intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 (đề 4)

Chia sẻ: Anh Khoa Nguyễn | Ngày: | Loại File: PDF | Số trang:8

74
lượt xem
14
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học môn toán 2011 (đề 4)', tài liệu phổ thông phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 (đề 4)

  1. KÌ THI KSCL THI ð I H C NĂM 2011 L N TH 1 ð THI MÔN TOÁN -KH I A Th i gian làm bài : 180 phút(không k th i gian giao ñ ) ------------------------------------------ I/PH N CHUNG CHO T T C THÍ SINH(8,0 ñi m) Câu I(2,0 ñi m): Cho hàm s y = x4 – 8m2x2 + 1 (1), v i m là tham s th c. 1 1. Kh o sát s bi n thiên và v ñ th c a hàm s (1) khi m = 2 2. Tìm các giá tr c a m ñ hàm s (1) có 3 c c tr A ,B, C và di n tích tam giác ABC b ng 64. Câu II(2,0 ñi m) π 1. Gi i phương trình : 2 3cos2 x − tan x = 4sin 2 ( x − ) + cot 2 x 4 2.Gi i b t phương trình : 2 x − 1 − x + 5 > x − 3 Câu III(1,0 ñi m) Khai tri n (1 – 5x)30 = ao+a1x +a2x2 + .....+ a30x30 Tính t ng S = |ao| + 2|a1| + 3|a2| + ... + 31|a30| Câu IV(2,0 ñi m): Cho hình chóp S.ABCD , ñáy ABCD là hình vuông c nh a,m t bên SAD là tam giác ñ u và SB = a 2 . G i E,F l n lư t là trung ñi m c a AD và AB .G i H là giao ñi m c a FC và EB. 1.Ch ng minh r ng: SE ⊥ EB và CH ⊥ SB 2.Tính th tích kh i chóp C.SEB Câu V(1,0 ñi m).Cho a,b,c là ba s th c dương tho mãn abc = 1 .Tìm giá tr l n nh t c a 1 1 1 P= +2 +2 bi u th c : a + 2b + 3 b + 2c + 3 c + 2a 2 + 3 2 2 2 II/PH N RIÊNG (2,0 ñi m) Thí sinh ch ñư c làm m t trong hai ph n (ph n A ho c ph n B) A/Theo chương trình Chu n: Câu VIa (2,0 ñi m) 1. Cho tam giác ABC có ñ nh A (0;1), ñư ng trung tuy n qua B và ñư ng phân giác trong c a góc C l n lư t có phương trình : (d1): x – 2y + 4 = 0 và (d2): x + 2y + 2 = 0 Vi t phương trình ñư ng th ng BC . 2.Gi i h phương trình :  x 2 log x y = 2 x + 3   x log y y = log x y 2  B/Theo chương trình Nâng cao: Câu VI b(2,0 ñi m) 1.Trong m t ph ng v i h tr c to ñ Oxy,cho hình ch nh t ABCD có phương trình ñư ng th ng (AB): x – y + 1 = 0 và phương trình ñư ng th ng (BD): 2 x + y – 1 = 0; ñư ng th ng (AC) ñi qua M( -1; 1). Tìm to ñ các ñ nh c a hình ch nh t ABCD. sin 2 x 1+ cos 2 x 2.Tìm giá tr l n nh t ,giá tr nh nh t c a hàm s : y = 3 +3 . H T! Thí sinh không ñư c s d ng tài li u.Cán b coi thi không gi i thích gì thêm. H và tên thí sinh:…………………………………………….S báo danh:…………………… http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  2. ðÁP ÁN THANG ðI M ð THI KSCL THI ð I H C NĂM 2010 L N TH 1 MÔN TOÁN - KH I A Câu N i dung ñáp án ði m Ý 1 1 I hàm s ñã cho có pt: y= x4 – 2x2+ 1 Khi m= 1ñi m 2 1.TXð : D= R 2.SBT 0,25 .CBT: y’= 4x3- 4x = 4x( x2 - 