Đề kiểm tra học kì I môn Toán năm 2015-2016 - Sở GD&ĐT Quảng Nam
lượt xem 4
download
Ít ngày nữa là kì thi cuối học kì 1 của học sinh, HOC247 xin gửi đến các bạn đề thi tham khảo nhằm giúp các bạn hệ thống kiến thức và tự tin với kì thi cuối học kì 1 sắp đến. Để nắm vững nội dung kiến thức cũng như cấu trúc đề thi mời các bạn cùng tham khảo tài liệu Đề kiểm tra học kì môn Toán năm 2015-2016 - Sở GD&ĐT Quảng Nam.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề kiểm tra học kì I môn Toán năm 2015-2016 - Sở GD&ĐT Quảng Nam
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KIỂM TRA HỌC KỲ I – NĂM HỌC 2015-2016 QUẢNG NAM Môn: TOÁN – Lớp 12 Thời gian: 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Câu 1 (2,0 điểm). x +1 Cho hàm số y = . x−2 a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(3 ; 4). Câu 2 (2,0 điểm). a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = x4 − 8x2 +3 trên đoạn [–1 ; 3]. b) Xác định giá trị của tham số m để hàm số sau đạt cực đại tại x = 1 : 1 y = x 3 − mx 2 + (m 2 − 4)x + 2 3 Câu 3 (1,0 điểm). 1 Tìm tập xác định và tính đạo hàm của hàm số y = . 1 − ln x Câu 4 (2,0 điểm). x 1–x a) Giải bất phương trình: 3 – 4.3 + 1 ≥ 0. 1 b) Giải phương trình: log 2 x + log 2 (x − 1) = 1 − log 1 (x + 2) . 2 2 Câu 5 (1,0 điểm). Cho hình trụ có bán kính đáy r = 10 cm và chiều cao h = 30 cm. Tính diện tích xung quanh của hình trụ và thể tích khối trụ tạo nên bởi hình trụ đó. Câu 6 (2,0 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 600. a) Tính theo a thể tích khối chóp S.ABC. b) Gọi G là trọng tâm tam giác SAC. Tính theo a diện tích mặt cầu có tâm G và tiếp xúc với mặt phẳng (SAB). --------------- Hết ---------------
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KIỂM TRA HỌC KỲ I – NĂM HỌC 2015-2016 QUẢNG NAM Môn TOÁN – Lớp 12 HƯỚNG DẪN CHẤM Nội dung Điểm Nội dung Điểm Câu 1. 2.0 Câu 5. 1.0 a) (1.5) + Tập xác định: D = R\{2} 0.25 + Diện tích xung quanh của hình trụ: −3 Sxq = 2πrh 0.25 + y' = 0.25 (x − 2)2 = 600π (cm2). 0.25 + Thể tích khối trụ: + Vì y’ < 0, ∀x ≠ 2 nên hàm số nghịch biến V = πr2h 0.25 trên mỗi khoảng (–∞;2), (2;+∞). 0.25 0.25 + Giới hạn và tiệm cận đúng 0.25 = 3000π (cm3). + Bảng biến thiên 0.25 Câu 6. 2.0 S + Đồ thị 0.25 b) (0.5) + Hệ số góc TT của (C) tại M là y’(3) = –3. 0.25 + Phương trình tiếp tuyến của (C) lại M là: M K G y – 4 = –3(x – 3) hay y = –3x + 13. 0.25 H Câu 2. 2.0 C B E a) (1.0) + f '(x) = 4x 3 − 16x 0.25 f '(x) = 0 x = 0 A + ⇔ 0.25 x ∈ (−1;3) x = 2 a) (1.0) + f(0) = 3; f(2) = –13; f(–1) = –4; f(3) = 12 0.25 + Xác định được (SA,(ABC)) = SAH = 60o 0.25 + Kết luận đúng 0.25 a 3 3a b) (1.0) + AH = , SH = AH tan 600 = 0.25 2 2 + y’ = x2 – 2mx + m2 – 4 0.25 + Giả sử hàm số đạt cực đại tại x = 1 thì: a2 3 + SABC = 0.25 y’(1)=0 ⇔ m2–2m–3=0⇔m=–1 hoặc m=3 0.25 4 + Ngươc lại, chứng minh được m = –1 hàm 1 a3 3 số đạt cực tiểu tại x = 1, m = 3 hàm số đạt + V = SABC .SH = 0.25 3 8 cực đại tại x = 1 và kết luận đúng. 0.5 (CM đúng một trường hợp:0.25; CM trường b) (1.0) + Lập luận được bán kính mặt cầu là: hợp còn lại và kết luận đúng: 0.25) 1 2 Câu 3. 