này, mô hình sẽ trở nen đơn giản hơn. ) y = a +b(n + L) + Ci n+ L Kết quả dự đoán phản ánh khá chính xác cả quy luật biến độngchung lẫn biến động mùa vụ.Tuy nhiên ,mô hình dự đoán này có hạn chế là chỉ vận dụng dự đoán khi các mùa vụ có chung xu hướng biến động .Nghĩa là các mùa vụ phải cùng tăng (giảm) và cùng tốc độ phát triển. 2.2.1.5.Phương pháp san bằng mũ. Hầu hết các mô hình dự đoán kể trên đều có chung một nhược điểm là đánh giá vai trò của các mức độ trong dãy số thời gian như nhau . Để khắc phục nhợc điểm này, người ta xây dựng mô hình dự đoán theo phương pháp san bằng mũ. Phương pháp dự đoán này dựa trên cơ sở các mức độ của dãy số thời gian phải được xem xét một cách không như nhau. Các mức độ càng mới (càng cuối dãy số) càng cần phải được chú ý nhiều hơn. Nhờ vậy, mô hình dự đoán có khả năng thích nghi với những sự biến động mới nhất của hiện tượng trong dãy số thời gian. Gọi yt là mức độ thực tế tại thời điểm t. y t :mức độ lí thuyết tại thời điểm t. Ta có mức độ lí thuyết dự đoán tại thời điểm tiếp theo(t+1) là: ) ) y =α y + (1−α ) y t t +1 Đặt: β =1−α , ta có: ) ) y t +1=α y + β y t α ,β là các hệ số san bằng nằm trong khoảng [0,1]. ) Như vậy mức độ dự đoán y t +1 là trung bình cộng gia quyền của các mức độ yt ) thực tế và mức độ dự đoán y t . Sau một loạt các phép biến đổi, chúng ta xây dựng được một công thức tổng quát: ) n −1 y =α ∑ β i. y i −1+ β n. y 0 t +1 i =0 18
- ĐỀ ÁN LÝ THUYẾT THỐNG KÊ Trong đó: y0 : Mức độ được chọn làm điều kiện ban đầu. Dự đoán bằng phương pháp san bằng mũ chịu ảnh hưởng mạnh nhất của mức độ mới nhất và giảm dần đối với các mức độ ở cáng đầu dãy số. Do có sự tự diều chỉnh khi không có thông tin mới nhất nên mức độ dự đoán luôn luôn sát thấy. CHƯƠNG II NHỮNG VẤN ĐỀ CHUNG VỀ NGÀNH DỆT MAY 1. Thực trạng chung 11 Thời cơ và thách thứcvới ngành may mặc Viêt Nam hiện nay . Trong quá trình hội nhập thị trường khu vưc và thế giới con đường phát triển bền vững của các doanh nghiệp Việt nam là phải đầu tư đổi mới thiết bị công nghệ và hoàn thiện quản lý để nâng cao năng lực cạnh tranh . Đối thủ cạnh tranh giờ đây không chỉ là các doanh nghiệp trên cùng lãnh thổ mà đả mở rộng ra khắp thế giới. Biên giới quốc gia chỉ còn ý nghĩa về mặt địa lý . Với ưu điểm ít vốn công nghệ đơn giản thời gian thu hồi vốn nhanh ít rủi ro, ngành may mặc là một ngành kinh tế quan trọng.Ngành may mặc là một ngành kinh tế quan trọng . ngành may mặc việt nam thực sự khởi sắc từ đầu thập niên chín mươi, và có tốc độ tăng trưởng khá nhanh.trên thị trường quốc tế, hàng may xuất xứ Việt nam được đánh giá cao về chất lượng, nhờ lương giờ thấp,hàng may mặc việt nam có khả năng cạnh tranh trên thị trường. Nhửng năm gần đây, sản phẩm dệt may việt nam đã xâm nhập vào nhiều thị trường khó tính và thị phần tăng nhanh ,nhờ những thế mạnh và cơ hội của mình đó là nguồn nhân công dồi dào , có trình độ , phương tiện gửi hành và vận chuyển quốc tế thuận lợi và có chi phí thấp .miển thuế nhập khẩu đối với các chủ doanh nghiệp .mặt khác đội ngủ công nhân lành nghề có khả năng kinh doanh và đang chuyển sang hình thức tiếp cận trực tiéep với khách hàng. Ngoài ra ,cơ hội nâng cao hiệu quả và kỉ năng tiếp thị trong gia công đê chuyển sang xuất FOB . Tỉ giá hối đoái thực tế của vnđ trên một số thị trường đang yếu đi làm tăng khả năng xuất khẩu hàng vào các thị trường đó . một số 19
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề án lý thuyết tài chính tiền tệ: Xử lý nợ xấu trong hệ thống ngân hàng thương mại Việt Nam
23 p | 563 | 235
-
Đề tài “Vận dụng phương pháp chỉ số trong phân tích kết quả sản xuất, kinh doanh của Công ty Sơn tổng hợp”
30 p | 366 | 123
-
ĐỀ ÁN LÝ THUYẾT THỐNG KÊ "Hồi quy tương quan"
11 p | 481 | 112
-
Đề tài: Những vấn đề cơ bản của điều tra thống kê và vận dụng để xây dựng phương án điều tra
25 p | 694 | 103
-
Đề án: Lý thuyết trò chơi
35 p | 230 | 55
-
Đề án Lý thuyết thống kê - Đề tài: Phương pháp tính chỉ số giá xuất nhập khẩu ở Việt Nam hiện nay
42 p | 227 | 46
-
Báo cáo đồ án: Lý thuyết điều khiển tự động
13 p | 258 | 42
-
Đề án: Vận dụng phương pháp chỉ số trong phân tích kết quả sản xuất, kinh doanh của Công ty Sơn tổng hợp
29 p | 153 | 34
-
Đề án môn Lý thuyết thống kê "Dự đoán thống kê để nghiên cứu xuất nhập khẩu hàng hóa"
33 p | 206 | 32
-
Luận án Tiến sĩ Kỹ thuật: Ứng dụng lý thuyết tối ưu RH để nâng cao chất lượng của hệ điều khiển ổn định hệ thống điện PSS
131 p | 136 | 31
-
TIỂU LUẬN:Một số phần hành kế toán cơ bản tại công ty công trình đường thủy.Lời nói đầuThực tập là điều kiện thuận lợi cho mọi sinh viên trong việc củng cố kiến thức ,tìm hiểu thực tế và so sánh lý thuyết với thưc tế, là giai đoạn quan trọng trước k
59 p | 122 | 23
-
Luận án Tiến sĩ Khoa học giáo dục: Dạy học Xác suất - Thống kê ở trường Trung học phổ thông theo lý thuyết kết nối với sự hỗ trợ của công nghệ thông tin
222 p | 59 | 11
-
Luận án Tiến sĩ Khoa học giáo dục: Dạy học xác suất - thống kê ở trường Đại học Y dược dựa trên lý thuyết giáo dục toán học gắn với thực tiễn và lịch sử toán
226 p | 19 | 9
-
Luận án Tiến sĩ Khoa học máy tính: Phát triển một số phương pháp thiết kế hệ phân lớp trên cơ sở lý thuyết tập mờ và đại số gia tử
153 p | 83 | 9
-
Luận án Tiến sĩ Vật lý: Nghiên cứu chuyển pha gom cụm của các loài sinh vật bằng các mô hình vật lý thống kê
126 p | 39 | 4
-
Tóm tắt Luận án Tiến sĩ Khoa học giáo dục: Dạy học xác suất - thống kê ở trường Đại học Y dược dựa trên lý thuyết giáo dục toán học gắn với thực tiễn và lịch sử toán
28 p | 17 | 4
-
Luận án Tiến sĩ Khoa học giáo dục: Dạy học Xác suất và thống kê cho học viên chuyên ngành Trinh sát Kỹ thuật tại Học viện Khoa học Quân sự theo hướng tích hợp với Lý thuyết thông tin
229 p | 27 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn