Đề thi thử Đại học môn Toán khối D năm 2014 - THPT Chuyên Nguyễn Đình Chiểu
lượt xem 17
download
Đề thi thử Đại học môn Toán khối D năm 2014 - THPT Chuyên Nguyễn Đình Chiểu, cấu trúc đề thi bám sát chương trình Toán THPT và định hướng ra đề thi của Bộ Giáo dục Đào tạo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học môn Toán khối D năm 2014 - THPT Chuyên Nguyễn Đình Chiểu
- www.MATHVN.com TRƯ NG THPT CHUYÊN N C THI TH I H C VÀ CAO NG NĂM 2014 -------------------------------- Môn: TOÁN; kh i D THI TH L N 1 Th i gian làm bài: 180 phút, không k phát PH N CHUNG CHO T T C THÍ SINH (7,0 i m) Câu 1: (2,0 i m) Cho hàm s y = − x 3 + 3x + 1 (1) 1) Kh o sát s bi n thiên và v th (C) c a hàm s (1). 2) nh tham s m phương trình 27 x − 3 x +1 + m = 0 có úng hai nghi m phân bi t. 1 Câu 2: (1,0 i m) Gi i phương trình: cos 2 2 x − sin(12π + 4 x) − cos(2013π − 2 x) = 0 . 2 x 3 − y 3 = 19 Câu 3: (1,0 i m) Gi i h phương trình: . ( x − y ).xy = 6 1 Câu 4: (1,0 i m) Tìm nguyên hàm F (x) c a hàm s f ( x) = x , bi t F ( 2) = 2013 . 2 + 6. 2 − x − 5 ∧ Câu 5: (1,0 i m) Trong m t ph ng (P), cho hình thoi ABCD có dài các c nh b ng a; góc ABC = 120 0 . G i G là tr ng tâm tam giác ABD. Trên ư ng th ng vuông góc v i m t ph ng (P) t i G l y i m S sao cho ∧ góc ASC = 90 0 . Tính th tích kh i chóp SABCD và kho ng cách t i mG n m t ph ng (SBD) theo a. Câu 6: (1,0 i m) Tìm giá tr l n nh t và giá tr nh nh t c a hàm s f ( x) = 1 − 2 sin x + sin x + 1 . PH N RIÊNG (3,0 i m) Thí sinh ch ư c làm m t trong hai ph n (Ph n A ho c B) A. Theo chương trình chu n Câu 7a: (1,0 i m) Trong m t ph ng Oxy, tìm các i m M trên parabol (P): y = x 2 sao cho kho ng cách t i m M n ư ng th ng (d ) : 2 x − y − 6 = 0 là ng n nh t. 2 Câu 8a: (1,0 i m) Gi i phương trình: 4.3 log(100 x ) + 9.4 log(10 x ) = 13.61+ log x . n 2 Câu 9a: (1,0 i m) Tìm h s c a s h ng ch a x trong khai tri n 3 x 2 − , bi t h s c a s h ng th 7 x ba b ng 1080 . B. Theo chương trình nâng cao Câu 7b: (1,0 i m) Trong m t ph ng Oxy, l y hai i m A(−1; 1) và B (3; 9) n m trên parabol ( P) : y = x 2 . i m M thu c cung AB. Tìm to i m M sao cho di n tích tam giác ABM t l n nh t. log 2 ( x − 1) 2 − log 3 ( x − 1) 4 Câu 8b: (1,0 i m) Gi i b t phương trình: > 0. 2 x 2 + 3x − 2 Câu 9b: (1,0 i m) T khai tri n c a bi u th c ( x − 1)100 = a 0 x 100 + a1 x 99 + ... + a 98 x 2 + a99 x + a100 . Tính t ng S = 100a 0 .2100 + 99a1 .2 99 + ... + 2a 98 .2 2 + 1a99 .21 + 1 . ----------------- H t ----------------- Thí sinh không ư c s d ng tài li u. Giám th coi thi không gi i thích gì thêm. H và tên thí sinh:………………………………………………; S báo danh:……………………………