1) ------------------------------------------------------------------------------ y’=0 x= 0 ho c x = 1 ho c x = -1 Hàm s ñ ng bi n ∀x ∈ (−1; 0) v (1; +∞) Hàm s ngh ch bi n ∀x ∈ (−∞; −1) v (0;1) 0,25 .C c tr : HS ñ t c c ñ i t i x= 0 và yCð=y(0)=1 HS ñ t c c ti u t i x= ± 1 và yCT=y( ± 1)=0 ------------------------------------------------------------------------------ .Gi i h n: xlim y = +∞ ; xlim y = +∞ →+∞ →−∞ .BBT: -∞ +∞ x -1 0 1 0,25 - 0 + 0 - 0 + , y +∞ +∞ y 1 0 0 ------------------------------------------------------------------------------ 3. v ñ th : y 1 0,25 -1 1 x I 2 y , = 4 x 3 − 16m 2 x = 4 x( x 2 − 4m 2 ) (1ñi m) ðk ñ hàm s có 3 c c tr là y , = 0 có 3 nghi m phân bi t 0,25 T c là phương trình g ( x) = x 2 − 4m 2 = 0 có hai nghi m phân bi t x≠0 ⇔m≠0 ------------------------------------------------------------------------------ x = 0 ⇒ y = 1  y = 0 ⇔  x = 2m ⇒ y = 1 − 16m 4 ,  x = −2m ⇒ y = 1 − 16m 4  0,25 http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  3. Gi s 3 ñi m c c tr là:A(0;1);B (2m;1 − 16m 4 ) ;C (−2m;1 − 16m 4 ) ------------------------------------------------------------------------------ Ta th y AB=AC = (2m)2 + (16m 4 ) 2 nên tam giác ABC cân t i A G i I là trung ñi m c a BC thì I (0;1 − 16m 4 ) 0,25 nên AI = 16m 4 ; BC = 4 m ------------------------------------------------------------------------------ 1 1 S ∆ABC = . AI .BC = 16m 4 .4 m =64 ⇔ m5 = 2 ⇔ m = ± 5 2 (tmñk m ≠ 0 ) 2 2 ðs: m = ± 5 2 0,25 kπ II 1 ðk: x ≠ (k ∈ Z ) (1ñi m) 0,25 2 ------------------------------------------------------------------------------ V i ñk trên phương trình ñã cho tương ñương: π  2 3cos2 x − (t anx + cot 2 x) = 2 1 − cos(2 x − )   2 s inx cos2 x ⇔ 2 3cos2 x − ( + ) = 2(1 − sin 2 x) cos x sin 2 x cos x ⇔ 2 3cos2 x − = 2(1 − sin 2 x) cos x.sin 2 x 0,25 1 ⇔ 2 3cos2 x − = 2(1 − sin 2 x) sin 2 x ------------------------------------------------------------------------------ ⇔ 2 3cos2 x.sin 2 x − 1 = 2sin 2 x − 2sin 2 2 x ⇔ 3 sin 4 x − 1 = 2sin 2 x − 1 + cos4 x ⇔ 3 sin 4 x − cos4 x = 2sin 2 x 3 1 ⇔ sin 4 x − cos4 x = sin 2 x 0,25 2 2 π ⇔ sin(4 x − ) = sin 2 x 6 ------------------------------------------------------------------------------ π π    4 x − 6 = 2 x + k 2π  x = 12 + kπ (tm) ⇔ (k ∈ Z ) ⇔  x = 7π + kπ (tm)  4 x − π = π − 2 x + k 2π 0,25     36 3 6 2 x − 1 − x + 5 > x − 3 (1) II 2 (1ñi m) ðk: x ≥ 1 Nhân lư ng liên h p: 2 x − 1 + x + 5 > 0 ( 2 x − 1 − x + 5)(2 x − 1 + x + 5) > ( x − 3)(2 x − 1 + x + 5) 0,25 ⇔ 4( x − 1) − ( x + 5) > ( x − 3)(2 x − 1 + x + 5) ⇔ 3( x − 3) > ( x − 3)(2 x − 1 + x + 5) (2) --------------------------------------------------------------------------- Xét