ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 - 6
lượt xem 52
download
Tham khảo tài liệu 'đề thi thử đại học môn toán 2011 - 6', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 - 6
- ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT NĂM 2010 SỞ GD&ĐT THÁI NGUYÊN MÔN: TOÁN - KHỐI B TRƯỜNG THPT LƯƠNG NGỌC QUYẾN http://ductam_tp.violet.vn/ (Thời gian làm bài 180 phút không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm). Câu I: (2,0 điểm). Cho hàm số y = x3 – 3mx2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trong trường hợp đó. Câu II: (2,0 điểm). 1. Giải phương trình sau: (1 – tanx) (1+ sin2x) = 1 + tanx. 51 − 2x − x 2 2. Giải bất phương trình:
- ĐÁP ÁN, THANG ĐIỂM THI THỬ ĐẠI HỌC NĂM 2010 – MÔN TOÁN – KHỐI B Điể Nội dung Câu m I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) CâuI 2.0 1. y’= 3x – 6mx + m -1, ∆ ' = 3(3m − m + 1) > 0 ∀m => hs luôn có cực trị 2 2 0.5 y '(2) = 0 2. y’’ = 6x - 6m => hs đạt cực tiểu tại x = 2 ⇔ ⇔ m =1 y ''(2) > 0 0.5 +) Với m =1 => y = x3 -3x + 2 (C) TXĐ: D = R x = 0 Chiều biến thiên: y ' = 3x − 6 x, y' = 0 ⇔ 2 0.25 x = 2 => hs đồng biến trên mỗi khoảng (−∞;0) và (2; +∞) , nghịch biến trên khoảng (0 ;2) Giới hạn: lim y = −∞, lim y = +∞ x →−∞ x →+∞ Điểm uốn: y’’ =6x – 6, y’’ đổi dấu khi x đi qua x = 1 => Điểm uốn U(1; 0) 0,25 BBT -∞ +∞ x 0 2 y’ + 0 - 0 + +∞ 2 y -∞ -2 0.25 ( ) + Đồ thị (C): Đồ thị cắt trục hoành tại điểm (1; 0), 1 ± 3;0 , trục tung tại điểm (0; 2) y f(x)=x^3-3x^2+2 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 Đồ thị nhận điểm uốn làm tâm đối xứng 0.25 CâuII 2.0 π + lπ 1. TXĐ: x ≠ (l ∈ Z ) 0,25 2 t = 0 2t 2t (1 − t ) 1 + = 1+ t ⇔ Đặt t= tanx => sin 2 x = 2 , đc pt: 2 0,25 t = −1 1+ t 1+ t Với t = 0 => x = k π , (k ∈ Z ) (thoả mãn TXĐ) 0,25 π Với t = -1 => x = − + kπ (thoả mãn TXĐ) 0,25 4 2
- 2. 1,0 1 − x < 0 51 − 2 x − x ≥ 0 2 51 − 2 x − x 2 < 1 ⇔ 1 − x > 0 1− x 51 − 2 x − x 2 ≥ 0 51 − 2 x − x < (1 − x) 2 2 0,5 x > 1 x ∈ −1 − 52; −1 + 52 ⇔ x < 1 x ∈ (−∞; −5) ∪ (5; +∞) 0,25 x ∈ −1 − 52; −1 + 52 )( x ∈ −1 − 52; −5 ∪ 1; −1 + 52 0.25 Câu III 1,0 Đặt t = sinx => 1 − x = cos t , dx = cos tdt 2 0,25 π 4 ( ) 0,25 A = ∫ sin 2 t dt 0 π −2 A= 0,5 8 Câu IV 1,0 S M I N QI A D H O B P C a. Kẻ MQ//SA => MQ ⊥ ( ABCD) ⇒ (α ) ≡ ( MQO) 0,25 Thiết diện là hình thang vuông MNPQ (MN//PQ) ( MN + PQ).MQ 3a 2 Std = = (đvdt) 2 8 0.25 b. ∆AMC : OH / / AM , AM ⊥ SD, AM ⊥ CD ⇒ AM ⊥ ( SCD) ⇒ OH ⊥ ( SCD) 0.25 Gọi K là hình chiếu của O trên CI ⇒ OK ⊥ CI , OH ⊥ CI ⇒ CI ⊥ (OKH ) ⇒ CI ⊥ HK 0.25 Trong mp(SCD) : H, K cố định, góc HKC vuông => K thuộc đường tròn đg kính HC 3