- www.MATHVN.com ÁP ÁN THI TH I H C L N 1 KH I D NĂM H C 2013 – 2014 Câu N i dung i m 1) Kh o sát y = − x + 3 x + 1 3 1,00 Câu 1 + TX : D = R + Gi i h n: lim y = +∞ ; lim y = −∞ x → −∞ x → +∞ 0,25 x = −1 + S bi n thiên: y ' = −3x + 3 ; y ' = 0 ⇔ −3 x + 3 = 0 ⇔ 2 2 x = 1 Hàm s ngh ch bi n trên kho ng (− ∞; − 1); (1; + ∞ ) Hàm s ng bi n trên kho ng (− 1; 1) 0,25 Hàm s t c c i t i x = 1, yC = 3; t c c ti u t i x = − 1, yCT = − 1 + B ng bi n thiên x −∞ −1 1 +∞ y ′ − 0 + 0 − 0,25 +∞ 3 y −1 −∞ + th : th hàm s c t tr c tung t i i m (0; 1). 8 6 4 2 0,25 15 10 5 5 10 15 2 4 6 8 2) nh m pt 27 − 3 + m = 0 có úng hai nghi m phân bi t. x x +1 1,00 + t: X = 3 x , i u ki n X > 0 0,25 + Ta có pt ⇒ − X 3 + 3 X + 1 = m + 1, ∀X > 0 0,25 + S nghi m c a pt là s giao i m c a (C) và ư ng th ng y = m+1 trên mi n 0,25 X >0. + D a vào th ta có 1 < m + 1 < 3 ⇔ 0 < m < 2 . 0,25 1 Gi i phương trình: cos 2 2 x − sin(12π + 4 x) − cos(2013π − 2 x) = 0 Câu 2 2 1,00 2 + pt tương ương cos 2 x − sin 2 x. cos 2 x + cos 2 x = 0 0,25 π ⇔ cos 2 x(cos 2 x − sin 2 x + 1) = 0 ⇔ cos 2 x.[ 2 cos(2 x + ) + 1] = 0 0,25 4 cos 2 x = 0 π π π x = 4 + kπ ⇔ ⇔ x= +k ∨ , k ∈Z 0,25 cos(2 x + π ) = − 1 4 2 π 4 2 x = − + kπ 2 π π π + KL: phương trình có hai h nghi m x = +k , x=− + kπ , k ∈ Z 0,25 4 2 2 x 3 − y 3 = 19 Câu 3 Gi i h phương trình: 1,00 ( x − y ).xy = 6
- www.MATHVN.com ( x − y )[( x − y ) 2 + 3 xy ] = 19 + Hpt tương ương v i 0,25 ( x − y ).xy = 6 H ( H 2 + 3P) = 19 + t H = x − y; P = xy ⇒ 0,25 H .P = 6 H = 1 ⇒ . 0,25 P = 6 + KL: hpt có 2 c p nghi m ( x = 3; y = 2) và ( x = −2; y = −3) 0,25 1 Tìm nguyên hàm F(x) c a hàm s f ( x) = , bi t F(2) = 2013. Câu 4 2 + 6. 2 − x − 5 x 1,00 x 2 ∫ f ( x)dx = ∫ 2 2x − 5.2 x + 6 dx , t t = 2 x → dt = ln 2.2 x dx 0,25 1 dt 1 1 1 = ln 2 ∫ t x − 5t + 6 = ln 2 ∫ t − 3 − t − 2 dt 1 2x − 3 2x − 3 = . ln x + C = log 2 x + C = F(x). 0,25 ln 2 2 −2 2 −2 1 + F (2) = log 2 ( ) + C = 2013 ⇒ C = 2014 . 0,25 2 2x − 3 + F ( x) = log 2 x + 2014 . 