1.0 R = d(G,(SAB)) = d(C,(SAB)) = d(H,(SAB)) 0.25 3 3 + Hàm số đã cho xác định khi: 1 – lnx > 0 0.25 + Gọi E là hình chiếu của H trên AB và K ⇔ lnx < 1 ⇔ 0 < x < e. Tập xđ: D = (0 ; e) 0.25 là hình chiếu của H trên SE. ( ) (0, 25) = ' − 1 − ln x 1 Chứng minh được: HK ⊥ (SAB) 0.25 + y' = (0, 25) 0.5 1 − ln x 2x (1 − ln x) 3 a 3 3a + Tính được: HE = ; HK = 0.25 Câu 4. 2.0 4 2 13 a) (1.0) 3x – 4.31 – x + 1 ≥ 0 (1) 2 a + R = HK = + (1) ⇔ 32x + 3 x – 12 ≥ 0 (1a) 0.25 3 13 + Đặt t=3x, t>0, (1a) trở thành: t2 + t – 12 ≥ 0 0.25 4πa 2 + ⇔ t ≤ –4 (loại) hoặc t ≥ 3 (thỏa t > 0). 0.25 Diện tích mặt cầu: S = 4πR 2 = 0.25 + Với t ≥ 3 thì 3x ≥ 3 ⇔ x ≥ 1 0.25 13 Ghi chú: b)(1.0) Ký hiệu phương trình đã cho là (2). + Câu 5: Nếu thiếu (hoặc sai) một đơn vị + ĐK: x > 1 0.25 thì không bị trừ điểm, nếu thiếu (hoặc sai) + (2) ⇔ log 2 x + log 2 (x − 1) = 1 + log 2 (x + 2) 0.25 cả hai thì trừ 0,25. + ⇔ ... ⇔ x2 – x = 2x + 4 0.25 + Câu 6: có hình vẽ đúng mới chấm các ý tương ứng. ⇔ x2 – 3x – 4 = 0⇔ x = –1 hoặc x = 4 * Học sinh có cách giải khác đúng giáo + Kết hợp với điều kiện x > 1 suy ra phương viên dựa theo thang điểm mỗi câu phân trình (2) có một nghiệm x = 4. 0.25 điểm cho phù hợp với Hướng dẫn chấm.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề kiểm tra học kì I môn Toán lớp 9 - THCS Tứ Yên
5 p | 314 | 39
-
Đề kiểm tra học kì I môn ngữ văn lớp 7 Phòng GD&ĐT Triệu Phong năm 2011-2012
3 p | 281 | 28
-
Đề kiểm tra học kì I môn Ngữ văn 8
2 p | 377 | 17
-
Đề kiểm tra học kì I trắc nghiệm và tự luận Vật lý lớp 7 năm học 2007 - 2008
4 p | 103 | 6
-
Đề cương ôn tập ma trận đề kiểm tra học kì I, năm học 2018 – 2019 - Môn Văn khối 12
2 p | 79 | 3
-
Đề kiểm tra học kì I lớp 11 năm 2009-2010 môn Toán - Sở GD&ĐT Bạc Liêu
5 p | 112 | 2
-
Đề kiểm tra học kì I lớp 11 năm 2012-2013 môn Vật lý - Sở GD & DT Đồng Tháp
3 p | 84 | 2
-
Đề kiểm tra học kì 1 lớp 12 năm 2012-2013 môn Ngữ văn - Sở GD&DT Gia Lai
4 p | 77 | 1
-
Đề kiểm tra học kì 1 lớp 12 năm 2012-2013 môn Ngữ văn - Sở GD&DT Tp. Cần Thơ
1 p | 64 | 1
-
Đề kiểm tra học kì I lớp 12 năm 2011 môn Ngữ văn
5 p | 95 | 1
-
Đề kiểm tra học kì 1 lớp 12 năm 2013 môn Ngữ văn (Đề số 1)
3 p | 57 | 1
-
Đề kiểm tra học kì 1 lớp 12 môn Ngữ văn
3 p | 76 | 1
-
Đề kiểm tra học kì I lớp 11 môn Toán ( Đề số 111) - Trường THPT Gia Hội-Huế
3 p | 94 | 1
-
Đề kiểm tra học kì I lớp 11 môn Toán - Trường THPT Bình Sơn
1 p | 113 | 1
-
Đề kiểm tra học kì I lớp 11 năm 2009-2010 môn Toán - Sở GD & ĐT Tiền Giang
2 p | 74 | 1
-
Đề kiểm tra học kì I lớp 11 năm 2009-2010 môn Toán - Trường THPT Bình Điền
6 p | 100 | 0
-
Đề kiểm tra học kì 1 lớp 12 năm 2012-2013 môn Văn - Trường THPT Đa Phúc
3 p | 32 | 0
-
Đề kiểm tra học kì I lớp 11 năm 2011–2012 môn Toán - Sở GD & ĐT Tỉnh Bà Rịa Vũng Tàu
1 p | 113 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn