![](images/graphics/blank.gif)
Đề thi thử Đại học môn Toán khối D năm 2014 - THPT Chuyên Nguyễn Đình Chiểu
lượt xem 17
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Đề thi thử Đại học môn Toán khối D năm 2014 - THPT Chuyên Nguyễn Đình Chiểu, cấu trúc đề thi bám sát chương trình Toán THPT và định hướng ra đề thi của Bộ Giáo dục Đào tạo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học môn Toán khối D năm 2014 - THPT Chuyên Nguyễn Đình Chiểu
- www.MATHVN.com TRƯ NG THPT CHUYÊN N C THI TH I H C VÀ CAO NG NĂM 2014 -------------------------------- Môn: TOÁN; kh i D THI TH L N 1 Th i gian làm bài: 180 phút, không k phát PH N CHUNG CHO T T C THÍ SINH (7,0 i m) Câu 1: (2,0 i m) Cho hàm s y = − x 3 + 3x + 1 (1) 1) Kh o sát s bi n thiên và v th (C) c a hàm s (1). 2) nh tham s m phương trình 27 x − 3 x +1 + m = 0 có úng hai nghi m phân bi t. 1 Câu 2: (1,0 i m) Gi i phương trình: cos 2 2 x − sin(12π + 4 x) − cos(2013π − 2 x) = 0 . 2 x 3 − y 3 = 19 Câu 3: (1,0 i m) Gi i h phương trình: . ( x − y ).xy = 6 1 Câu 4: (1,0 i m) Tìm nguyên hàm F (x) c a hàm s f ( x) = x , bi t F ( 2) = 2013 . 2 + 6. 2 − x − 5 ∧ Câu 5: (1,0 i m) Trong m t ph ng (P), cho hình thoi ABCD có dài các c nh b ng a; góc ABC = 120 0 . G i G là tr ng tâm tam giác ABD. Trên ư ng th ng vuông góc v i m t ph ng (P) t i G l y i m S sao cho ∧ góc ASC = 90 0 . Tính th tích kh i chóp SABCD và kho ng cách t i mG n m t ph ng (SBD) theo a. Câu 6: (1,0 i m) Tìm giá tr l n nh t và giá tr nh nh t c a hàm s f ( x) = 1 − 2 sin x + sin x + 1 . PH N RIÊNG (3,0 i m) Thí sinh ch ư c làm m t trong hai ph n (Ph n A ho c B) A. Theo chương trình chu n Câu 7a: (1,0 i m) Trong m t ph ng Oxy, tìm các i m M trên parabol (P): y = x 2 sao cho kho ng cách t i m M n ư ng th ng (d ) : 2 x − y − 6 = 0 là ng n nh t. 2 Câu 8a: (1,0 i m) Gi i phương trình: 4.3 log(100 x ) + 9.4 log(10 x ) = 13.61+ log x . n 2 Câu 9a: (1,0 i m) Tìm h s c a s h ng ch a x trong khai tri n 3 x 2 − , bi t h s c a s h ng th 7 x ba b ng 1080 . B. Theo chương trình nâng cao Câu 7b: (1,0 i m) Trong m t ph ng Oxy, l y hai i m A(−1; 1) và B (3; 9) n m trên parabol ( P) : y = x 2 . i m M thu c cung AB. Tìm to i m M sao cho di n tích tam giác ABM t l n nh t. log 2 ( x − 1) 2 − log 3 ( x − 1) 4 Câu 8b: (1,0 i m) Gi i b t phương trình: > 0. 2 x 2 + 3x − 2 Câu 9b: (1,0 i m) T khai tri n c a bi u th c ( x − 1)100 = a 0 x 100 + a1 x 99 + ... + a 98 x 2 + a99 x + a100 . Tính t ng S = 100a 0 .2100 + 99a1 .2 99 + ... + 2a 98 .2 2 + 1a99 .21 + 1 . ----------------- H t ----------------- Thí sinh không ư c s d ng tài li u. Giám th coi thi không gi i thích gì thêm. H và tên thí sinh:………………………………………………; S báo danh:……………………………