0,25 2 −2 ∧ Cho hình thoi ABCD có dài các c nh b ng a, góc B = 120 0 . G i G là tr ng Câu 5 tâm tam giác ABD. Trên ư ng th ng vuông góc v i m t ph ng áy t i G l y ∧ 1,00 i m S sao cho góc ASC = 90 0 . Tính th tích kh i chóp SABCD và kho ng cách t i m G n m t ph ng (SBD. S A D H G O B C ∧ ∧ a2 3 + B = 120 0 ⇒ A = 60 0 ⇒ ∆ABD u c nh a ⇒ S ABCD = 2 S ABD = . 2 .a 3 2 .a 3 + G i O giao i m AC và BD ⇒ AO = ; AG = AO = ; AC = a 3 0,25 2 3 3 .a 6 ⇒ SG = GA.GC = ( ∆SAC vuông t i S, ư ng cao SG) 3 1 a3 2 + VSABCD =S ABCD .SG = . 0,25 3 6 + K GH ⊥ SO ⇒ GH ⊥ (SBD) vì BD ⊥ GH ⊂ (SAO) ⇒ d (G , ( SBD )) = GH 0,25
- www.MATHVN.com a 6 ⇒ d (G, SBD )) = GH = . 9 Tìm GTLN và GTNN c a hàm s f ( x) = 1 − 2 sin x + sin x + 1 . 1,00 Câu 6 1 + t t = sin x ⇒ f (t ) = 1 − 2t + t + 1 , − 1 ≤ t ≤ 0,25 2 −2 1 1 + f ' (t ) = + , (t ≠ −1; ) 2 1 − 2t 2 t + 1 2 0,25 1 + f ' (t ) = 0 ⇔ 2 t + 1 = 1 − 2t ⇔ t = − . 2 1 3 2 1 6 0,25 + f (−1) = 3; f (− ) = ; f( )= . 2 2 2 2 3 2 1 6 1 0,25 + KL: max f = khi sin x = − và min f = khi sin x = . 2 2 2 2 Tìm M trên parabol (P): y = x sao cho kho ng cách t 2 i m M n ư ng 1,00 Câu 7a th ng (d): 2x – y – 6 = 0 ng n nh t. + M ∈ ( P) ⇒ M (m; m 2 ) . 0,25 2m − m 2 − 6 (m − 1) 2 + 5 + d ( M ; (d )) = = ≥ 5 0,25 5 5 + D u “=” x y ra khi m = 1. 0,25 + KL: M(1; 1) 0,25 2 Gi i phương trình: 4.3 log(100 x ) + 9.4 log(10 x ) = 13.61+ log x . 1,00 Câu 8a log(10 x ) log(10 x ) 9 3 + Pt tương ương v i 4. − 13 +9 = 0, x > 0 0,25 4 2 log(10 x ) 9 3 t= + t t = , t > 0 ⇒ 4.t 2 − 13t + 9 = 0 ⇒ 4 0,25 2 t = 1 x = 10 log(10 x ) = 2 ⇒ ⇒ . 0,25 log(10 x ) = 0 x = 1 10 1 + KL: pt có hai nghi m x = 10; x = . 0,25 10 n 2 Câu 9a Tìm h s c a s h ng ch a x trong khai tri n 3 x 2 − , bi t h s c a s 7 1,00 x h ng th ba b ng 1080 . + S h ng t ng quát Tk +1 = C n .3 n − k .(−2) k .x 2 n −3k k 0,25 + S h ng th ba: k = 2 ⇒ C n .3 n − 2.4 = 1080 ⇒ (n − 1)n.3 n = 4.5.35 ⇒ n = 5 . 2 0,25 7 + x =x ⇒ k =1 10− 3 k 0,25 + H s C 5 .3 4.(−2) = −810 1 0,25 Câu 7b Hai i m A(−1; 1) và B(3; 9) n m trên parabol ( P) : y = x 2 . i m M thu c cung AB. Tìm M sao cho di n tích tam giác ABM t l n nh t. 1,00 + M ∈ ( P) ⇒ M (m; m 2 ) , − 1 ≤ m ≤ 3 0,25 + S ∆ABM l n nh t ⇔ d ( M , AB) l n nh t 0,25 + AB: 2 x − y + 3 = 0 . 4 − (m − 1) 2 0,25
- www.MATHVN.com + KL : M (1; 1) . 0,25 Câu 8b log 2 ( x − 1) 2 − log 3 ( x − 1) 4 Gi i b t phương trình: > 0. 1,00 2 x 2 + 3x − 2 2(1 − 2 log 3 2). log 2 x − 1 + Bpt tương ương v i > 0, x ≠1 2 x 2 + 3x − 2 0,25 log 2 x − 1 ⇔ 2 < 0 , vì 1 − 2 log 3 2 < 0 2 x + 3x − 2 0 ≠ x − 1 < 1 log 2 x − 1 < 0 1 + TH1: 2 ⇔ 1 ⇔ < x < 1∨1 < x < 2 . 0,25 2 x + 3 x − 2 > 0 x < −2 ∨ < x 2 2 x −1 > 1 log 2 x − 1 > 0 + TH2: 2 ⇔ 1 ⇔ −2 < x < 0 . 0,25 2 x + 3 x − 2 < 0 − 2 < x < 2 1 + KL: T p nghi m S = (−2; 0) ∪ ( ; 1) ∪ (1; 2) . 0,25 2 T khai tri n bi u th c ( x − 1)100 = a 0 x 100 + a1 x 99 + ... + a 98 x 2 + a99 x + a100 (1) Câu 9b Tính t ng S = 100a 0 .2100 + 99a1 .2 99 + ... + 2a 98 .2 2 + a99 .2 + 1 . 1,00 +L y o hàm hai v c a (1): 100( x − 1) 99 = 100a 0 x 99 + 99a1 x 98 + ... + 2a 98 x + a99 0,25 + Nhân hai v cho x: 100 x( x − 1) 99 = 100a 0 x 100 + 99a1 x 99 + ... + 2a 98 x 2 + a99 x 0,25 + C ng hai v cho 1, thay x = 2: 0,25 200(2 − 1) 99 + 1 = 100a 0 2100 + 99a1 2 99 + ... + 2a 98 2 2 + a99 2 + 1 = S + KL: S = 201 . 0,25
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học môn Sinh lần 1 năm 2011 khối B
7 p | 731 | 334
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Sinh lần 2
4 p | 539 | 231
-
Đề thi thử Đại học môn Sinh năm 2010 khối B - Trường THPT Anh Sơn 2 (Mã đề 153)
5 p | 456 | 213
-
Đề thi thử Đại học môn Văn khối D năm 2011
4 p | 885 | 212
-
Đề thi thử Đại học môn Toán 2014 số 1
7 p | 278 | 103
-
Đề thi thử Đại học môn tiếng Anh - Đề số 10
6 p | 384 | 91
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 1-4)
4 p | 223 | 35
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 2
7 p | 229 | 25
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 5-8)
4 p | 138 | 17
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 1
11 p | 143 | 15
-
Đề thi thử Đại học môn Lý năm 2013 - Trường THPT chuyên Lương Văn Chánh (Mã đề 132)
7 p | 177 | 12
-
Đề thi thử Đại học môn Lý năm 2011 - Trường THPT Nông Cống I
20 p | 114 | 9
-
Đề thi thử đại học môn Lý khối A - Mã đề 132
6 p | 54 | 9
-
Đề thi thử Đại học môn Toán năm 2011 - Trường THPT Tây Thụy Anh
8 p | 79 | 8
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011
6 p | 105 | 7
-
Đề thi thử Đại học môn Toán năm 2011 khối A
6 p | 104 | 7
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án
7 p | 102 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn