intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử đại học môn toán năm 2012_Đề số 165

Chia sẻ: TiPo | Ngày: | Loại File: DOC | Số trang:3

175
lượt xem
48
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đại học môn toán năm 2012_đề số 165', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 165

  1. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 165) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH: ( 7 điểm) 2x −1 Cho hàm số y = Câu I: (2 điểm) x +1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Chứng minh rằng đường thẳng d: y = - x + 1 là truc đối xứng của (C). Câu II: (2 điểm) x 4cos3xcosx - 2cos4x - 4cosx + tan t anx + 2 1 Giải phương trình: 2 =0 2sinx - 3 2. Giải bất phương trình: x 2 − 3 x + 2.log 2 x 2 x 2 − 3 x + 2.(5 − log x 2) Câu III: ( 1 điểm). Gọi (H) là hình phẳng giới hạn đồ thị (C) của hàm sô y = x3 – 2x2 + x + 4 và tiếp tuyến của (C) tại điểm có hoành độ x0 = 0. Tính thể tích của vật thể tròn xoay được tạo thành khi quay hình phẳng (H) quanh trục Ox. Câu IV: (1điểm) Cho hình lặng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Biết khoảng cách a 15 giữa hai đường thẳng AB và A’C bằng . Tính thể tích của khối lăng trụ. 5 Câu V:(1điểm) Tìm m để hệ phương trình sau có nghiệm: (2 x + 1)[ln(x + 1) - lnx] = (2y + 1)[ln(y + 1) - lny] (1) y-1 − 2 4 ( y + 1)( x − 1) + m x + 1 = 0 (2) II. PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) Phần 1: Theo chương trình chuẩn Câu VI.a: ( 2 điểm). 1. Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 = 1; và phương trình: x2 + y2 – 2(m + 1)x + 4my – 5 = 0 (1) Chứng minh rằng phương trình (1) là phương trình của đường tròn với mọi m.Gọi các đường tròn tương ứng là (Cm). Tìm m để (Cm) tiếp xúc với (C). x −1 y + 2 z = = và mặt phẳng (P): 2x + y – 2z 2. Trong không gian Oxyz cho đường thẳng d: 1 1 1 + 2 = 0. Lập phương trình mặt cầu (S) có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2; - 1;0) Câu VII.b: ( 1 điểm). Cho x; y là các số thực thoả mãn x2 + y2 + xy = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = 5xy – 3y2 Phần 2: Theo chương trình nâng cao: Câu VI.b: ( 2 điểm). 1.Trong không gian Oxyz cho điểm A(3;2;3) và hai đường thẳng x −2 y −3 z −3 x −1 y − 4 z − 3 = = = = . Chứng minh đường thẳng d1; d2 và điểm A cùng d1 : và d 2 : −2 −2 1 1 1 1 nằm trong một mặt phẳng. Xác định toạ độ các đỉnh B và C của tam giác ABC biết d1 chứa đường cao BH và d2 chứa đường trung tuyến CM của tam giác ABC. 1� � 2.Trong mặt phẳng Oxy cho elip (E) có hai tiêu điểm F1 (− 3;0); F2 ( 3;0) và đi qua điểm A � 3; �. 2 � � Lập phương trình chính tắc của (E) và với mọi điểm M trên elip, hãy tính biểu thức: P = F1M2 + F2M2 – 3OM2 – F1M.F2M Câu VII.b:( 1 điểm). Tính giá trị biểu thức: S = C2010 − 3C2010 + 32 C2010 + ... + ( −1) k C2010 + ... + 31004 C2010 − 31005 C2010 0 2 4 2k 2008 2010 1
  2. ------------------------------------Hết -------------------------------------- Hướng dẫn giải ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 165) Câu I: x = X −1 2. Giao điểm hai tiệm cận I(- 1;2) . Chuyển hệ trục toạ độ Oxy --> IXY: y =Y +2 3 Hàm số đã cho trở thành : Y = − hàm số đồng biến nê (C) đối xứng qua đường thẳng X Y=-X Hay y – 2 = - x – 1 ⇔ y = - x + 1 x 3 Câu II: 1. Điều kiện: s inx và cos 0 và cosx ≠ 0 2 2 cosx = 1 Biến đổi pt về: 4cos x - 4 cos x – cosx + 1 = 0 3 2 1 cosx = 2 2. Điều kiện 0 < x < 1 hoặc x ≥ 2. x 2 − 3 x + 2.log 2 x 2 x 2 − 3 x + 2.(5 − log 2) x 2 log 2 x − 5log 2 x + 2 0 2 log 2 x Nghiệm: 0 < x < 1 hoặc 2 ≤ x ≤ 4 Câu III: Phương trình tiếp tuyến : y=x+4 x=0 Phương trình hoành độ giao điểm: x3 – 2x2 = 0 x=2 2 2 V = π � + 4) dx − π � − 2 x + x + 4) dx 2 ( x3 2 2 (x 0 0 Câu IV: Gọi M; M’ lần lượt là trung điểm của AB và A’B’. Hạ MH ⊥ M’C AB // (A’B’C) ==> d(AB,A’C) = MH a 15 a 15 HC = ; M’C = ; MM’ = a 3 10 2 3 Vậy V = a 3 4 TXĐ: D = [0;+∞ ) Câu V: Đặt f(x) = (2x + 1)[ln(x + 1) – lnx] x +1 = (2 x + 1) ln x Gọi x1; x2 ∈ [0;+∞ ) với x1 > x2 2 x1 + 1 > 2 x2 + 1 > 0  � f ( x1 ) > f ( x2 ) : f(x) là hàm số tăng x1 + 1 x +1 � Ta có : > ln 2 >0 ln x1 x2 Từ phương trình (1) ⇒ x = y x −1 x −1 (2) � x − 1 − 2 4 ( x − 1)( x + 1) + m x + 1 = 0 � − 24 +m=0 x +1 x +1 2
  3. x −1 ⇒ 0≤X
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2