intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức p9

Chia sẻ: Fewte Dsafw | Ngày: | Loại File: PDF | Số trang:5

53
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

au đó dùng phép tĩnh tiến v phép vi tự để điều chỉnh băng ngang th nh băng ngang đối xứng v có độ rộng thích hợp. Cuối cùng dùng phép quay để nhận đ−ợc băng đứng. Ví dụ 6 Tìm h m giải tích w = f(z) biến hình bảo giác miền D = {| z |

Chủ đề:
Lưu

Nội dung Text: Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức p9

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 3. TÝch Ph©n Phøc .d o .d o c u -tr a c k c u -tr a c k β β = ∫ λfoγ(t )γ ′(t )dt + ∫ goγ(t )γ ′(t )dt = λ ∫ f (z)dz + ∫ g(z)dz α α Γ Γ 2. §Þnh h−íng NÕu h m f kh¶ tÝch trªn ®−êng cong Γ+ = (ab) th× h m f còng kh¶ tÝch trªn ®−êng cong Γ- = (ba). ∫ f (z)dz ∫ f (z)dz =- (3.2.2) ba ab Chøng minh Tham sè ho¸ Γ+ = γ-([α, β]) víi γ- : [α, β] → D, γ-(t) = γ(-t + α + β) Tõ gi¶ thiÕt suy ra h m foγ-(t)γ-’(t) kh¶ tÝch trªn [α, β]. β β ∫ foγ(-t + α + β)γ ′(-t + α + β)dt = - ∫ foγ(s)γ ′(s)ds ∫ f (z)dz = - Γ− α α 3. HÖ thøc Chasles NÕu h m f kh¶ tÝch trªn ®−êng cong Γ = (ab) th× víi mäi c ∈ Γ h m f kh¶ tÝch trªn c¸c ®−êng cong Γ1 = (ac) v Γ2 = (cb). ∫ f (z)dz + ∫ f (z)dz = ∫ f (z)dz (3.2.3) ac cb ab Chøng minh Gi¶ sö c = γ(ε) víi ε ∈ [α, β]. Tham sè ho¸ Γ1 = γ1([α, ε]) víi γ1 : [α, ε] → D, γ1(t) = γ(t) Γ2 = γ2([ε, β]) víi γ2 : [ε, β] → D, γ2(t) = γ(t) Tõ gi¶ thiÕt suy ra h m foγ1(t)γ1’(t) kh¶ tÝch trªn [α, ε] v foγ1(t)γ1’(t) kh¶ tÝch trªn [ε, β]. β β ε (t )γ 1 (t )dt + ∫ foγ 2 (t )γ ′ (t )dt = ′ ∫ foγ(t )γ ′(t )dt ∫ foγ 1 2 α ε α 4. ¦íc l−îng tÝch ph©n KÝ hiÖu s(Γ) l ®é d i cña ®−êng cong Γ. NÕu h m f kh¶ tÝch trªn ®−êng cong Γ th× h m | f(z) | kh¶ tÝch trªn ®−êng cong Γ. ∫ f (z)dz ∫ f (z) ds ≤ supΓ | f(z) | s(Γ) ≤ (3.2.4) Γ Γ Chøng minh Tõ gi¶ thiÕt suy ra h m foγ(t)γ’(t) kh¶ tÝch trªn [α, β]. KÕt hîp c«ng thøc (3.1.3) víi c«ng thøc tÝch ph©n ®−êng lo¹i 1 suy ra β β ∫ foγ(t ) γ ′(t ) dt = ∫ f (z) ds ∫ foγ(t )γ ′(t)dt ∫ f (z)dz ≤ = Γ α Γ α Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 45
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 3. TÝch Ph©n Phøc .d o .d o c u -tr a c k c u -tr a c k 5. Liªn hÖ tÝch ph©n ®−êng NÕu h m f(z) = u(x, y) + iv(x, y) kh¶ tÝch trªn ®−êng cong Γ th× c¸c h m u(x, y) v v(x, y) kh¶ tÝch trªn ®−êng cong Γ. ∫ f (z)dz = ∫ u(x, y)dx − v(x, y)dy + i ∫ v(x, y)dx + u(x, y)dy (3.2.5) Γ Γ Γ Chøng minh Tõ gi¶ thiÕt suy ra c¸c h m u(t) v v(t) kh¶ tÝch trªn [α, β]. KÕt hîp c«ng thøc (3.1.3) víi c«ng thøc tÝch ph©n ®−êng lo¹i 2 suy ra c«ng thøc (3.2.5) C«ng thøc Newton-Leibniz H m gi¶i tÝch F(z) gäi l nguyªn h m cña h m f(z) trªn miÒn D nÕu ∀ z ∈ D, F’(z) = f(z) Cho h m f(z) cã nguyªn h m l F(z) v Γ = (ab). Khi ®ã ta cã ∫ f (z)dz = F(b) - F(a) (3.2.6) ab Chøng minh Tõ gi¶ thiÕt suy ra h m Foγ(t) l nguyªn h m cña foγ(t) trªn [α, β]. KÕt hîp c«ng thøc (3.1.1) v c«ng thøc Newton - Leibniz cña tÝch ph©n x¸c ®Þnh. β ∫ f (z)dz = ∫ f[γ(t )]γ ′(t )dt = Foγ(β) - Foγ(α) α ab dz víi Γ l ®−êng trßn | z | = R ®Þnh h−íng d−¬ng ∫z VÝ dô TÝnh tÝch ph©n I = n Γ Ta cã Γ = (ab) víi a = Re , b = Rei2π i0 Víi n ≠ 1 h m f(z) = 1n cã nguyªn h m F(z) = 1 z 1− n suy ra I = F(b) - F(a) = 0 1− n z Víi n = 1 h m f(z) = 1 cã nguyªn h m F(z) = Lnz. Tuy nhiªn h m logarit chØ x¸c ®Þnh z ®¬n trÞ trªn ∀ - (-∞, 0]. V× vËy I = Ln1(ei2π) - Ln0(ei0) = 2πi §3. §Þnh lý Cauchy §Þnh lý Cho h m f gi¶i tÝch trªn miÒn D ®¬n liªn v ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v n»m gän trong miÒn D. Khi ®ã ta cã ∫ f (z)dz = 0 (3.3.1) Γ Chøng minh KÝ hiÖu DΓ ⊂ D l miÒn ®¬n liªn cã biªn ®Þnh h−íng d−¬ng l ®−êng cong Γ. §Ó ®¬n gi¶n ta xem h m f(z) = u(x, y) + iv(x, y) víi c¸c h m u v v cã ®¹o h m liªn tôc trªn D. Trang 46 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 3. TÝch Ph©n Phøc .d o .d o c u -tr a c k c u -tr a c k ¸p dông c«ng thøc (3.2.5), c«ng thøc Green v ®iÒu kiÖn Cauchy-Riemann. ∫ f (z)dz = ∫ (udx − vdy) + i ∫ (vdx + udy) Γ Γ Γ ∂v ∂u ∂u ∂v ∫∫ (− ∂x − ∂y )dxdy + i ∫∫ ( ∂x − ∂y )dxdy = 0 = DΓ DΓ Chó ý H m f gi¶i tÝch kh«ng ®ñ ®Ó c¸c h m u v v cã ®¹o h m riªng liªn tôc. Do ®ã viÖc chøng minh ®Þnh lý Cauchy thùc ra phøc t¹p h¬n rÊt nhiÒu. B¹n ®äc quan t©m ®Õn phÐp chøng minh ®Çy ®ñ cã thÓ t×m ®äc ë c¸c t i liÖu tham kh¶o. HÖ qu¶ 1 Cho miÒn D ®¬n liªn cã biªn ®Þnh h−íng d−¬ng l ®−êng cong ®¬n, kÝn, tr¬n tõng khóc v h m f liªn tôc trªn D , gi¶i tÝch trong D. ∫ f (z)dz = 0 (3.3.2) ∂D Chøng minh Theo ®Þnh nghÜa tÝch ph©n, ta cã thÓ xem tÝch ph©n trªn ∂D nh− l giíi h¹n cña tÝch ph©n trªn ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng, n»m gän trong miÒn D v dÇn ®Õn ∂D. HÖ qu¶ 2 Cho miÒn D ®a liªn cã biªn ®Þnh h−íng d−¬ng gåm h÷u h¹n ®−êng cong ®¬n, kÝn, tr¬n tõng khóc v h m f liªn tôc trªn D , gi¶i tÝch trong D. ∫ f (z)dz (3.3.3) ∂D Chøng minh Gi¶ sö miÒn D ®a liªn v chóng ta c¾t miÒn D b»ng c¸c cung (ab) v (cd) nhËn ®−îc miÒn ®¬n liªn D1 nh− a b c d h×nh bªn. Ta cã ∂D1 = ∂D + (ab) + (ba) + (cd) + (dc) KÕt hîp hÖ qu¶ 2 v tÝnh ®Þnh h−íng, tÝnh céng tÝnh cña tÝch ph©n ∫ f (z)dz = ∫ f (z)dz + ∫ f (z)dz + ∫ f (z)dz + ∫ f (z)dz + ∫ f (z)dz = ∫ f (z)dz 0= ∂D ∂D ∂D 1 ab ba cd dc HÖ qu¶ 3 Cho miÒn D ®a liªn cã biªn ®Þnh h−íng d−¬ng gåm h÷u h¹n ®−êng cong ®¬n, kÝn, tr¬n tõng khóc ∂D = L+ + L− + ... + L−n v h m f liªn tôc trªn D , gi¶i tÝch trong D. 0 1 n ∑ ∫ f (z)dz ∫ f (z)dz = (3.3.4) k =1 L k L0 Chøng minh Suy ra tõ c«ng thøc (3.3.3) v tÝnh ®Þnh h−íng, tÝnh céng tÝnh cña tÝch ph©n. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 47
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 3. TÝch Ph©n Phøc .d o .d o c u -tr a c k c u -tr a c k HÖ qu¶ 4 Cho h m f gi¶i tÝch trong miÒn D ®¬n liªn. Khi ®ã tÝch ph©n ∫ f (ζ)dζ víi a, z ∈ D (3.3.5) az kh«ng phô thuéc ®−êng cong ®¬n, tr¬n tõng khóc, nèi a víi z v n»m gän trong miÒn D. Chøng minh Gi¶ sö (amb) v (anb) l hai ®−êng cong ®¬n, tr¬n tõng n khóc, nèi a víi z v n»m gän trong D. Khi ®ã (amzna) l z ®−êng cong ®¬n, tr¬n tõng khóc, kÝn v n»m gän trong D. a m Tõ c«ng thøc (3.3.1) v tÝnh céng tÝnh ∫ f (ζ)dζ = ∫ f (ζ)dζ ∫ f (ζ)dζ 0= + amzna amz zna ChuyÓn vÕ v sö dông tÝnh ®Þnh h−íng suy ra ∫ f (ζ)dζ ∫ f (ζ)dζ = amz anz HÖ qu¶ 5 Cho h m f gi¶i tÝch trªn miÒn D ®¬n liªn v a ∈ D. Khi ®ã h m z F(z) = ∫ f (ζ )dζ víi z ∈ D (3.3.6) a l nguyªn h m cña h m f trong miÒn D v F(a) = 0. Chøng minh Theo c«ng thøc (3.3.5) h m F x¸c ®Þnh ®¬n trÞ trªn miÒn D v F(a) = 0. Ngo i ra víi mäi (z, h) ∈ D × ∀ sao cho [z, z + h] ⊂ D z+h F(z + h) − F(z) 1 ∫ (f (ζ) − f (z))dζ ≤ sup{| f(ζ) - f(z) | : ζ ∈ [z, z + h]} − f (z) = h h z 0 → 0  h→ Suy ra h m F gi¶i tÝch trong D v F’(z) = f(z). §4. C«ng thøc tÝch ph©n Cauchy Bæ ®Ò Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v D = DΓ. Khi ®ã ta cã 1 a ∈ D 1 dz ∫ z − a = 0 a ∉ D ∀ a ∈ ∀ - Γ, IndΓ(a) = (3.4.1) 2 πi  Γ H m IndΓ(a) gäi l chØ sè cña ®iÓm a ®èi víi ®−êng cong Γ. Chøng minh Trang 48 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 3. TÝch Ph©n Phøc .d o .d o c u -tr a c k c u -tr a c k 1 Víi a ∉ D , h m f(z) = liªn tôc trªn D , gi¶i tÝch trong D. Theo c«ng thøc (3.3.2) z−a tÝch ph©n cña h m f trªn ®−êng cong kÝn Γ b»ng kh«ng. Víi a ∈ D, kÝ hiÖu B = B(a, δ) ⊂ D, S = ∂B+ l ®−êng trßn t©m a, S a b¸n kÝnh δ, ®Þnh h−íng d−¬ng v D1 = D - B. H m f(z) liªn tôc Γ D trªn D 1 , gi¶i tÝch trong D1 theo c«ng thøc (3.3.4) v c¸c vÝ dô trong §1. dz dz ∫z−a = ∫z−a = 2πi Γ S §Þnh lý Cho h m f gi¶i tÝch trong miÒn D v ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng sao cho DΓ ⊂ D. Khi ®ã ta cã 1 f (z) ∫ z − a dz ∀ a ∈ D - Γ, IndΓ(a)f(a) = (3.4.2) 2 πi Γ C«ng thøc (3.4.2) gäi l c«ng thøc tÝch ph©n Cauchy. Chøng minh  f (z ) − f (a )  z ≠ a gi¶i tÝch trong miÒn D. Tõ gi¶ thiÕt suy ra h m g(z) =  z − a f ′(a ) z=a  Sö dông c«ng thøc (3.3.1) ta cã f (z) f (a ) 0 = ∫ g(z )dz = ∫ dz − ∫ dz Γ z −a Γ z −a Γ KÕt hîp víi c«ng thøc (3.4.1) suy ra c«ng thøc (3.4.2) HÖ qu¶ 1 Cho miÒn D cã biªn ®Þnh h−íng d−¬ng gåm h÷u h¹n ®−êng cong ®¬n, kÝn, tr¬n tõng khóc v h m f liªn tôc trªn D , gi¶i tÝch trong D. f (ζ ) 1 ∫D ζ − z dζ ∀ z ∈ D, f(z) = (3.4.3) 2πi ∂ Chøng minh NÕu D l miÒn ®¬n liªn th× biªn ∂D l ®−êng cong Γ ®Þnh h−íng d−¬ng, ®¬n, kÝn v tr¬n tõng khóc. LËp luËn t−¬ng tù nh− trong chøng minh ®Þnh lý v sö dông c«ng thøc (3.3.2) thay cho c«ng thøc (3.3.1) NÕu D l miÒn ®a liªn biÕn ®æi miÒn D th nh miÒn D1 ®¬n liªn nh− trong hÖ qu¶ 2, §3. Sau ®ã sö dông kÕt qu¶ ® biÕt cho miÒn ®¬n liªn, tÝnh céng tÝnh v tÝnh ®Þnh h−íng cña tÝch ph©n. NhËn xÐt Theo c¸c kÕt qu¶ trªn th× gi¸ trÞ cña h m gi¶i tÝch trong miÒn D ®−îc x¸c ®Þnh b»ng c¸c gi¸ trÞ cña nã trªn biªn ∂D. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 49
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
28=>1