intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử Đại học môn Toán khối B năm 2014 - Đề số 4

Chia sẻ: Lam Chi Linh | Ngày: | Loại File: PDF | Số trang:7

185
lượt xem
13
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi thử đại học năm 2014 môn Toán kèm hướng dẫn đáp án chi tiết các bài tập thường gặp, xem và download để ôn tập củng cố kiến thức môn Toán.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử Đại học môn Toán khối B năm 2014 - Đề số 4

  1. ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI B NĂM 2013-2014 Đề Số 4 PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) Câu I ( 2,0 điểm): Cho hàm số y = 2 x − 4 . x +1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm trên đồ thị (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(-3; 0) và N(-1; -1). Câu II (2,0 điểm): 1. Giải phương trình: 2 = 1 + 3 + 2 x − x2 x +1 + 3 − x 2. Giải phương trình: sin x + sin 2 x + sin 3 x + sin 4 x = cos x + cos 2 x + cos3 x + cos 4 x e Câu III (1,0 điểm): Tính tích phân: I = ∫ ⎛ ⎜ ln x ⎞ + ln 2 x ⎟ dx 1 ⎝ x 1 + ln x ⎠ Câu IV (1,0 điểm):Cho hai hình chóp S.ABCD và S’.ABCD có chung đáy là hình vuông ABCD cạnh a. Hai đỉnh S và S’ nằm về cùng một phía đối với mặt phẳng (ABCD), có hình chiếu vuông góc lên đáy lần lượt là trung điểm H của AD và trung điểm K của BC. Tính thể tích phần chung của hai hình chóp, biết rằng SH = S’K =h. Câu V(1,0 điểm): Cho x, y, z là những số dương thoả mãn xyz = 1. Tìm giá trị nhỏ nhất của biểu thức: x9 + y 9 y9 + z9 z 9 + x9 P= + 6 + 6 3 3 x6 + x3 y 3 + y 6 y + y 3 z 3 + z 6 z + z x + x6 PHẦN RIÊNG(3,0 điểm) Thí sinh chỉ được làm một trong hai phần(phần A hoặc phần B) A. Theo chương trình chuẩn. Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: x 2 + y 2 + 4 3x − 4 = 0 . Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A. 2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2; -1), B(7; -2; 3) và đường thẳng d ⎧ x = 2 + 3t có phương trình ⎪ . Tìm trên d những điểm M sao cho tổng khoảng cách từ M đến ⎨ y = − 2t (t ∈ R) ⎪ z = 4 + 2t ⎩ A và B là nhỏ nhất. Câu VII.a (1,0 điểm): Giải phương trình trong tập số phức: z 2 + z = 0 B. Theo chương trình nâng cao. Câu VI.b (2,0 điểm):
  2. 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD: x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian với hệ toạ độ vuông góc Oxyz, cho hai đường thẳng: ⎧2x + y + 1 = 0 ⎧ 3 x + y − z + 3 = 0 .Chứng minh rằng hai đường thẳng ( Δ ) và (Δ ) ⎨ ; ( Δ ') ⎨ ⎩x − y + z −1 = 0 ⎩2 x − y + 1 = 0 ( Δ ' ) cắt nhau. Viết phương trình chính tắc của cặp đường thẳng phân giác của các góc tạo bởi ( Δ ) và ( Δ ' ). ⎧ x log 2 3 + log 2 y = y + log 2 x Câu VII.b (1,0 điểm): Giải hệ phương trình: ⎨ . ⎩ x log 3 12 + log 3 x = y + log 3 y -------------------------------- Hết ------------------------
