intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức p7

Chia sẻ: Fewte Dsafw | Ngày: | Loại File: PDF | Số trang:5

73
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Phép quay tâm O góc α z α ζ = eiαz ζ → ω = λζ 2. Phép vi tự tâm O hệ số λ 3. Phép tĩnh tiến vectơ b ωαw=ω+b Vậy phép biến hình tuyến tính l phép đồng dạng. H m nghịch đảo • H m nghịch đảo w = 1 , z ∈ ∀* z l h m giải tích, có đạo h m 1 w’(z) = − 2 ≠ 0 với z ≠ 0 z v do đó biến hình bảo giác mặt phẳng (z) - {0} lên mặt phẳng (w).

Chủ đề:
Lưu

Nội dung Text: Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức p7

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 2. H m BiÕnPhøc .d o .d o c u -tr a c k c u -tr a c k z α ζ = eiαz 1. PhÐp quay t©m O gãc α 2. PhÐp vi tù t©m O hÖ sè λ ζ → ω = λζ ωαw=ω+b 3. PhÐp tÜnh tiÕn vect¬ b VËy phÐp biÕn h×nh tuyÕn tÝnh l phÐp ®ång d¹ng. H m nghÞch ®¶o • H m nghÞch ®¶o w = 1 , z ∈ ∀* (2.9.3) z l h m gi¶i tÝch, cã ®¹o h m ζ 1 w’(z) = − 2 ≠ 0 víi z ≠ 0 z z v do ®ã biÕn h×nh b¶o gi¸c mÆt ph¼ng (z) - {0} lªn mÆt ph¼ng (w). • KÝ hiÖu z = reiϕ , ta cã w 1 1 |w|= v argw = - argz = - ϕ = (2.9.4) r |z| Suy ra phÐp biÕn h×nh nghÞch ®¶o l tÝch cña c¸c phÐp biÕn h×nh sau ®©y. 1. PhÐp ®èi xøng qua ®−êng trßn ®¬n vÞ z α ζ = 1 e iϕ r ζα w= ζ 2. PhÐp ®èi xøng qua trôc ho nh VËy phÐp nghÞch ®¶o b¶o to n tÝnh ®èi xøng qua ®−êng trßn ®¬n vÞ v qua trôc ho nh. • Ph−¬ng tr×nh ®−êng trßn suy réng trong mÆt ph¼ng (z) cã d¹ng A(x2 + y2) + Bx + Cy + D = 0 (2.9.5) KÝ hiÖu z = x + iy v w = u + iv. Suy ra ⇔ x = 2 u 2 v y = 2− v 2 x + iy = 1 u + iv u +v u +v Thay v o ph−¬ng tr×nh ®−êng trßn (2.9.5) nhËn ®−îc D(u2 + v2) + Bu - Cv + A = 0 Qua phÐp biÕn h×nh nghÞch ®¶o 1. §−êng th¼ng ®i qua gèc A=D=0 biÕn th nh ®−êng th¼ng qua gèc kh«ng qua gèc A = 0 v D ≠ 0 biÕn th nh ®−êng trßn qua gèc 2. §−êng trßn A ≠ 0 v D = 0 biÕn th nh ®−êng th¼ng kh«ng qua gèc ®i qua gèc kh«ng qua gèc A ≠ 0 v D ≠ 0 biÕn th nh ®−êng trßn kh«ng qua gèc VËy phÐp biÕn h×nh nghÞch ®¶o biÕn ®−êng trßn suy réng th nh ®−êng trßn suy réng. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 35
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 2. H m BiÕn Phøc .d o .d o c u -tr a c k c u -tr a c k §10. H m ph©n tuyÕn tÝnh v h m Jucop H m ph©n tuyÕn tÝnh • H m ph©n tuyÕn tÝnh w = az + b (c ≠ 0, ad - bc ≠ 0) (2.10.1) cz + d l h m gi¶i tÝch, cã ®¹o h m w’(z) = ad − bc2 ≠ 0 víi z ≠ - d (cz − d ) c v do ®ã biÕn h×nh b¶o gi¸c mÆt ph¼ng (z) - {- d } lªn mÆt ph¼ng (w). c • Ph©n tÝch w = bc − ad 1 + a (2.10.2) c cz + d c Suy ra phÐp biÕn h×nh ph©n tuyÕn tÝnh l tÝch cña c¸c phÐp biÕn h×nh sau ®©y. z α ζ = cz + d 1. PhÐp ®ång d¹ng ζαω= 1 2. PhÐp nghÞch ®¶o ζ ω α w = a1ω + b1 víi a1 = bc − ad v b1 = a 3. PhÐp ®ång d¹ng c c VËy phÐp biÕn h×nh ph©n tuyÕn tÝnh b¶o to n ®−êng trßn suy réng v tÝnh ®èi xøng qua ®−êng trßn suy réng. • BiÕn ®æi a z + b1 a b d w= 1 víi a1 = , b1 = v d1 = z + d1 c c c Suy ra nÕu biÕt ®−îc ¶nh cña ba ®iÓm kh¸c nhau w1 = w(z1), w2 = w(z2), w3 = w(z3), th× cã thÓ x¸c ®Þnh ®−îc phÐp biÕn h×nh ph©n tuyÕn tÝnh. w − w1 w 2 − w1 z − z1 z 2 − z1 = (2.10.3) w − w3 w2 − w3 z − z3 z2 − z3 H m Jucop • H m Jucop 1 w = 1 (z + ), z ∈ ∀* (2.10.4) z 2 l h m gi¶i tÝch, cã ®¹o h m w’(z) = 1 (1 - 12 ) ≠ 0 víi z ≠ 0, ±1 2 z v do ®ã biÕn h×nh b¶o gi¸c mÆt ph¼ng (z) - {0, ±1} lªn mÆt ph¼ng (w). Trang 36 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 2. H m BiÕnPhøc .d o .d o c u -tr a c k c u -tr a c k • H m Jucop l h m ®a diÖp 1 (z + 1 ) = 1 (z 1 + 1 ) ⇔ (z - z1)(1 - zz1) = 0 (2.10.5) 2 z 2 z1 Suy ra miÒn ®¬n diÖp l bªn trong hoÆc bªn ngo i ®−êng trßn ®¬n vÞ. KÝ hiÖu z = reiϕ, ta cã 1 1 1 1 w = (r + )cosϕ + i (r - )sinϕ (2.10.6) r r 2 2 1 -1 -1 1 (z) (w) Qua phÐp biÕn h×nh Jucop §−êng trßn | z | = 1 biÕn th nh ®o¹n th¼ng u = cosϕ, v = 0 1 1 1 1 |z|=r u = (r + )cosϕ, v = (r - )sinϕ biÕn th nh ellipse r r 2 2 |z|>1 MiÒn biÕn th nh (w) - [-1, 1] |z| 0 } th nh phÇn trong h×nh trßn ®¬n vÞ G = { | w | < 1 } sao cho f(a) = 0. a 0 a • Do ∂D v ∂G ®Òu l ®−êng trßn nªn chóng ta chän phÐp biÕn h×nh ph©n tuyÕn tÝnh az + b w= cz + d Do h m ph©n tuyÕn tÝnh b¶o to n tÝnh ®èi xøng qua biªn v f(a) = 0 suy ra f( a ) = ∞ Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 37