- www.MATHVN.com ÁP ÁN THI TH I H C L N 1 KH I D NĂM H C 2013 – 2014 Câu N i dung i m 1) Kh o sát y = − x + 3 x + 1 3 1,00 Câu 1 + TX : D = R + Gi i h n: lim y = +∞ ; lim y = −∞ x → −∞ x → +∞ 0,25 x = −1 + S bi n thiên: y ' = −3x + 3 ; y ' = 0 ⇔ −3 x + 3 = 0 ⇔ 2 2 x = 1 Hàm s ngh ch bi n trên kho ng (− ∞; − 1); (1; + ∞ ) Hàm s ng bi n trên kho ng (− 1; 1) 0,25 Hàm s t c c i t i x = 1, yC = 3; t c c ti u t i x = − 1, yCT = − 1 + B ng bi n thiên x −∞ −1 1 +∞ y ′ − 0 + 0 − 0,25 +∞ 3 y −1 −∞ + th : th hàm s c t tr c tung t i i m (0; 1). 8 6 4 2 0,25 15 10 5 5 10 15 2 4 6 8 2) nh m pt 27 − 3 + m = 0 có úng hai nghi m phân bi t. x x +1 1,00 + t: X = 3 x , i u ki n X > 0 0,25 + Ta có pt ⇒ − X 3 + 3 X + 1 = m + 1, ∀X > 0 0,25 + S nghi m c a pt là s giao i m c a (C) và ư ng th ng y = m+1 trên mi n 0,25 X >0. + D a vào th ta có 1 < m + 1 < 3 ⇔ 0 < m < 2 . 0,25 1 Gi i phương trình: cos 2 2 x − sin(12π + 4 x) − cos(2013π − 2 x) = 0 Câu 2 2 1,00 2 + pt tương ương cos 2 x − sin 2 x. cos 2 x + cos 2 x = 0 0,25 π ⇔ cos 2 x(cos 2 x − sin 2 x + 1) = 0 ⇔ cos 2 x.[ 2 cos(2 x + ) + 1] = 0 0,25 4 cos 2 x = 0 π π π x = 4 + kπ ⇔ ⇔ x= +k ∨ , k ∈Z 0,25 cos(2 x + π ) = − 1 4 2 π 4 2 x = − + kπ 2 π π π + KL: phương trình có hai h nghi m x = +k , x=− + kπ , k ∈ Z 0,25 4 2 2 x 3 − y 3 = 19 Câu 3 Gi i h phương trình: 1,00 ( x − y ).xy = 6
- www.MATHVN.com ( x − y )[( x − y ) 2 + 3 xy ] = 19 + Hpt tương ương v i 0,25 ( x − y ).xy = 6 H ( H 2 + 3P) = 19 + t H = x − y; P = xy ⇒ 0,25 H .P = 6 H = 1 ⇒ . 0,25 P = 6 + KL: hpt có 2 c p nghi m ( x = 3; y = 2) và ( x = −2; y = −3) 0,25 1 Tìm nguyên hàm F(x) c a hàm s f ( x) = , bi t F(2) = 2013. Câu 4 2 + 6. 2 − x − 5 x 1,00 x 2 ∫ f ( x)dx = ∫ 2 2x − 5.2 x + 6 dx , t t = 2 x → dt = ln 2.2 x dx 0,25 1 dt 1 1 1 = ln 2 ∫ t x − 5t + 6 = ln 2 ∫ t − 3 − t − 2 dt 1 2x − 3 2x − 3 = . ln x + C = log 2 x + C = F(x). 0,25 ln 2 2 −2 2 −2 1 + F (2) = log 2 ( ) + C = 2013 ⇒ C = 2014 . 0,25 2 2x − 3 + F ( x) = log 2 x + 2014 . 0,25 2 −2 ∧ Cho hình thoi ABCD có dài các c nh b ng a, góc B = 120 0 . G i G là tr ng Câu 5 tâm tam giác ABD. Trên ư ng th ng vuông góc v i m t ph ng áy t i G l y ∧ 1,00 i m S sao cho góc ASC = 90 0 . Tính th tích kh i chóp SABCD và kho ng cách t i m G n m t ph ng (SBD. S A D H G O B C ∧ ∧ a2 3 + B = 120 0 ⇒ A = 60 0 ⇒ ∆ABD u c nh a ⇒ S ABCD = 2 S ABD = . 2 .a 3 2 .a 3 + G i O giao i m AC và BD ⇒ AO = ; AG = AO = ; AC = a 3 0,25 2 3 3 .a 6 ⇒ SG = GA.GC = ( ∆SAC vuông t i S, ư ng cao SG) 3 1 a3 2 + VSABCD =S ABCD .SG = . 0,25 3 6 + K GH ⊥ SO ⇒ GH ⊥ (SBD) vì BD ⊥ GH ⊂ (SAO) ⇒ d (G , ( SBD )) = GH 0,25
- www.MATHVN.com a 6 ⇒ d (G, SBD )) = GH = . 9 Tìm GTLN và GTNN c a hàm s f ( x) = 1 − 2 sin x + sin x + 1 . 1,00 Câu 6 1 + t t = sin x ⇒ f (t ) = 1 − 2t + t + 1 , − 1 ≤ t ≤ 0,25 2 −2 1 1 + f ' (t ) = + , (t ≠ −1; ) 2 1 − 2t 2 t + 1 2 0,25 1 + f ' (t ) = 0 ⇔ 2 t + 1 = 1 − 2t ⇔ t = − . 2 1 3 2 1 6 0,25 + f (−1) = 3; f (− ) = ; f( )= . 2 2 2 2 3 2 1 6 1 0,25 + KL: max f = khi sin x = − và min f = khi sin x = . 2 2 2 2 Tìm M trên parabol (P): y = x sao cho kho ng cách t 2 i m M n ư ng 1,00 Câu 7a th ng (d): 2x – y – 6 = 0 ng n nh t. + M ∈ ( P) ⇒ M (m; m 2 ) . 0,25 2m − m 2 − 6 (m − 1) 2 + 5 + d ( M ; (d )) = = ≥ 5 0,25 5 5 + D u “=” x y ra khi m = 1. 0,25 + KL: M(1; 1) 0,25 2 Gi i phương trình: 4.3 log(100 x ) + 9.4 log(10 x ) = 13.61+ log x . 1,00 Câu 8a log(10 x ) log(10 x ) 9 3 + Pt tương ương v i 4. − 13 +9 = 0, x > 0 0,25 4 2 log(10 x ) 9 3 t= + t t = , t > 0 ⇒ 4.t 2 − 13t + 9 = 0 ⇒ 4 0,25 2 t = 1 x = 10 log(10 x ) = 2 ⇒ ⇒ . 0,25 log(10 x ) = 0 x = 1 10 1 + KL: pt có hai nghi m x = 10; x = . 0,25 10 n 2 Câu 9a Tìm h s c a s h ng ch a x trong khai tri n 3 x 2 − , bi t h s c a s 7 1,00 x h ng th ba b ng 1080 . + S h ng t ng quát Tk +1 = C n .3 n − k .(−2) k .x 2 n −3k k 0,25 + S h ng th ba: k = 2 ⇒ C n .3 n − 2.4 = 1080 ⇒ (n − 1)n.3 n = 4.5.35 ⇒ n = 5 . 2 0,25 7 + x =x ⇒ k =1 10− 3 k 0,25 + H s C 5 .3 4.(−2) = −810 1 0,25 Câu 7b Hai i m A(−1; 1) và B(3; 9) n m trên parabol ( P) : y = x 2 . i m M thu c cung AB. Tìm M sao cho di n tích tam giác ABM t l n nh t. 1,00 + M ∈ ( P) ⇒ M (m; m 2 ) , − 1 ≤ m ≤ 3 0,25 + S ∆ABM l n nh t ⇔ d ( M , AB) l n nh t 0,25 + AB: 2 x − y + 3 = 0 . 4 − (m − 1) 2 0,25
- www.MATHVN.com + KL : M (1; 1) . 0,25 Câu 8b log 2 ( x − 1) 2 − log 3 ( x − 1) 4 Gi i b t phương trình: > 0. 1,00 2 x 2 + 3x − 2 2(1 − 2 log 3 2). log 2 x − 1 + Bpt tương ương v i > 0, x ≠1 2 x 2 + 3x − 2 0,25 log 2 x − 1 ⇔ 2 < 0 , vì 1 − 2 log 3 2 < 0 2 x + 3x − 2 0 ≠ x − 1 < 1 log 2 x − 1 < 0 1 + TH1: 2 ⇔ 1 ⇔ < x < 1∨1 < x < 2 . 0,25 2 x + 3 x − 2 > 0 x < −2 ∨ < x 2 2 x −1 > 1 log 2 x − 1 > 0 + TH2: 2 ⇔ 1 ⇔ −2 < x < 0 . 0,25 2 x + 3 x − 2 < 0 − 2 < x < 2 1 + KL: T p nghi m S = (−2; 0) ∪ ( ; 1) ∪ (1; 2) . 0,25 2 T khai tri n bi u th c ( x − 1)100 = a 0 x 100 + a1 x 99 + ... + a 98 x 2 + a99 x + a100 (1) Câu 9b Tính t ng S = 100a 0 .2100 + 99a1 .2 99 + ... + 2a 98 .2 2 + a99 .2 + 1 . 1,00 +L y o hàm hai v c a (1): 100( x − 1) 99 = 100a 0 x 99 + 99a1 x 98 + ... + 2a 98 x + a99 0,25 + Nhân hai v cho x: 100 x( x − 1) 99 = 100a 0 x 100 + 99a1 x 99 + ... + 2a 98 x 2 + a99 x 0,25 + C ng hai v cho 1, thay x = 2: 0,25 200(2 − 1) 99 + 1 = 100a 0 2100 + 99a1 2 99 + ... + 2a 98 2 2 + a99 2 + 1 = S + KL: S = 201 . 0,25
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p |
911 |
329
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 01)
6 p |
446 |
242
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 02)
6 p |
387 |
184
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 03)
7 p |
338 |
161
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 04)
8 p |
333 |
143
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 10)
6 p |
364 |
141
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 06)
6 p |
302 |
128
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 08)
7 p |
308 |
119
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 07)
8 p |
315 |
114
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 09)
6 p |
301 |
114
-
Đề thi thử Đại học môn Lý khối A - Đề số 1
5 p |
238 |
54
-
Đề thi thử Đại học môn Lý khối A - Đề số 2
6 p |
211 |
47
-
Đề thi thử Đại học môn Lý khối A - Đề số 18
5 p |
171 |
31
-
Đề thi thử Đại học môn Lý khối A - Đề số 4
7 p |
172 |
29
-
Đề thi thử Đại học môn Lý khối A - Đề số 3
6 p |
179 |
25
-
Đề thi thử Đại học môn Lý khối A - Đề số 5
4 p |
183 |
25
-
Đề thi thử Đại học môn Lý khối A - Đề số 6
6 p |
155 |
20
-
Đề thi thử Đại học môn Lý khối A - Đề số 7
7 p |
126 |
20
![](images/icons/closefanbox.gif)
![](images/icons/closefanbox.gif)
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
![](https://tailieu.vn/static/b2013az/templates/version1/default/js/fancybox2/source/ajax_loader.gif)