  3. ĐÁP ÁN Câu Nội dung Điể m I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) CâuI 2.0 1. TXĐ: D = R\{-1} 6 Chiều biến thiên: y ' = > 0 ∀x ∈ D ( x + 1) 2 => hs đồng biến trên mỗi khoảng (−∞; −1) và (−1; +∞) , hs không có cực trị 0.25 Giới hạn: lim y = 2, lim− y = +∞, lim+ y = −∞ x →±∞ x →−1 x →−1 => Đồ thị hs có tiệm cận đứng x= -1, tiệm cận ngang y = 2 0,25 BBT x -∞ -1 +∞ y’ + + +∞ 2 y 2 -∞ 0.25 + Đồ thị (C): Đồ thị cắt trục hoành tại điểm ( 2;0 ) , trục tung tại điểm (0;-4) y f(x)=(2x-4)/(x+1) f(x)=2 9 x(t)=-1 , y(t)=t 8 7 6 5 4 3 2 1 x -6 -5 -4 -3 -2 -1 1 2 3 4 5 -1 -2 -3 -4 -5 0.25 Đồ thị nhận giao điểm 2 đường tiệm cận làm tâm đối xứng ⎛ 6 ⎞ ⎛ 6 ⎞ 2. Gọi 2 điểm cần tìm là A, B có A ⎜ a; 2 − ⎟ ; B ⎜ b; 2 − ⎟ ; a, b ≠ −1 0.25 ⎝ a +1 ⎠ ⎝ b +1 ⎠ ⎛ a+b a−2 b−2⎞ Trung điểm I của AB: I ⎜ ; + ⎟ ⎝ 2 a +1 b +1 ⎠ 0.25 Pt đường thẳng MN: x + 2y +3= 0 uuu uuuu r r ⎧ AB.MN = 0 ⎪ Có : ⎨ 0.25 ⎪ I ∈ MN ⎩
  4. ⎧a = 0 ⎧ A(0; −4) => ⎨ => ⎨ 0,25 ⎩b = 2 ⎩ B(2;0) CâuII 2.0 1. TXĐ: x ∈ [ −1;3] 0,25 t2 − 4 Đặt t= x + 1 + 3 − x , t > 0 => 3 + 2x − x = 2 0,25 2 3 đc pt: t - 2t - 4 = 0 t=2 0,25 ⎡ x = −1 Với t = 2 x + 1 + 3 − x =2 ⇔ ⎢ (t / m) 0,25 ⎣x = 3 2. sin x + sin 2 x + sin 3 x + sin 4 x = cos x + cos 2 x + cos3 x + cos 4 x 1,0 TXĐ: D =R sin x + sin 2 x + sin 3 x + sin 4 x = cos x + cos 2 x + cos3 x + cos 4 x ⎡sin x − cosx = 0 ⇔ (sin x − cosx).[ 2 + 2(sin x + cosx) + sin x.cosx ] = 0 ⇔ ⎢ 0,25 ⎣ 2 + 2(sin x + cosx) + sin x.cosx = 0 π + Với sin x − cosx = 0 ⇔ x = + kπ ( k ∈ Z ) 0,25 4 + Với 2 + 2(sin x + cosx) + sin x.cosx = 0 , đặt t = sin x + cosx (t ∈ ⎡ − 2; 2 ⎤ ) ⎣ ⎦ ⎡ t = −1 được pt : t2 + 4t +3 = 0 ⇔ ⎢ ⎣t = −3(loai ) 0.25 ⎡ x = π + m2π t = -1 ⇒ ⎢ (m ∈ Z ) ⎢ x = − π + m2π ⎣ 2 ⎡ π ⎢ x = + kπ ( k ∈ Z ) 4 ⎢ Vậy : ⎢ x = π + m2π (m ∈ Z ) ⎢ 0,25 π ⎢ x = − + m2π ⎣ 2 Câu III e ⎛ ln x ⎞ 1,0 I = ∫⎜ + ln 2 x ⎟ dx 1 ⎝ x 1 + ln x ⎠ e ln x 4 2 2 I1 = ∫ dx , Đặt t = 1 + ln x ,… Tính được I1 = − 0,5 1 x 1 + ln x 3 3 e ( ) I 2 = ∫ ln 2 x dx , lấy tích phân từng phần 2 lần được I2 = e - 2 0,25 1 2 2 2 I = I1 + I2 = e − − 0,25 3 3 Câu IV 1,0
  5. S S' N M D C H K A B SABS’ và SDCS’ là hình bình hành => M, N là trung điểm SB, S’D : V = VS . ABCD − VS . AMND 0,25 VS . AMD SM 1 VS .MND SM SN 1 VS . AMND = VS . AMD + VS .MND ; = = ; = . = ; VS . ABD SB 2 VS . BCD SB SC 4 0.25 1 3 5 VS . ABD = VS . ACD = VS . ABCD ; VS . AMND = VS . ABCD ⇒ V = VS . ABCD 0.25 2 8 8 5 2 0.25 ⇒V = ah 24 CâuV Có x, y, z >0, Đặt : a = x3 , b = y3, c = z3 (a, b, c >0 ; abc=1)đc : a 3 + b3 b3 + c 3 c3 + a3 P= 2 + + 0.25 a + ab + b 2 b 2 + bc + c 2 c 2 + ca + a 2 a 3 + b3 a 2 − ab + b 2 a 2 − ab + b 2 1 = ( a + b) 2 mà 2 ≥ (Biến đổi tương đương) a 2 + ab + b 2 a + ab + b 2 a + ab + b 2 3 a 2 − ab + b 2 1 => (a + b) 2 ≥ ( a + b) 0.25 a + ab + b 2 3 b3 + c 3 1 c3 + a3 1 Tương tự: 2 ≥ (b + c); 2 ≥ (c + a ) b + bc + c 2 3 c + ca + a 2 3 2 => P ≥ (a + b + c) ≥ 2. 3 abc = 2 (BĐT Côsi) 0.25 3 => P ≥ 2, P = 2 khi a = b = c = 1 ⇔ x = y = z = 1 Vậy: minP = 2 khi x = y =z =1 0.25 II. PHẦN RIÊNG(3,0 điểm) A. Chương trình chuẩn CâuVI. 2.0 a 1. A(0;2), I(-2 3 ;0), R= 4, gọi (C’) có tâm I’ 0,25 ⎧ x = 2 3t ⎪ Pt đường thẳng IA : ⎨ , I ' ∈ IA => I’( 2 3t ; 2t + 2 ), 0,25 ⎪ y = 2t + 2 ⎩ uur uuur 1 AI = 2 I ' A ⇔ t = => I '( 3;3) 0,25 2
  6. ( ) 2 + ( y − 3) = 4 2 (C’): x − 3 0.25 2. M(2+ 3t; - 2t; 4+ 2t) ∈ d , AB//d. 0.25 Gọi A’ đối xứng với A qua d => MA’= MA => MA+ MB = MA’ + MB ≥ A’B 0.25 (MA+ MB)min = A’B, khi A’, M, B thẳng hàng => MA = MA’ = MB 0,25 MA=MB M(2 ; 0 ; 4) 0,25 CâuVII 1.0 .a z = x + iy ( x, y ∈ R ), z2 + z = 0 ⇔ x 2 − y 2 + x 2 + y 2 + 2 xyi = 0 0,25 ⎧2 xy = 0 ⎪ ⇔⎨ 2 0,25 ⎪x − y + x + y = 0 2 2 2 ⎩ (0;0); (0;1) ; (0;-1). Vậy: z = 0, z = i, z = - i 0,5 B. Chương trình nâng cao Câu 2.0 VI.b 1. BD ∩ AB = B(7;3) , pt đg thẳng BC: 2x + y – 17 = 0 A ∈ AB ⇒ A(2a + 1; a ), C ∈ BC ⇒ C (c;17 − 2c), a ≠ 3, c ≠ 7 , ⎛ 2a + c + 1 a − 2c + 17 ⎞ I =⎜ ; ⎟ là trung điểm của AC, BD. ⎝ 2 2 ⎠ 0,25 I ∈ BD ⇔ 3c − a − 18 = 0 ⇔ a = 3c − 18 ⇒ A(6c − 35;3c − 18) 0,25 uuur uuuu r ⎡ c = 7(loai ) M, A, C thẳng hàng MA, MC cùng phương => c2 – 13c +42 =0 ⎢c = 6 ⎣ 0,25 c = 6 =>A(1;0), C(6;5) , D(0;2), B(7;3) 0.25 2. ⎛ 1 3⎞ Chứng minh hệ có nghiệm duy nhất, ( Δ ) ∩ ( Δ ' ) = A ⎜ − ;0; ⎟ 0.5 ⎝ 2 2⎠ M (0; −1;0) ∈ (Δ) , Lấy N ∈ (Δ ') , sao cho: AM = AN => N ΔAMN cân tại A, lấy I là trung điểm MN => đường phân giác của các góc tạo bởi ( Δ ) và ( Δ ' ) chính là đg thẳng AI 0.25 Đáp số: 1 3 1 3 x+ z− x+ z− 2 y 2 2 y 2 (d1 ) : = = ; (d 2 ) : = = 1 1 −2 2 −3 5 1 1 −2 2 −3 5 0,25 + + + − − − 14 30 14 30 14 30 14 30 14 30 14 30 Câu VII.b ⎧x > 0 TXĐ: ⎨ 0.25 ⎩y > 0
  7. ⎧ x log 2 3 + log 2 y = y + log 2 x ⎧3 x. y = 2 y . x ⎪ ⎨ ⇔⎨ x ⎩ x log 3 12 + log 3 x = y + log 3 y ⎪12 .x = 3 . y y ⎩ 0.25 ⎧ y = 2x ⇔⎨ x 0.25 ⎩3 . y = 2 . x y ⎧ x = log 4 2 ⎪ 3 (t/m TXĐ) ⇔⎨ ⎪ y = 2 log 4 2 0,25 ⎩ 3
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
12=>0