các trư ng h p: TH1:x>3 thì phương trình (2) tr thành: 3 > 2 x − 1 + x + 5 (3) 0,25 http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  4. VP(3) > 2 2 + 2 2 = 4 2 >3 nên b t phương trình (3) vô nghi m. ---------------------------------------------------------------------------- 0,25 TH2: x=3 thì 0>0 (vô lý) ---------------------------------------------------------------------------- TH3: 1 ≤ x < 3 nên t b t phương trình (2) ta suy ra: 3 < (2 x − 1 + x + 5) bình phương 2 v ta ñư c: 4 ( x − 1)( x + 5) > 8 − 5 x (4) 8 − 5 x < 0 8 ⇔ < x < 3 (5) thì (4) luôn ñúng * 1 ≤ x < 3 5 8 − 5 x ≥ 0 0,25 8 ⇔ 1 ≤ x ≤ (*) nên bình phương hai v c a (4)ta * 1 ≤ x < 3 5 ñư c 9 x 2 − 144 x + 144 < 0 ⇔ 8 − 48 < x < 8 + 48 8 K t h p v i ñi u ki n(*) ta ñư c: 8 − 48 < x ≤ (6) 5 T (5) và (6) ta có ñs: 8 − 48 < x < 3 Xét khai tri n: (1 − 5 x)30 = C30 − C30 .5 x + C30 .(5 x)2 − ... + C30 .(5 x)30 0 1 2 30 III 1ñi m 0,25 Nhân 2 v v i x ta ñư c: x(1 − 5 x) = C30 x − C30 .5 x + C30 .5 x − ... + C30 .5 x (1) 30 0 1 2 2 23 30 30 31 ------------------------------------------------------------------------------ L y ñ o hàm hai v c a (1) ta ñư c; (1 − 5 x)30 − 150 x(1 − 5 x) 29 = C30 − 2C30 .5 x + 3C30 .52 x 2 − ... + 31C30 .530 x 30 (2) 0,25 0 1 2 30 Ch n x=-1 thay vào (2) ta ñư c 0,25 6 + 150.6 = C30 + 2(C30 .5) + 3(C30 .5 ) + ... + 31(C30 .5 ) 30 29 0 1 2 2 30 30 ------------------------------------------------------------------------------ hay 629 (6 + 150) = a0 + 2 a1 + 3 a2 + ... + 31 a30 hay 630.26 = a0 + 2 a1 + 3 a2 + ... + 31 a30 0,25 ðS : S = 630.26 IV 1 S (1ñi m) A F 0,25 B H E D C ------------------------------------------------------------------------------ *CM: SE ⊥ EB a3 Vì tam giác SAD ñ u c nh a ⇒ SE = 2 0,25 Xét tam giác vuông AEB có: http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  5. 2 a 5a 2 EB 2 = EA2 + AB 2 =   + a 2 = 2 4 ----------------------------------------------------------------------------- 2  a 3  5a 2 Xét tam giác SEB có: SE + EB =  2  + 4 = 2a = SB 2 2 2 2 0,25    suy ra tam giác SEB vuông t i E hay SE ⊥ EB ------------------------------------------------------------------------------ Ta có: AEB = BFC(c-c) suy ra ¼ = BFC AEB ¼ 0,25 mà ¼ + FBE = 900 AEB ¼ ¼¼ ¼ ⇒ BFC + FBE = 900 ⇒ FHB = 900 Hay CH ⊥ EB mÆt kh¸c CH ⊥ SE (do SE ⊥ ( ABCD) ) Suy ra CH ⊥ ( SEB) . => CH ⊥ SB 1 IV 2 V y VC .SEB = .CH .S∆SEB (1ñi m) 0,25 3 ------------------------------------------------------------------------------ 1 1 1 1 1 41 5 = + = + 2= 2+ 2= 2 * Xét FBC có: 2 2 2 2 a a BH BF BC aa a  2 0,25 2 a suy ra BH 2 = 5 ------------------------------------------------------------------------------ 0,25 a 2 4a 2 2a BHC có: CH 2 = BC 2 − BH 2 = a 2 − = ⇒ CH = Xét 5 5 5 ----------------------------------------------------------------------------- 0,25 1 2a 1 a 3 a 5 a 3 3 1 1 Nên VC .SEB = CH . .SE.EB = . = (ñvtt) .. . 3 2 3 52 2 2 12 Áp d ng BðT cosi ta có: V (1 a 2 + b 2 ≥ 2ab ñi m) b 2 + 1 ≥ 2b 0,25 a 2 + 2b 2 + 3 ≥ 2(ab + b + 1) suy ra ------------------------------------------------------------------------------ Tương t : b 2 + 2c 2 + 3 ≥ 2(bc + c + 1) 0,25 c 2 + 2a 2 + 3 ≥ 2(ac + a + 1) ------------------------------------------------------------------------------ Khi ñó: P ≤   1 1 1 1 + +   2  ab + b + 1 bc + c + 1 ac + a + 1  =  1 1 abc abc + +   2  ab + b + 1 bc + c + abc ac + a bc + abc  2 0,25 1 1 1 ab b + + = = 2  ab + b + 1 ab + b + 1 ab + b + 1  2 ------------------------------------------------------------------------------ http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  6. D u ñ ng th c x y ra khi a=b=c=1. 1 0,25 V y P ñ t giá tr l n nh t b ng khi a=b=c=1 2 G i C ( xc ; yc ) VI. 1 a (1ñi m) Vì C thu c ñư ng th ng (d2) nên: C (−2 yc − 2; yc ) y +1 G i M là trung ñi m c a AC nên M  − yc − 1; c    0,25  2 ----------------------------------------------------------------------------- yc + 1 Vì M thu c ñư ng th ng (d1) nên : − yc − 1 − 2. + 4 = 0 ⇒ yc = 1 2 0,25 ⇒ C (−4;1) ------------------------------------------------------------------------------ T A k AJ ⊥ d 2 t i I ( J thu c ñư ng th ng BC) nên véc tơ ch → phương c a ñư ng th ng (d2) là u (2; −1) là véc tơ pháp tuy n c a ñư ng th ng (AJ) V y phương trình ñư ng th ng (AJ) qua A(0;1)là:2x-y+1=0 Vì I=(AJ) ∩ (d2) nên to ñ di m I là nghi m c a h  4 x = − 5 2 x − y + 1 = 0  43 0,25 ⇔ ⇒ I (− ; − )  x + 2y + 2 = 0 3  55 y = −   5 ------------------------------------------------------------------------------ Vì tam giác ACJ cân t i C nên I là trung ñi m c a AJ   8 8 0 + x = − 5 x = − 5 G i J(x;y) ta có:   8 11 ⇔ ⇒ J (− ; − )  1 + y = − 6  y = − 11 55     5 5 8 11 0,25 V y phương trình ñư ng th ng (BC) qua C(-4;1) ; J (− ; − ) là: 5 5 4x+3y+13=0 x,y>0 và x, y ≠ 1 ðk: VI. 2 0,25 a (1 ñi m) V i ñk trên h phương trình tương ñương :  y 2 = 2 x + 3(1)   log y x-1=2log x y (2)  Gi i(2) ñ t log y x = t (t ≠ 0)  t = −1 2 phương trình (2) tr thành: t − 1 = ⇔ t 2 − t − 2 = 0 ⇔  (tm) t = 2 t 0,25  1 x = y  l og y x=-1 ⇔ ⇔   log y x=2   x = y2  ------------------------------------------------------------------------------ http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  7. 2 2  y 2 = 2 x + 3  y = + 3  y3 − 3 y − 2 = 0 1/  1   y ⇔ ⇔  1 x = y x = y x = 1   0,25   y  y = 2   1  y = −1(loai )  x = ⇔  ⇒ 2 x = 1 y = 2    y ------------------------------------------------------------------------------  y2 = 2x + 3  y2 = 2 y2 + 3  y2 + 3 = 0 2/    ⇔ ⇔ (vô nghi m)  0,25 x = y x = y x = y 2 2 2     1 x = ðáp s :  2 y = 2  Vì B là giao ñi m c a (AB) và (BD) nên to ñ c a B là nghi m VI. 1 x − y +1 = 0 x = 0 b (1ñi m) ⇔ ⇒ B(0;1) c ah :  2 x + y − 1 = 0 y =1 uuu r ðư ng th ng AB có VTPT : nAB (1; −1) uuu r 0,25 ðư ng th ng BD có VTPT : nBD (2;1) uuur Gi s ñư ng th ng AC có VTPT : nAC (a; b) ------------------------------------------------------------------------------ Khi ñó: uuu uuu rr uuu uuu rr nAB .nBD nAB .nAC uuu uuu = uuu uuu r r r r nAB nBD nAB nAC a−b 1 ⇔ = ⇔ a 2 + b2 = 5 a − b a +b 2 2 5 0,25 ⇔ a + b = 5(a 2 − 2ab + b 2 ) 2 2 ⇔ 4a 2 − 10ab + 4b 2 = 0 ⇔ 2a 2 − 5ab + 2b 2 = 0  b a = 2 ⇔   a = 2b uuu r b 1/V i a = ,ch n a=1,b=2 thì nAC (1; 2) suy ra phương trình ñư ng 2 th ng (AC) ñi qua ñi m M(-1;1) là: x+2y-1=0 ------------------------------------------------------------------------------ G i I là giao ñi m c a ñư ng th ng (AC) và (BD) nên to ñ 1  x= 3 2x + y −1 = 0   11 0,25 ⇔ ⇒ I( ; ) ñi m I là nghi m c a h :   x + 2 y −1 = 0  y= 1 33 3  Vì A là giao ñi m c a ñư ng th ng (AB) và (AC) nên to ñ http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
  8.  1  x=- 3 x − y +1 = 0  12 ⇔ ⇒ A(− ; ) ñi m A là nghi m c a h :   x + 2 y −1 = 0  y= 2 33 3  Do I là trung ñi m c a AC và BD nên to ñ ñi m C (1; 0) và 21 D( ; − ) 33 ----------------------------------------------------------------------------- 2/V i a=2b ch n a=2;b=1 thì phương trình ñư ng th ng (AC) là 2x+y+1=0 (lo i vì AC không c t BD) 0,25 12 2 1 ðáp s : A(− ; ) ; B(0;1) ; C (1; 0) ; D( ; − ) 33 3 3 TXð: D=R VI. 2 2 2 (1ñi m) hàm s ñã cho vi t l i là: y = 3sin x + 32−sin x b 0,25 2 2 ð t t = 3sin x vì 0 ≤ sin 2 x ≤ 1 nên 1 ≤ 3sin x ≤ 3 t c 1 ≤ t ≤ 3 ---------------------------------------------------------------------------- 9 khi ñó hàm s ñã cho tr thành y = f (t ) = t + v i 1≤ t ≤ 3 t 9 t2 − 9 Ta có f , (t ) = 1 − =2 0,25 t2 t f (t ) = 0 ⇔ t − 9 = 0 ⇔ t = ±3 , 2 ----------------------------------------------------------------------------- BBT: t 1 3 0,25 - , f (t ) 10 f (t ) 6 ------------------------------------------------------------------------------ min y ( x) = min f (t ) = 6 ñ t ñư c khi t=3 khi [] ( −∞ ; +∞ ) 1;3 π + kπ ( k ∈ Z ) sin 2 x = 1 ⇔ x = 2 Max y ( x) = Max f (t ) = 10 ñ t ñư c khi t=1 khi 0,25 [1;3] ( −∞ ; +∞ ) sin 2 x = 0 ⇔ x = kπ (k ∈ Z ) N u thí sinh làm theo các cách khác ñúng, v n cho ñi m t i ña. Ht http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2