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 2. H m BiÕn Phøc .d o .d o c u -tr a c k c u -tr a c k z−a víi k ∈ ∀ w=k z−a Do tÝnh t−¬ng øng biªn : z ∈ ∂D ⇒ w = f(z) ∈ ∂G suy ra z = x ⇒ | w | = | k | x − a = 1 v do x − a = 1 nªn | k | = 1 x−a x−a KÝ hiÖu k = eiϕ víi ϕ ∈ 3 suy ra z−a w = eiϕ (2.11.1) z−a §Ó x¸c ®Þnh gãc ϕ cÇn biÕt thªm ¶nh cña mét ®iÓm thø hai. VÝ dô 2 T×m h m gi¶i tÝch w = f(z) biÕn h×nh b¶o gi¸c miÒn D = { | z | < 1 } th nh miÒn G = { | w | < 1 } sao cho f(a) = 0. 1/ a a 0 0 • Do ∂D v ∂G ®Òu l ®−êng trßn nªn chóng ta chän phÐp biÕn h×nh ph©n tuyÕn tÝnh w = az + b cz + d Do h m ph©n tuyÕn tÝnh b¶o to n tÝnh ®èi xøng qua biªn v f(a) = 0 suy ra f(1/ a ) = ∞ z−a = k z − a víi k ∈ ∀ w= k az − 1 z −1/ a Do tÝnh t−¬ng øng biªn : z ∈ ∂D ⇒ w = f(z) ∈ ∂G suy ra | z | = 1 ⇒ | w | = | k | z − a = 1 v do z − a = 1 víi | z | = 1 nªn | k | = 1 az − 1 az − 1 KÝ hiÖu k = eiϕ víi ϕ ∈ 3 suy ra z−a w = eiϕ (2.11.2) az − 1 §Ó x¸c ®Þnh gãc ϕ cÇn biÕt thªm ¶nh cña mét ®iÓm thø hai. VÝ dô 3 T×m h m gi¶i tÝch w = f(z) biÕn h×nh b¶o gi¸c miÒn D = { 0 < argz < π } th nh 3 iπ miÒn G = {| w | < 1} sao cho f( e 6 ) = 0 v f(0) = i. • Tr−íc hÕt biÕn gãc nhän th nh nöa mÆt ph¼ng trªn b»ng phÐp luü thõa. Sau ®ã dïng phÐp biÕn h×nh ph©n tuyÕn tÝnh (2.11.1) biÕn nöa mÆt ph¼ng trªn th nh phÇn trong cña h×nh trßn ®¬n vÞ. Trang 38 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 2. H m BiÕnPhøc .d o .d o c u -tr a c k c u -tr a c k iπ i e 6 0 i 0 ζ = z3 ζ−i w= k , w(0) = - k = i iπ 0 ζ+i ζ(0) = 0, ζ( e ) = i 6 LÊy tÝch c¸c phÐp biÕn h×nh w = − i z 3 − i 3 z +i VÝ dô 4 T×m h m gi¶i tÝch w = f(z) biÕn h×nh b¶o gi¸c miÒn D = { | z | < 1 v Imz > 0 } th nh miÒn G = { Imw > 0 }. • Tr−íc hÕt biÕn nöa h×nh trßn th nh gãc vu«ng b»ng c¸ch biÕn ®iÓm -1 th nh ∞ v ®iÓm 1 th nh ®iÓm 0 b»ng phÐp biÕn h×nh ph©n tuyÕn tÝnh. Sau ®ã quay v biÕn gãc vu«ng th nh nöa mÆt ph¼ng trªn. i -1 1 1 0 i ζ = z −1 ω = -iζ z +1 ω(-1) = i, ω(i) = 1 -1 0 ζ(0) = -1, ζ(i) = i 2 LÊy tÝch c¸c phÐp biÕn h×nh w = ω2 = −  z − 1     z +1 VÝ dô 5 T×m h m gi¶i tÝch w = f(z) biÕn h×nh b¶o gi¸c miÒn D = {| z | < 1, | z - i | > 1 } 2 2 th nh miÒn G = { -1 < Rew < 1 }. i i -1 0 1 -i i/2 ζ = 1 , ζ(i) = ∞ 3 ω = 4(ζ - i) = 4ζ - 3i z−i 4 ζ(0) = i, ζ(-i) = i/2 ω(i) = i, ω(i/2) = -i LÊy tÝch c¸c phÐp biÕn h×nh w = iω = 4i + 3 z−i Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 39
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2