- uuuu r uuuu r CâuV 0.25 M∈ ∆ ⇒ M (2t + 2; t ), AM = (2t + 3; t − 2), BM = (2t − 1; t − 4) 0.25 2 AM 2 + BM 2 = 15t 2 + 4t + 43 = f (t ) 2 26 2 Min f(t) = f − => M ; − 0,5 15 15 15 II. PHẦN RIÊNG(3,0 điểm) A. Chương trình chuẩn CâuVI.a 2.0 a. (C) : I(1; 3), R= 2, A, B ∈ (C ) , M là trung điểm AB => IM ⊥ AB => Đường thẳng d 0,5 cần tìm là đg thẳng AB uuu r 0,5 d đi qua M có vectơ pháp tuyến là IM => d: x + y - 6 =0 0.25 2. Đg thẳng tiếp tuyến có dạng : y = - x + m x + y – m =0 (d’) d’ tiếp xúc với (C) ⇔ d ( I ; d ') = R = 2 0.25 m = 4 + 2 2 ⇔ 0,25 m = 4 − 2 2 x + y − (4 + 2 2) = 0 Pt tiếp tuyến : x + y − (4 − 2 2) = 0 0,25 CâuVII.a 1.0 0,25 (1 + i ) 21 − 1 P = 1 + (1 + i ) + ... + (1 + i ) 20 = i 10 (1 + i ) 21 = (1 + i ) 2 .(1 + i ) = (2i )10 (1 + i ) = −210 (1 + i ) 0,25 −2 (1 + i ) − 1 10 ( ) P= = −210 + 210 + 1 i 0,25 i 0,25 Vậy: phần thực −210 , phần ảo: 210 + 1 B. Chương trình nâng cao Câu 2.0 VI.b uu r 0,5 1. ∆ ∩ d = B ⇒ B(−3 + 2t;1 − t; −1 + 4t ) , Vt chỉ phương ud = (2; −1; 4) uuu uu rr 0,5 AB.ud = 0 ⇔ t = 1 => B(-1;0;3) 0,5 x = −1 + 3t Pt đg thẳng ∆ ≡ AB : y = 2t 0,5 z = 3 − t Câu VII.b 2 V = π ∫ ln 2 xdx 0.25 1 1 Đặt u = ln x ⇒ du = 2 ln x. dx; dv = dx ⇒ v = x 2 0.25 x ⇒ V = 2π ( ln 2 − 2 ln 2 + 1) 0.5 2 (Học sinh giải đúng nhưng không theo cách như trong đáp án, gv vẫn cho điểm tối đa tương ứng như trong đáp án ). 4
- 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học môn Hóa năm 2010 khối A, B - Trường THPT Đồng Lộc (Mã đề 161)
5 p | 826 | 490
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Văn khối D năm 2011 - Trường THPT chuyên Lý Tự Trọng
5 p | 748 | 262
-
Đề thi thử Đại học môn Hoá - Trường THPT chuyên Nguyễn Bỉnh Khiêm (Mã đề 101)
17 p | 591 | 256
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 01)
6 p | 444 | 242
-
Đề thi thử Đại học môn Hóa năm 2010 - Trường THPT Dân tộc nội trú tỉnh (Mã đề 165)
6 p | 477 | 233
-
Đề thi thử Đại học môn Văn khối D năm 2011
4 p | 885 | 212
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 02)
6 p | 386 | 184
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 08)
7 p | 305 | 119
-
Đề thi thử Đại học môn Hóa năm 2010 - Trường THPT Tĩnh Gia 2 (Mã đề 135)
21 p | 329 | 73
-
Đề thi thử Đại học môn Lý khối A - Đề số 1
5 p | 235 | 54
-
Đề thi thử Đại học môn Hóa năm 2011 - Trường THPT Trần Hưng Đạo (Mã đề 268)
6 p | 167 | 35
-
Đề thi thử Đại học môn Lý khối A - Đề số 4
7 p | 168 | 29
-
Đề thi thử Đại học môn Lý khối A - Đề số 3
6 p | 176 | 25
-
Đề thi thử Đại học môn Lý khối A - Đề số 5
4 p | 180 | 25
-
Đề thi thử Đại học môn Lý khối A - Đề số 14
5 p | 122 | 21
-
Đề thi thử Đại học môn Lý khối A - Đề số 8
6 p | 166 | 21
-
Đề thi thử Đại học môn Hóa năm 2010 khối A, B - Trường THPT Hương Khê (Mã đề 142)
7 p | 182 | 17
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn